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Abstract: In this paper, the adjoint-base technique is applied to estimate the observational impact on the 

forecast quality using the coupled nonlinear chaotic dynamical system obtained by combining two (fast and 

slow) versions of the Lorenz system. The exploration of forecast sensitivity with respect to observations and the 

estimation of the observational impact on the forecast quality require considerable computational resources. For 

simple-enough low-order models, the computational cost is minor and therefore models of this class can be 

used as simple test instruments to emulate more complex systems. The method is incorporated into the existing 

four-dimensional variational data assimilation system. The objective function represents the difference between 

total energy norms of the background and calculated forecast error.  Since data assimilation procedure shadows 

the “true” state of a system given by the observational data, the shadowing property of coupled nonlinear 

chaotic dynamical system is considered for weak and strong coupling between fast and slow subsystems. The 

discussed approach can be used in designing the optimal observing network and estimating the value of various 

observations.  
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1 Introduction 
Dynamical system theory provides a very powerful 

and comprehensive foundation for exploring, 

predicting, explaining and understanding numerous 

processes and phenomena occurring in nature and 

society [1]. The application areas of the dynamical 

systems theory are multidisciplinary and very 

diverse, and cover geosciences, biology, physics, 

chemistry, engineering, finance and other areas of 

human intellectual activities. Generally, any abstract 

dynamical system can be considered as a pair 

 , tX  , where X is the system phase (or state) 

space, and is : t X X
 
is a family of evolution 

operators parameterized by a real variable t T , 

where T is a time set. It is usually assumed that the 

phase space is a complete metric or Banach space, 

which can be either finite- or infinite-dimensional. 

A family of operators forms a semigroup, therefore: 

 t t    , 
0 ,   ,  I t T  , 

where I is the identity operator.   

Suppose that t , then a continuous time 

dynamical system can be generated by the following 

set of autonomous ordinary differential equations 

 x f x                               (1) 

with given initial conditions  

   00 x x ,                             (2) 

where x X , f is the (nonlinear) vector-valued 

function, and x0 is a given initial state of the system. 

Since we are usually not able to solve equations (1) 

analytically, then the set of infinite-dimensional 

equations (1) has to be truncated by some means to 

finite-dimensional approximate model, for which a 

solution can be sought numerically. Applying either 

a projection onto a finite set of basic functions or a 

discretization in time and space, one can derive a 

discrete model, which approximates the system (1) 

and can be solved numerically if the initial 

conditions are specified.  

It is known that computer simulation has various 

sources of errors including initial condition errors. 

During the numerical integration of the model 
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equations, errors present in the initial conditions 

usually tend to grow at rates that depend on the 

system instability. Hence, even small errors in the 

initial conditions can produce enormous inaccuracy 

in the model output results. This is especially true 

for nonlinear dynamical systems, which under 

certain conditions can exhibit the chaotic behavior. 

In many applications initial conditions are specified 

based on observations obtained from various 

devices including remote sensors that measure not 

only quantities of interest directly represented in the 

model, but also some quantities, which then can be 

used to retrieve required physical variables. To 

combine observations coming from various sources 

and incorporate them into a dynamical model, using 

the model’s equations, procedures known as data 

assimilation can be applied [2, 4]. One of the most 

advanced and effective data assimilation techniques 

is the four-dimensional variational data assimilation 

(4D-var) [5-7]. The 4D-var is mathematically 

formulated as an optimization problem, in which the 

model equations are considered to be constraints, 

and initial conditions represent control variables [8].  

The accuracy of computed initial conditions 

strongly depends, at least in an statistical terms, on 

the volumes and quality of observational data. The 

information used in data assimilation comes from 

different sources of observations, the reliability of 

which varies. However, the value added by different 

types of observations can vary significantly. 

Therefore, it is important to estimate the 

contribution of various types of observations to the 

accuracy of initial conditions and, furthermore, to 

the forecast quality of dynamical system evolution. 

This is very important not only for assessing the 

impact of each subset of observations on the 

forecast quality, but also for designing and 

developing optimal and effective observing 

networks.   

The obvious approach to solving this problem is 

the so-called observing system experiment (OSE) 

[9-11]. The main idea behind this method can be 

illustrated as follows. Suppose we obtain the future 

state of a dynamical system by integrating the model 

equations from the initial time 
0t  to a certain 

verification time ft . For this experiment, the initial 

conditions were calculated via data assimilation 

utilizing all types of observations 
oy . Let fe  be a 

quantitative measure of the forecast quality. 

