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Abstract: - This paper proposed a new method for fault diagnosis of rolling bearings based on SURF 

(Speeded-Up Robust Features) algorithm, where two-dimension signal is used. Different from other classical 

1-d signal processed methods, the proposed method transforms the 1-dimensional vibration signals into images, 

then image processed methods are utilized to analyze the image signal so as to reach the goal of faulty 

classification. Images transformed from vibration signals often have special texture features and each faulty 

category’s texture varies. SURF is a computer vision algorithm improved from SIFT (Scale Invariant Feature 

Transform) algorithm, and it can more efficiently extract local features through the texture of the image. Firstly, 

normalized time domain vibration signals were converted into gray-scale images. Then the mean filter was 

employed to complete the image pre-processing. Secondly, local features were extracted from the images by 

using SURF algorithm. Through the mean-shift clustering algorithm, extracted features were clustered to form 

a texture dictionary. Finally, features extracted from testing signals were compared with the texture dictionary 

to determine the corresponding faulty category. To validate the proposed method, several comparative 

experiments between SURF and SIFT-based algorithm have been carried out. The experimental results indicate 

that the proposed method outperforms the existing SIFT descriptor in terms of classification accuracy and 

computation cost for bearing fault diagnosis.  
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1 Introduction 

Rolling bearing plays an important role in rotary 

machines and it is also one of the main sources for the 

breakdown of mechanical equipment. Rolling bearings 

fall out of work are often for various reasons, such as 

unexpected heavy loads, lack of lubrication and 

ineffective sealing [1]. Statistics suggest that almost 

thirty percent of the failures in rotating machinery are 

caused by the damaged bearings. Therefore, it is vital 

to detect bearing fault and decrease possible financial 

and production loss [2]. Over the past several decades, 

many researchers have focused their work on the 

bearing fault detection and diagnosis. And these 

methods can be divided into three categories depending 

on the procedure of their diagnosis, i.e., data based, 

model based and signal based [3,4]. Nevertheless, 

signal processing is always an important part in the 

three categories. And these signal processing 

techniques can be classified into time domain, 

frequency domain and time-frequency domain [5].  

In bearing fault diagnosis, there are several types 

of faults frequently happening, namely outer race faults, 

inner race faults and rolling element faults [6,7,8]. The 

main goal of fault diagnosis is to determine whether 

the bearing’s state is normal. Assuming that the state is 
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abnormal, what’s more, we should also make sure 

which faulty category it is. And the popular techniques 

for signal analysis mainly include three types 

mentioned in the above paragraph. Chen and Wang in 

[9,10] combined the time series analysis algorithm 

with neural network to complete the detection and fault 

diagnosis. In [11], FFT of IMFs from Hilbert-Huang 

Transform process has been merged to utilize the 

efficiency of Hilbert Transform in frequency domain. 

For the frequency-domain analysis, we can examine 

the frequencies typical for the fault to identify the 

occurrence of fault. Besides, it can even identify the 

faulty category, like failure in outer race or in the inner 

race [1]. In [12], vibration signals are decomposed into 

a number of product functions through local mean 

decomposition algorithm and multi-scale entropy of 

each product function is calculated as feature vectors. 

And then, these feature vectors act as the input of fault 

classifier so as to complete faulty classification. 

However, all of these methods mainly make use of the 

vibration signal processing techniques in 

1-dimensional domain. 

However, researchers tend to complete faulty 

classification through image processing methods in 

two-dimension domain. Especially in computer vision 

systems, various algorithms turn out to be 

effective[13,14,15]. They try to transform the vibration 

signals into images and image processing methods are 

employed to obtain the bearing’s state. Shahriar and 

Chong in [3] proposed a method for fault diagnosis 

utilizing local binary pattern-based texture analysis. 

They utilized the LBP algorithm to extract texture 

features from images and extracted features are then 

used by multi-class support vector machine to identify 

the faults of induction motors. In [16], Do and Chong 

proposed a method for vibration signal-based fault 

detection and diagnosis system applying for induction 

motors. The method included fault detection process 

and fault diagnosis process. In fact, it transformed the 

vibration signals into images and feature descriptors 

are extracted from the images based SIFT algorithm. 

The 128-dimensional keypoint descriptors produced by 

the SIFT algorithm were then used to achieve the 

classification of inductor faults. The method was 

claimed to be robustness for the fact that noises in the 

vibration signals were regarded as illumination 

variation when transformed into images. And SIFT 

algorithm is proved to maintain a degree of stability for 

image rotation, scale variation and illumination 

changes [3,17]. However, it indeed exist some 

limitations of applying this method for the fault 

diagnosis of rolling bearings. One of the limitations is 

the high computation cost for the processing of 

128-dimensional descriptors. And another one is that 

the number of feature descriptors for each image is 

uncertain, sometimes the number may even be too 

small to classify the type of faults. 

In this paper, we proposed an improved approach 

based on the method mentioned above. The proposed 

detection and fault diagnosis system provides an 

improvement over existing methods at various aspects. 

During preprocessing, normalized vibration signals are 

transformed into images. And images are enhanced by 

using mean filter before they are processed with image 

processing methods. During feature extraction, we 

make use of Speeded Up Robust Features (SURF) 

instead of SIFT algorithm. SIFT and SURF algorithms 

employ slightly different ways of detecting features 

[18]. And in [19], the detector and descriptor of SURF 

is proved to be faster, at the same time, the detector is 

also more repeatable and the descriptor is more 

distinctive. Compared to SIFT algorithm, SURF is 

more sensitive to illumination changes and image blur 

[18]. Images transformed from vibration signals are 

mainly affected by illumination changes and image 

blur. Namely, SURF outperforms SIFT algorithm in 

computation cost and classification accuracy. 

Considering the advantages mentioned above, in this 

paper, feature descriptors are extracted from the images 

enhanced by the mean filter based on SURF algorithm. 

And through the mean-shift clustering algorithm, a 

texture dictionary related to each faulty category is 

formed. After that, feature descriptors extracted from 

testing images are compared to the texture dictionary, 

and the descriptor vectors are matched between 

different images in texture dictionary. The matching is 

based on a Euclidean distance between the vectors. The 

performance of the proposed method has been 

evaluated for 4 different bearing operating conditions 

under a laboratory environment. Additionally, a 

comparative experiment with the existing method has 

done. The results show that our proposed approach is 

more suitable for bearing fault diagnosis. 

Nowadays, various image processed algorithms 

have occurred and they are proved to be effective in 

image classification. The introduction of image 
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processed algorithm in bearing fault diagnosis turns out 

to be new, but useful. It seems to show us a new way 

for bearing fault diagnosis. 

The rest of the paper is organized as follows. In 

section 2, the theory of SURF algorithm is briefly 

introduced. The fault diagnosis system based on SURF 

algorithm is proposed in Section 3. Section 4 presents 

the experimental setup of data acquisition. The results 

of the proposed fault diagnosis system are given in 

Section 5 and compared with the existing SIFT method. 

And the conclusion is presented in the last section. 

 

 

2 Speeded Up Robust Features (SURF) 

SURF is developed from the SIFT algorithm, and 

it is a novel detector-descriptor scheme. SURF 

(Speeded Up Robust Features) is a robust local feature 

detector, firstly presented by Herbert Bay et al. in 2006. 

And it is widely used in computer vision areas. SURF 

algorithm shares the same matching approach with 

SIFT but with a few variations [20]. Firstly, the SURF 

detector is based on Hessian matrix and it uses the 

integral images to reduce the computational time 

[19,20,21]. Secondly, the descriptor vectors in SURF 

are only 64-dimensional compared to 128 dimensions 

in SIFT. This can also reduce the time for computation 

and matching. And features based on SURF are proved 

to be very distinctive and stable. A briefly description 

about the SURF algorithm is discussed below. 

 

 

2.1 SURF detector 

The SURF detector is mainly used to detect the 

interest point and we therefor call it interest point 

detector. Different from the image pyramids building 

in SIFT, we use the approximation image based on the 

determinant of Hessian matrix in SURF. The SURF 

detector is based on the Hessian matrix for its excellent 

performance in computation time and accuracy [19]. 