Suppose that for the first experiment the calculated 

estimate of the forecast quality is 1

fe . In the second 

model run, data assimilation procedure utilizes all 

types of observations excluding 
o

sy . The forecast 

quality of the second experiment is characterized by 

2

fe . The difference between 1

fe  and 2

fe  faithfully 

quantifies the impact of observations o

sy  on the 

forecast skill. The observing system experiment, 

however, is computationally expensive. The use of 

the adjoint-based technique [12] allows assessing 

the impact of any or all available observations in a 

computationally efficient manner. This approach is 

very convenient since an adjoint model is one of the 

main parts of variational data assimilation schemes. 

Observation impact is calculated using, firstly, the 

sensitivity functions which are the adjoint sensitivity 

gradients of a certain cost function that characterizes 

the forecast errors [13], and, secondly, using the 

differences between observations and first-guess 

estimate of the dynamical system state projected 

into the observation space, which is known as 

innovations.  

Quite often, dynamical systems applied in 

various applications (e.g. physics, engineering, 

economics, biology, meteorology and climate 

studies) are nonlinear and under certain conditions 

can exhibit a chaotic motion. The dynamics of these 

systems can be effectively emulated by low-

dimensional models that describe the evolution of a 

reduced set of variables. For these simplified low-

order models, computational costs are minor, 

however, obtained results are very beneficial from 

both the theoretical and practical viewpoint. The 

objective of this paper is as follows: using a coupled 

nonlinear dynamical system obtained by combining 

the fast and slow versions of the three-parameter 

Lorenz system, to consider the application of 

adjoint-based algorithm to calculate the forecast 

sensitivity with respect to observations and to 

estimate the impact of various subsets of 

observations on the forecast quality. The 

mathematical and computational instrument 

developed in this paper can be very helpful for 

exploring various aspects of numerical modeling 

and predicting the behaviour of complex dynamical 

systems arising, for example, in geophysical, 

environmental, biological, engineering and other 

branches of science.  

 
 

2 Shadowing in Data Assimilation 
One of the most rapidly developing components of 

the global theory of dynamical systems is the theory 

of pseudo-orbit shadowing in dynamical systems 

[14, 15]. Pseudo (or approximate) trajectories arise 

due to the presence of round-off errors and other 

truncation errors in computer simulation of 

dynamical systems. Consequently, in numerical 
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modeling we can compute a trajectory that comes 

very close to an exact solution and the resulting 

approximate solution will be a pseudotrajectory. 

The shadowing property (or POTP, pseudo-orbit 

tracing property) means that near an approximate 

trajectory there exists the exact trajectory of the 

system under consideration, such that it lies 

uniformly close to a pseudotrajectory. The 

shadowing property of dynamical systems is a 

fundamental feature of hyperbolic systems [16, 17].  

Understanding the POTP is very important in 

data assimilation since data assimilation procedures 

shadow the true state of a system assuming that 

observations provide the truth. The formal definition 

of shadowing is as follows. Let (X, d) be a metric 

space, where  nX  and d is a distance function. 

Let us consider a discrete-time dynamical system, 

generated by iterating a map f : X X , that is,     

 1 ,    k+ k +x f x k .                     (3) 

Given the system state
0  x X at time  0t , we 

define the trajectory of x0 under f to be the sequence 

of points  :  kx X k  such that  0 k

kx f x , 

where 
kf  indicates the k-fold composition of f  

with itself, and  0 f x x . Thus, given the map   f

and the initial condition
0 x , equation (3) uniquely 

specifies the orbit of a dynamical system. If xk is the 

state of dynamical system at time tk, then the correct 

state at the next time tk+1 is given by  kf x . In 

practice, however, there is a discrepancy between 

1k+x  and  kf x  due to round-off errors and other 

truncation errors. Consequently, in computer 

simulations we can compute only a pseudo-orbit (or 

approximate trajectory) which can be shadowed by 

a real orbit. A set of points  :  kx X k
 
is a 

-pseudotrajectory ( 0 ) of f  if  

  1, ,     k kd x f x k .                  (4) 

We say that f  satisfies shadowing property if 

given 0  there is 0  such that for any  -

pseudo-orbit  


k k o
x  there exists a corresponding 

trajectory  


k k o
y   such that  

   , ,   ,     k

k k kd x y y f y k .     (5) 

The shadowing property plays a crucial role in 

the exploration of the stability of system dynamics. 

One of the most important theoretical results for 

hyperbolic dynamical systems is the shadowing 

lemma [18], which states that for each nonzero 

distance  0 , there exists  0 such that each 
-pseudotrajectory can be  -shadowed. Informally, 

the shadowing lemma states that each pseudo-orbit 

stays uniformly close to a certain true trajectory.   