Given a point 𝐷 = (𝑥, 𝑦) in an image, the Hessian 

matrix 𝐻(𝐷, 𝜎) in point 𝐷 at scale 𝜎 is as follows 

[11]:  

 
( , ) ( , )

( , )
( , ) ( , )

xx yx

xy yy

L D L D
H D

L D L D

 


 
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  
 

 (1)

 

where L𝑥𝑥(𝐷, 𝜎) is the convolution of the Gaussian 

second order derivative 𝜕2𝑔(𝑥)/𝜕𝑥2 with the image 

in point 𝐷, the similar to the obtaining of 𝐿𝑥𝑦(𝐷, 𝜎) 

and 𝐿𝑦𝑦(𝐷, 𝜎) . The approximations of Gaussian 

second order derivative for 9 9  filters are denoted 

by 𝐷𝑥𝑥 , 𝐷𝑥𝑦  and 𝐷𝑦𝑦 , where 𝐷𝑥𝑥  refers to the 

approximation for the second order Gaussian partial 

derivative in 𝑦  direction, the same with 𝐷𝑦𝑦  and 

D𝑥𝑦. The determinant of the Hessian is computed as 

follows: 

 
2det( ) ( )approx xx yy xyH D D wD   (2)

 

where 𝜔 is discussed in [19] and it optimized to be 

0.9 for the purpose of balancing the expression for the 

Hessian’s determinant. 

Due to the use of box filters and integral images, 

we have no need to continuously apply the same filter 

to the output of the previously filtered layer just like 

we do in SIFT. Instead, we can just apply box filters of 

any size at exactly the same speed directly on the 

original image [19]. The integral image 𝐼Σ(𝐷)  

represents the sum of all pixels in the input image I 

within a rectangular region formed by the point 𝐷, and 

the integral image in point 𝐷 = (𝑥, 𝑦) can be defined 

as follows: 

 
0 0

( ) ( , )
yx

i j

I D I i j

 

  (3)

 

Interest points are located in the image and over 

scales by applying a non-maximum suppression in a 

3 3 3  neighborhood. The maxima of the Hessian’s 

determinant are then interpolated in scale and image 

space. For the difference in scale between each octave 

in the image pyramid, interpolation in scale space is 

especially important. 

 

 

2.2 SURF descriptor 

In order to obtain the descriptor, we may just need 

two steps. Firstly, we need to select a dominant 

orientation for each interest point. Within the circular 

neighborhood of interest point (i.e., a circle of 6 s

radius, s is the scale of the point), a sliding orientation 

window of size 𝜋 3⁄
 
is used to calculate the Haar 

wavelet responses in both horizontal and vertical 

directions. The calculated responses then yield a local 

orientation vector. The orientation of the interest point 

is defined by the orientation of the longest vector over 

all windows. Fig.1 shows the procedure of orientation 

assignment.  
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Fig.1. Orientation assignment 

The next step, we construct a square region 

around the interest point, and the square region shares 

the same orientation with the dominant direction 

detected earlier. We divide the region into 4 4  

square sub-regions [22,23,24]. For each sub-region, the 

wavelet responses are computed at 5 5 regularly 

spaced sample points. And in each sub-region, we 

calculate the sum of Harr wavelet responses in the 

horizontal and vertical directions (𝑑𝑥 and 𝑑𝑦 , where 

the horizontal and vertical direction is relative to the 

dominant orientation mentioned in the first step). We 

also calculate the sum of the absolute value of the  

dx
dy
| |dx
| |dy

dx

dy

 

Fig.2. The procedure of building the descriptor 

responses, |𝑑𝑥|  and |𝑑𝑦|  (See in Fig.2). And the 

feature of each sub-region can be described as follows: 

 ( , , | |, | |)x y x yv d d d d      (4)
 

Hence, for the whole 4 4 regions, the length of 

each feature descriptor vector is 64. Compared to the 

128-dimensional descriptors in SIFT, our obtained 

descriptor vectors decrease time cost in the matching 

stage to some extent. 

 

 

3 Fault diagnosis method based on Surf 

Vibration signals are first normalized and then 

transformed to gray-scale images. Images of different 

faulty categories have different texture features. We 

extract feature vectors from images of all faulty 

categories and form a texture dictionary through the 

clustering algorithm based on the extracted feature 

vectors. Finally, feature vectors obtained from testing 

signals are compared to the texture dictionary to 

compete the fault classification. The procedure of our 

proposed method is shown in Fig.3. 

testing data
normailzed

Gray-scale 

image

Feature extraction 

based on SURF 
classification Fault decision

Vib. signal
Mean filter

Mean-shift clustering

Pre-processing
Training data

Texture 

dictionary

 

Fig.3. Procedure of the proposed fault diagnosis system 
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3.1 Pre-processing 

During pre-processing, the amplitude of each 

vibration signal is normalized ranging 0 from 1 in type 

of double. After that, normalized signals are converted 

into gray-scale images and the amplitude turns into the 

pixel intensity of an image. The size of the image is 

dependent on the length of a vibration signal. In order 

to make sure that the signal contains enough faulty 

information, the length is expected to be long enough. 