The definition of pseudotrajectory and shadowing 

lemma for flows (continuous dynamical systems) 

are more complicated than for discrete dynamical 

systems [14, 15]. Let f : X X  
be a vector field 

on X of class C
1
. Let :  X X  be a flow on 

X generated by f. A function : x X  is called a 

 -pseudotrajectory if  

     , ,  d t x x t               (6) 

for any 0 1 t  and ,  t  . The “continuous” 

shadowing lemma ensures that for the vector field f 

generating the flow φ(t, x), the shadowing property 

holds in a small neighborhood of a compact 

hyperbolic set for dynamical system φ(t, x). 

However, the shadowing problem for continuous 

dynamical systems requires reparameterization of 

shadowing trajectories because for continuous 

dynamical systems close points of pseudo-orbit and 

true trajectory do not correspond to the same 

moments of time. A monotonically increasing 

homeomorphism : h  such that  0 0h  is 

called a reparameterization and denoted by Rep. For 

0 , Rep( ) is defined as follows [15]: 

 
   1 2

1 2

: 1
  

    
  

h t h t
Rep h Rep

t t
  .          

for any 1 2  , t t . 

However, most physical systems are non-

hyperbolic. Despite the fact that much of shadowing 

theory has been developed for hyperbolic systems, 

there is, however, evidence that non-hyperbolic 

dynamical systems also have shadowing property 

showing features of hyperbolic systems. In theory, 

this property should be verified for each particular 

dynamical system, but this is more easily said than 

done. 

 

 

3 Variational Data Assimilation 
Four dimensional variational data assimilation 

problem aims to define the initial condition estimate 

x
a
, which is known as the analysis, such that the 

prior “first guess” information, which is usually the 

model state given by the previous forecast – the 

background state x
b
, best fits the observations y

o
  

within the finite time interval  0 ,  Kt t , known as a 

data assimilation window. The background 

trajectory of the system  
0

K
b

k
k

x  is generated by the 

set of discrete-time model equations  
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 1 0, 1 0 k kx x , 0 1 k , ,K ,            (7) 

where the nonlinear operator 0, 1k  propagates the 

initial conditions to time 
kt .  

Suppose that the prior information is 

characterized by the probability density function 

 bf x . Then a background state bx  can be 

considered as the expected value of the probability 

distribution  bf x , i.e.  Eb bx x , where E is the 

statistical expectation operator, which is understood 

in accordance with the rules of multivariate 

statistical analysis as      1E E , ,E


   nx x x . 

Thus, we can write  

 b t bx x  . 

Here b  is the random background errors, which are 

commonly considered to be unbiased and normally 

distributed: 

 b 0,B , 

where   B E


 b b n n   is the background 

error covariance matrix.  

Let 
oy  be the vector of K observations measured 

at a discrete time  0 ,  Kt t , k=0,…,K. Suppose that 

observations are linked to the system state by the 

nonlinear observation operator  and are 

influenced by random errors 
o

k , which are assumed 

to be white Gaussian noise: 

 o o , k k k ky x    0,R ,  0, , k k K

 ,  

where   0 0R E


  K K

k k k   is the observation 

error covariance matrix corresponding to a moment 

in time 
kt . Observation errors at different times are 

assumed to be uncorrelated, i.e.   0 0E 0


k l   if 

k l .  

The 4D-var data assimilation is considered as an 

optimal control problem in which initial conditions 

0x  play the role of control variables. Given the 

observations 
o

ky  at time 
kt  and the corresponding 

observation error covariance matrices R k
, as well 

as the background initial state 0

bx  and the error 

covariance matrix 
0B , the 4D-var data assimilation 

seeks to minimize, with respect to 0x , a certain cost 

function  x  expressing the misfit between 

observations and corresponding model state using 

the model equations as constraints: 

  0 0argminax x                    (8)                                                         

subject to x  satisfying the set of model equations 

(7).  

Under the assumption that both the background 

errors and the observation errors are normally 

distributed, the minimization cost function can be 

written as 

   
0

2 2
0

0 0 0
B R

0

1 1

2 2 

   
k

b o

K
b

k k k

k

x x x x y .   (9)                  

Thus, the optimization problem (8) is nonlinear with 

strong constraints, and a certain iterative 

minimization algorithm (for example, the gradient-

based technique) is needed to obtain the solution, 

which is the minimum of the cost function. This 

requires the estimation of the cost function gradient 

with respect to the initial conditions: 

     
0 0 00 0 0     b o

x x xx x x . 

Here 

   
0

1

0 0 0 0 B ,   b

x x x x  

   
0

1

0 0,

0

  M H R ( ) .  



  
K

o o

x k k k k k k

k

x x y  

where 0,M

k  is the adjoint of the linearized model 

operator  0, 0,M k k kx , known as a tangent 

linear (TL) model, and H

k  is the adjoint of the 

linearized observation operator  H k k kx .  