However, the longer the signal is, the more 

computation cost we need. Given a vibration signal of 

length 𝐿 , the size of the transformed image is 

supposed to be 𝑀 ×𝑁 . The conversion scheme is 

shown in Fig.4. 
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……

 

 Fig.4. Scheme of vibration signal to image 

 

After the conversion, we try to enhance the image 

by dealing it with a mean filter. A vibration signal and 

its gray-scale image enhanced by a mean filter are 

shown in Fig.5. The length of the signal is 16348, and 

the image is considered to be128 128 . 

         

Fig.5. Vibration signal and its gray-scale image enhanced by a mean filter 

 

3.2 Texture dictionary 

Images transformed from vibration signals usually 

have rich texture features, and texture feature varies in 

different faulty categories. SURF is a computer vision 

algorithm and it can make full use of the texture 

features of an image. The existence of fault related 

frequencies makes the special texture features, and 

noises are regarded as changes in illumination. SURF 

algorithm is proved to be more sensitive to 

illumination changes and image blur in [18]. What’s 

more, the 64-dimensional descriptor vectors in SURF 

can decrease the computation time when compared to 

SIFT algorithm. Hence, feature extraction based on 

SURF algorithm can be reliable. 

In the proposed method, SURF algorithm is 

applied to detect the interest points and generate the 
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64-dimensional feature vectors. These feature vectors 

can fully represent the local feature of the image. In 

order to include all of the faulty categories, we conduct 

four vibration signals of different categories, i.e., inner 

race fault, outer race fault, rolling element fault and 

normal condition. Feature vectors extracted from 

images of different faulty categories are clustered to 

form a texture dictionary through the mean-shift 

clustering algorithm. Through the clustering algorithm, 

texture dictionary has fewer vectors, but it turns to be 

more representable and reliable for all kinds of faulty 

categories. The following work is to classify the testing 

image into its corresponding faulty category.  

 

 

3.3 Fault classification 

As mentioned above, texture dictionary is 

generated by analyzing the fault signals of all kinds. 

Texture dictionary and feature vectors extracted from 

testing images are used to achieve the goal of fault 

classification. Firstly, we choose a testing vibration 

signal and transform it into a gray-scale image. 

Through the mean filter, the image is enhanced. After 

that, feature vectors are extracted from the enhanced 

image based on SURF algorithm. Finally, feature 

vectors extracted from testing image are compared to 

the texture dictionary and testing signal can be 

classified to its corresponding faulty category. 

During the matching process, the Euclidean 

distance between each extracted feature vector and the 

centroid feature vectors in texture dictionary are 

calculated. The centroid feature vector generating the 

minimal distance is called to be “matched” vector and 

the category containing the highest number of 

“matched” vector is classified to be the fault category 

of the testing signal. 

 

 

4 Method Verification  

4.1 Experimental Setup 

An experimental rig was constructed to obtain the 

vibration signals. As shown in Fig.6, the test rig 

consists of a motor, two bearing pedestals, a base and a 

coupling. The bearings are installed in a motor driven 

mechanical system. Two acceleration sensors located 

in the vertical directions are used to acquire the 

vibration signals under four types of faults (inner race 

fault, outer race fault, rolling element fault and normal 

condition). The rotational speed of the motor is set to 

be 900r/min, 1200r/min, 1500r/min and the sampling 

frequency is 10 kHz.  

 

Fig.6. Experimental rig 

 

4.2 Experiment analysis 

Each signal sample is acquired with 16348 points 

(about 40 circles of vibration signal for the 1500r/min 

speed) and its image size is 128 128 . Six signal 

samples are obtained for each category in three 

different rotational speeds. We take one sample signal 

from each fault category as the training dataset and the 

others act as testing dataset. Namely, we have four 

Motor  

Acceleration sensor 

Bearing 

pedestal 

Base  
Coupling  
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training signals and twenty testing signals in each 

rotational speed. Totally, we get 12 training signals and 

60 testing signals. Training signals are used to form the 

texture dictionary and testing signals are used to 

evaluate the performance of the proposed method. The 

four training vibration signals under the 1500r/min 

speed and their images enhanced by the mean filter are 

shown in Fig.7. 