Let us emphasize that the performance of 4D-var 

data assimilation schemes depends on their key 

information components, such as the available 

observations 
o

ky , estimates of the observation and 

background error covariances that are quantified by 

the matrices R k
 and 

0B , as well as the background 

state bx . This means that 
o

ky , R k
, 0B  and bx  

strongly impact the accuracy of calculated initial 

conditions, thus influencing the forecast quality. In 

this context the assessment of model forecast 

sensitivity with respect to parameters of the data 

assimilation scheme represents one of the critical 

components of building and evaluating 

mathematical models.    

 

 

4 Testing Data Assimilation Scheme 
Testing the TL model and its adjoint is required to 

ensure the convergence of the minimization 

algorithm in data assimilation procedures. If x  is 

a small perturbation of the model state, then   

     M  x x x x x  . 

To verify the applicability of TL model on the finite 

time interval [t0, tK], the ratio [4] 
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   

 M

 
R

x x x
e

x x




 

should be calculated. The TL model is valid if 

1Re  when ζ → 0. The results of numerical 

experiments showed that the TL model passed this 

test with 
Re  tending towards unity (Table 1).  

 

Table 1. Results of verification of tangent linear 

model for 0.8c  and 2

010 x x . 

  
Re  

1 0.9182066027544249 

10
-1 

0.9997279965782743 

10
-2

 0.9999925468155463 

10
-2 0.9999991929611531 

10
-4

 0.9999999534965012 

10
-5

 0.9999999911217883 

10
-6

 0.9999999914427087 

10
-7

 0.9999997435447022 

 

 

Table 2. Results of verification of 4D-Var cost 

function gradient for 0.8c  and 
2

010 x x . 

      

10
-4

 0.8727731981461396 

10
-5

 0.9975483775420343 

10
-6

 0.9998765512756632 

10
-7

 0.9999884562844123 

10
-8

 0.9999979865432855 

10
-9

 0.9999998912431426 

10
-10

 0.9999999244103234 

 

The correctness of TL adjoint can be tested by 

verification of the inner product identity [4, 19] 
TM ,M ,M Mx x x x    . 

It was found that this equality is essentially correct: 

the difference was observed only in the 7
th
 digit, 

which is consistent with a round-off error. The 

second test to verify the adjoint model is the so-

called gradient test [19], which aims to compare a 

finite difference representation of the gradient of 

4D-var cost function (9) with the gradient obtained 

via adjoint model  0  J x . A linear Taylor 

approximation of the cost function can be written as  

       0 0 0 


   J x x J x x J x   . 

Let us introduce the following function [19] 

 
   

   
0 0

0 


 
 



J x x J x

x J x




 
. 

If the gradient is estimated correctly then the 

function   1   as 0 . The perturbation 

vector x  is taken to be [19] 

 

 
0

0 






J x
x

J x
 , 

where     is the 
2L  norm. Table 2 manifests the 

success of the gradient test.   

  To examine the TL and adjoint models, we 

considered the dynamics of system on its attractor, 

which is obtained by numerical integration of the 

equation (24) (see below) started at 20 Dt  with 

the initial conditions  

 ( ) 0.01,  0.01,  0.01,  0.02,  0.02,  0.02


Dx t  

and finished at 
0

0t  to guarantee that the 

calculated model state vector 
0 (0)x x  is on the 

model attractor.  

 

 

5 Observation Impact Estimation  
The observation impact means variations in a 

certain metric of forecast quality caused by some 

changes in observational data. Assessing the impact 

of various observations on the forecast quality is a 

two-step procedure [12]: firstly, the sensitivity 

functions are computed, which are the adjoint 

sensitivity gradients of a certain cost function that 

characterizes the forecast errors, and, secondly, the 

desired observation impact is calculated by 

multiplying the obtained sensitivity functions on the 

innovations Ho by x . Let   fJ be a metric of the 

forecast quality. The sensitivity functions required 

to assessing the observation impact, are the 

components of the gradient    fJ calculated with 

respect to the vector of observations  oy . The cost 

function is defined as [12]: 

1

2
f fJ e .                           (10) 

Here fe  is a scalar forecast error norm 

    C  f f a f ae x x , x x ,            (11) 

where ax  is the analysis at verification time ft , C is 

a matrix of weighting coefficients, which gives fe  

units of energy per unit mass, and ,   is a scalar 

product. The variable fe  can be interpreted as a 

total energy norm of the forecast error. From (10) 

and (11) we can obtain 

 =C





f
f a

f

J
x x

x
. 