In order to exhibit the superiority of the proposed 

diagnosis system, an experiment is conducted on 

testing dataset to evaluate its performance. An 

enhanced testing image from the testing dataset is 

shown in Fig.8. We extract feature vectors from the 

testing image and compare them to the feature vectors 

in the texture dictionary. The number of the “matched 

vector” is drawn in histogram, as shown in Fig.9. 

Through the histogram, we can see that there are 352 

feature vectors and 232 “matched” vectors for Inner 

race fault, 0 for outer race fault, 24 for rolling element 

fault and 96 for normal condition. The highest number 

belongs to the inner race fault category, so we 

determine the testing signal to be inner race fault 

category. 

 

Fig.7. Vibration signal in the training dataset and their enhanced images 

            

 Fig.8. Enhanced testing image                        Fig.9. Histogram of matched numbers 
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To illustrate the number of “matched” vector in 

each testing signal, four testing signals of different 

types are investigated. Table 1 shows the percentage of 

“matched” number for each category. The highest 

percentage number indicates the corresponding faulty 

categories that the vibration signal belongs to. 

As mentioned above, 60 testing signals are 

obtained under our experimental condition. Table 2 

shows the classification accuracy of the whole testing 

signals. The experiment results indicate that each fault 

category can get a high classification accuracy and the 

proposed system is effective in our bearing fault 

diagnosis. Additional, vibration signals obtained from 

the Case Western Reserve University Bearing Data 

Center are also applied in the proposed system. The 

proposed fault diagnosis system still demonstrates its 

excellent fault classification performance. 

To demonstrate the improved accuracy of the 

proposed approach for identifying the faults of rolling 

bearing, the proposed system is compared with the 

method used in [16]. In this comparison, each vibration 

signal shares 16348 sampling points and its image size 

is128 128 . The vibration signals are from the bearing 

data center [25]. The rotational speed of the motor is 

1750r/min and the sampling frequency is 12 kHz. The 

comparison of the classification accuracy between the 

two proposed methods is shown in Table 3. 

 

Table 1 Percentage of “matched” number for each category 

 

Table 2 Classification accuracy for different faulty categories under three different rotational speeds 

 

Table 3 Comparison of proposed system and the approach proposed in [16] 

 Classification accuracy for different faulty categories (%) 

Inner race fault Outer race fault Rolling element fault Normal condition 

Proposed system 100 100 100 100 

SIFT-based approach 100 100 83.3 50 

On the grounds of the above experimental results, 

the proposed method based on SURF algorithm earns 

higher classification accuracies and decreases 

computation time theoretically. Therefore, the 

proposed method is supposed to be more suitable for 

bearing fault diagnosis. 

 

5 Conclusions 

In this paper an effort has been made to develop a 

robust fault diagnosis system for rolling bearing. The 

proposed approach translates the input vibration 

signals into gray-scale images for the fault 

classification of the rolling bearing. SURF-based 

algorithm is introduced, for the sake of extracting 

texture features from the images. The proposed method 

Signal 

(Belonged category) 

Percentage of “matched” number for each faulty category (%) 

Inner race fault Outer race fault Rolling element fault Normal condition 

Inner race fault  68.47 0 7.67 23.86 

Outer race fault 0 98.73 1.27 0 

Rolling element fault 12.57 1.6 71.93 13.9 

Normal condition 13.95 0 2.03 84.01 

Rotational speed of 

the motor 

Classification accuracy for different faulty categories (%) 

Inner race fault Outer race fault Rolling element fault Normal condition 

900r/min 83.3 100 83.3 100 

1200r/min 100 100 83.3 100 

1500r/min 100 100 100 100 
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applies to rolling bearings and effectively classifies 

each vibration signal to its corresponding fault category. 

Therefore, it is a powerful method for fault diagnosis 

of rolling bearings. In addition, to prove the improved 

classification performance of the proposed system, the 

proposed approach is compared with the SIFT-based 

method. The experimental results indicate that the 

proposed approach offers higher classification 

accuracies.  

Resuming, in this paper, the propose fault 

diagnosis system seems to show a new way for bearing 

fault diagnosis. Different from the classical signal 

processed methods in bearing fault diagnosis, feature 

extraction algorithms based on gray-scale image are 

introduced. The proposed fault diagnosis system 

translates the time-series signals into visual images. 

Thus, noises in the vibration signal are turned into 

different gray levels. These image features are then 

used to reach the goal of fault classification. However, 

this method is proved to be more useful and suitable 

for rolling bearing fault diagnosis. Future research will 

be focus on the identification of multiple bearing fault 

diagnosis. 
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