WSEAS TRANSACTIONS on SYSTEMS Sergei Soldatenko, Denis Chichkine

E-ISSN: 2224-2678 37 Volume 14, 2015



To estimate the sensitivity functions  f oJ y  we 

first need to calculate sensitivities with respect to 

the initial conditions of the predicted trajectory of 

dynamical system: 

T

0

=M
 

 

f f

f

J J

x x
.                     (12) 

Essentially, using sensitivity functions (12) we can 

study the influence of errors in the initial conditions 

on the forecast error cost function. The desired 

sensitivity functions are calculated as follows [12]: 

1
T

0 0

0

= HB H +R HB
 

 
  

f f

o

J J

y x
.       (13) 

These functions provide the ability to estimate how 

the cost function fJ  would be modified due to 

errors in various observations. Note that the gradient 

0 fJ x  is evaluated on a gridded model space, 

while the gradient  f oJ y  is estimated on an 

observation space. 
 

 
Fig. 1. Schematic representation of the discussed 

technique for observation sensitivity and impact 

assessment [12]  

 

Using sensitivity functions   f oJ y , we can 

calculate observation impact on the model forecast 

using the following approach [12]. Suppose we run 

the model twice to obtain two forecasts of length f 

and d. The verification time is the same to both of 

the forecasts. At the verification time  ft , a 

verifying analysis ax  is known. Forecast fx  starts 

from the initial conditions 0 x , and forecast dx  starts 

Δt earlier than  fx , where Δt is a certain time 

interval. Usually this interval corresponds to the 

length of data assimilation window. In the numerical 

weather prediction, for example, the length of Δt is 

6 or 12 hours. The forecast dx  can be considered as 

the background state bx for the initial conditions
0 x , 

which are used for fx . Thus, hereinafter in this 

paper, we will write bx  instead of dx . The 

difference   f de e e  characterizes the forecast 

error reduction due solely to observations. If the 

assimilated observations improve the forecast skill 

at the verification time ft , then the forecast error is 

reduced, and the value e  will be negative. 

However, if the assimilated observations diminish 

the forecast quality, the value e  will be positive. 

Since  

     C  f f a f ae x x , x x ,           (14) 

    C  d b a b ae x x , x x ,            (15)   

then 

1 1
,   

2 2
 f f b bJ e J e                     (16) 

and 

   C ,   C
 

   
 

f b
f a b a

f b

J J
x x x x

x x
.   (17) 

Taking into account (17), from (14) and (15), we 

can obtain the expression for  e : 

   
  

    
  

f b
f b

f b

J J
e x x ,

x x
.        (18) 

Since the adjoint model used in 4D-var data 

assimilation schemes is linear, we can obtain the 

following approximate equation for calculating the 

e  estimate [12]: 

0

0 0

 
  

  
  

f b

f b

J J
e x ,

x x
  ,               (19) 

where 0 0 0 f bx x x . An estimate of the forecast 

errors e  is evaluated in the grid point space of the 

model. However, in practice, the evaluation of e  is 

carried out in the observation space, because the 

vector of model state x  is usually several orders of 

magnitude larger than that of the observations 
oy . 

Since [2, 3] 

 0 0 0 0K H   b o bx x x y x , 

where 
1

T T

0 0K=B H HB H R


    is the Kalman gain 

matrix, the equation (19) can be rewritten as 

 0

0 0

K H  
  

   
  

f b
o b

f b

J J
e y x ,

x x
 .     (20) 

The operator K is substantially linear, thus we can 

rewrite the equation (20) by introducing the adjoint 

operator 
TK  satisfying 

TK , = , Ko oy x y x : 
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   T

0

0 0

H  K
  

   
  

f b
o b

f b

J J
e y x ,

x x
 .      (21) 

The operator TK is the adjoint operator of 4D-var 

data assimilation schemes that determines 

sensitivity functions in the observation space: 

T

0 0

=K
   

 
   

f f b

b

o f b

J J J

y x x
.                  (22) 

The substitution of equation (22) into equation (21) 

gives the expression for calculation of e  which 

uses only observation space variables:  

 0H  


 


f
o b b

o

J
e y x ,

y
 .               (23) 

This equation provides an estimate of e  made by 

any or all observations. Indeed, if the observation 

errors between various subsets of observations
o

1 y ,
o

2y ,…, o

Ly  are independent from each other, then 

the objective function 
f

bJ  can be represented as 

 
1


L

f f

b b
l

l

J J , 

where the cost function  f

b
l

J  characterizes the 

observation impact on the forecast error reduction 

owing to the l-th subset of the observations.  

Figure 1 shows the schematic representation of 

the discussed approach for evaluating the forecast 

sensitivity with respect to observations and 

assessing the impact of various observations on the 

forecast skill. 

 

 

6 Coupled Dynamical System and Its 

Shadowing Property  
Consider the nonlinear dynamical system obtained 

by coupling two versions of the L63 system [20] 

with distinct time scales differing by a factor ε [21, 

22], which is represented by the following two sets 

of differential equations that describe: 

a) The fast subsystem 

  ,

,

,

  

   

  

x y x cX

y rx y xz cY

z xy bz cZ



                    (24a)  

b) The slow subsystem                                                

  ,

( ) ,

( ) .

  

   

  

X Y X cx

Y rX Y aXZ cy

Z aXY bZ cz







            (24b)                                        

Thus, the state vector of the coupled model used in 

this study is  , , , , ,


x x y z X Y Z , where lower case 

letters represent the fast subsystem and capital 

letters – the slow subsystem. The parameter vector 

is  , , , ,


 r b c   . Note that σ, r and b are the 

parameters of L63 model, c  is a coupling strength 

parameters. The parameter values are taken as 

 10,  28,  8 3,  0.1,   0.1;  1.2    r b c  . 

Chosen values of ,  r  and b  correspond to the 

chaotic behaviour of the L63 model. The parameter 

0.1  indicates that the slow system is 10 times 

slower than the fast system. The larger parameter c , 

the stronger the coupling between two systems.  

Since essential dynamical, correlation and 

spectral properties of system (24) as well as 

numerical integration scheme were presented in 

[23], in this paper we consider the influence of 

coupling strength parameter on the system 

dynamics. This parameter controls the interactions 

between fast and slow subsystems affecting the 

qualitative changes in the coupled system dynamics. 

 

 
 

Fig. 2. Two largest conditional Lyapunov 

exponents as functions of coupling strength 

parameter 

 

Qualitative changes in the dynamical properties 

of a system can be detected by determining and 

analyzing the system’s spectrum of Lyapunov 

exponents. In the analysis of coupled dynamical 

systems we are dealing with conditional Lyapunov 

exponents that are normally used to characterize the 

synchronization with coupled systems. The largest 

Lyapunov exponent characterizes the average rate of 

exponential divergence (or convergence) of nearby 

trajectories in the phase space. The system (24) has 

six distinct exponents. If the parameter c tends to 

zero, then the system (24) has two positive, two zero 

and two negative Lyapunov exponents. The 

influence of parameter c on the two largest 

conditional Lyapunov exponents is illustrated in 
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Figure 2. The numerical experiments demonstrated 

that those, initially positive, exponents decrease 

monotonically with an increase in the parameter c. 

At about 0.8c  they approach the x -axis and at 

about 0.95c  - negative values. Thus, for 0.95c  

the dynamics of both fast and slow subsystems 

become phase-synchronous [24]. For 1.0c , a limit 

circle dynamical regime is observed since all six 

exponents become negative. 

 

 

Fig. 3. Time evolution of fast and slow dynamic 

variables for c=0.15. 

 

 

Fig. 4. Time evolution of fast and slow dynamic 

variables for c=0.8. 

The calculated evolutions of the fast ( tx  and tz ) 

and slow ( tX and tZ ) variables for weak and strong  

coupling are shown in Figure 3 and Figure 4 

respectively. It is known that the L63 model 

produces chaotic oscillations of a switching type: 

the structure of its attractor contains two regions 

divided by the stabile manifold of a saddle point in 

the origin. For relatively small coupling strength 

parameter (c<0.5), the attractor for both fast and 

slow sub-systems maintains a chaotic structure, 

which is inherent in the original L63 attractor. As 

the parameter c increases, the attractor for both fast 

and slow sub-systems undergoes structural changes 

breaking the patterns of the original L63 attractor. 

Fast and slow subsystems affect each other through 

coupling terms, and at some value of the coupling 

strength parameter (c>0.5) a chaotic behaviour is 

destroyed and dynamic variables begin to exhibit 

some sophisticated motions which are not obviously 

periodic. Moreover, qualitative examination shows 

that the evolution through time of both subsystems 

becomes, to a large degree, synchronous (however, 

phase synchronization requires specific analysis 

which is not within the scope of this paper). 

  

Fig. 5. Original orbit (in red) and pseudo-orbit (in 

blue) for fast z and slow Z variables for c=0.01. 

  

Fig. 6. Differences between variables that 

correspond to the original trajectory and pseudo-

orbit for c=0.01. 

 

Since data assimilation procedure shadows the 

“true” state of a system given by the observational 

data, it is important to know whether a system has 

the shadowing property. Using the approach that 

was developed for computing sensitivity 

coefficients in chaotic dynamical systems [25], we 

computed “pseudo-orbits” of the system (24) 

assuming that the numerical solution has no errors, 
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and “pseudo-orbits” were generated by variations in 

the system’s parameters. We consider two sets of 

numerical experiments: weak coupling (c=0.01) and 

strong coupling (c=0.8) between fast and slow 

systems. Fast z and slow Z variables that correspond 

to the original and pseudo-orbits are shown in 

Figure 5 when the coupling strength parameter 

c=0.01. The differences between state variables 

corresponding to the original orbits and 

pseudotrajectories of the fast and slow systems are 

plotted in Figure 6. These figures show that the 

calculated pseudo-orbits are close to corresponding 

true trajectories over a specified time interval, 

demonstrating the shadowability. The strong 

coupling does not introduce significant qualitative 

and quantitative changes in the behavior of pseudo-

orbits with respect to the true trajectories. The 

original and pseudo fast z and slow Z variables for 

c=0.8 are shown in Figure 7, and the differences 

between fast and slow state variables are presented 

in Figure 8. 

  
 

Fig. 7. Original orbit (in red) and pseudo-orbit (in 

blue) for fast z and slow z variables for c=0.8. 

 

  
 

Fig. 8. Differences between variables that 

correspond to the original trajectory and pseudo-

orbit for c=0.8. 

 
 

7 Observation Impact Estimates   
To estimate the impact of observations on the 

forecasts quality the following information is 

required: 

(a) The “true” model state tx , which is created by 

the numerical integration of equations (24) with 

the initial conditions 
0x  taken on the system 

attractor; 

(b) The background (first guess) forecast bx , 

which is obtained by numerical integration of 

the model equations (24) with the initial 

conditions 0

bx ; 

(c) Observations, which are generated by adding 

the Gaussian random noise with zero mean and 

specified standard deviation 
o  to the true 

state. 

The background state 0

bx  at the initial time t0=0 is 

defined as 0 0 0 b bx x x , where 0

bx  is a random 

perturbation with standard deviation 0.2b  

applied to all elements of the state vector. 

Observations are defined for every 2 t  within the 

assimilation window, which has a total length of

30 t . Here 0.005t  is the time step used for 

numerical solution of the model equations (24). The 

observed values of the fast model are defined as 

randomly perturbed values of the true state, with a 

standard deviation 
(1)

o 0.05  (the “accurate” 

observations experiment) and 
(2)

o 0.1  (the 

“inaccurate” observations experiment). Similarly, 

for the slow model, 
(1)

o 0.1  and 
(2)

o 0.2  were 

used. Since observation grid and model grid are the 

same, observation operator  is simply an identity 

mapping. To take into consideration the background 

covariances, for simplicity the assumption 2

0B I b , 

where 2

b  is the variance of background errors and 

I  is the identity matrix, can be used. Under the 

assumption that the observation quality is the same 

for all fast variables and also the same for all slow 

variables, the observation covariance matrices can 

be defines as 2

o R R I k  .  

Minimization of the cost function (9) was carried 

out using the conjugate gradient method [26], 

resulting in the analysis 0

ax
 
at the initial time. The 

forecast trajectory is then calculated by numerically 

integrating the model equations (24) given initial 

conditions 0 ax .  

The discrete-time dynamical system (7) obtained 

by finite-difference approximation of the 

continuous-time system (24) generates the discrete 

vector time series   : 0, ,kx k K , where

 fK t t  and t  is the integration time step. If 

 : 0, ,o

ky k K
 

is the corresponding verifying 
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(observed or analyzed) vector, then the forecast 

error is simply 
0 ,  1, ,  k k kE x y k K . The two 

most commonly used error measures are mean 

absolute error (MAE) and root mean square error 

(RMSE) which are calculated as follows: 

1

,



K

k

k

MAE E

 

1

 
K

k

k

RMSE E . 

In our case, however, forecast errors are defined as 

the Euclidean distance between the forecast state 

and the “true” state (for each independent variable) 

because the latter has been previously calculated. 

Statistics were generated for over 100 different 

forecasts, and are shown in Table 3. In some 

applications, for example in the numerical weather 

prediction and climate modeling, a total energy 

norm is used as a measure of the forecast errors. In 

our study, the relative error in a total energy norm 

has been applied to measure the forecast accuracy 

[27]: 

   

 

1 2




  
 
 
  

t f t f

r
t t

x x x x
e

x x
.             (25) 

 

Table 3. Results of forecast verification for 0.8c . 

 

Variable MAD
 

RMSE 

x 0.0089 0.0110 

y 0.0128 0.0157 

z 0.0166 0.0196 

X 0.0156 0.0199 

Y 0.0336 0.0506 

Z 0.0356 0.0512 

 

Table 4 presents a summary of the forecast 

verifications for different time horizons using 
re as a 

measure of the forecast errors. Predicting the future 

state of dynamical system is an initial value 

problem, and the forecast quality strongly depends 

on the accuracy of initial conditions or in other 

words how accurately we are able to specify the 

initial state of the dynamical system. In general, the 

accuracy of initial conditions depends on the quality 

and density of observations, the forecasting model 

itself, and data assimilation system. In our 

numerical experiments the quality of observations is 

specified by the standard deviation 
o . The results 

obtained are averaged over 10 sets of numerical 

experiments.  

 

Table 4. Relative forecast errors ( b

re  - background forecast error; (1)

re  - “accurate” observation 

experiment; (2)

re   - “inaccurate” observation experiment) and forecast error reductions evaluated at a 

different verification time for “accurate” observations (
1e ) and “inaccurate” observations (

2e ). 

 

                           Verification time   
 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

1e
 

-1.0126 -3.2149 -5.0829 -4.2464 -1.5882 -0.7142 -2.0250 -2.9439 -0.9128 -12.0190 

2e  -0.6975 -2.2817 -3.5146 -2.5495 -0.8494 -0.1767 1.0435 0.7010 1.1955 57.9270 

410b

re  7.77 13.40 12.91 10.74 8.13 4.90 12.43 32.39 11.59 117.76 

(1) 410re
 

0.73 1.18 1.16 1.25 1.11 0.94 3.92 9.71 4.66 70.90 

(2) 410re  2.94 4.73 4.44 5.04 4.37 3.92 16.82 37.86 20.66 342.81 

 

Over the forecast time horizon ft  from 0.5 to 3 

time units, both “accurate” and “inaccurate” 

observations demonstrate the positive impact on the 

forecast quality: the error in energy norm 

differences 
1e  and 

2e  are negative. However, the 

impact of “accurate” observations” is larger than the 

impact of “inaccurate” observations. For the 

forecasting time horizon 3ft , “inaccurate” 

observations have no positive impact on the forecast 

quality: 
2e  

is positive and the relative forecast 

error re  is bigger than the background forecast 

error. The observation impact e  on the forecast 

skill is evaluated using equations (23). To calculate

e , the gradient 
o f

bJ y  is required. The adjoint 

model is used to obtain the gradient of the cost 

function  f

bJ . The adjoint model is integrated 

backwards in time from ft  to 0t . Since the adjoint 

model is derived from a linearized forward 

propagation model, the observation impact estimate

WSEAS TRANSACTIONS on SYSTEMS Sergei Soldatenko, Denis Chichkine

E-ISSN: 2224-2678 42 Volume 14, 2015



e  is valid during a limited time horizon lim

ft , which 

is less than predictability limit of the original 

nonlinear model. The time horizon lim

ft  was found to 

be ~2.1 time units. Calculated observation impact 

estimates e  are shown in Table 5. The “true” 

values Δe are presented in Table 4. 

 

Table 5 Observation impact estimates.  
 

 Verification time 

 0.5 1.0 1.5 2.0 

1e  -0.9821 -2.2948 -4.2183 -3.3952 

2e  -0.6157 -1.8854 -2.7217 -1.2312 

 

 

 

8 Conclusion 
In this paper, we considered the application of 

adjoint-based technique developed in [12] to 

estimate the observational impact on the forecast 

quality using the coupled nonlinear chaotic 

dynamical system obtained by combining fast and 

slow versions of the Lorenz [20] system. This 

approach allows us to assess the impact of observing 

information coming from various sources of 

observations. Here, we take the term forecast to 

mean a prediction of the future state of any physical 

or socio-economic system produced by 

corresponding mathematical model.  

We should not consider a forecasting numerical 

experiment to be completed until the forecast 

quality has been fully evaluated. To obtain a 

quantitative estimate of the forecast quality, the 

forecast is usually compared, or verified, against a 

corresponding observation of what actually 

occurred, or some good estimate of the true 

outcome. In this research, an energy norm of the 

forecast error was used as a measure of the forecast 

quality. Using this measure, we can estimate the 

forecast sensitivity with respect to observations, as 

well as to evaluate the impact of various types of 

observations on the forecast quality. Generally, the 

procedure of estimating sensitivity functions is 

quasi-linear. Therefore, the estimate of the 

observation impact e  is only valid during a limited 

time horizon that is smaller than the predictability 

limit of the original nonlinear model. 

Since data assimilation procedure shadows the 

“true” state of a system given by the observational 

data, we computed “pseudo-orbits” of the system 

(24) assuming that the numerical solution has no 

errors, and “pseudo-orbits” were generated by 

variations in the system’s parameters. It is important 

to underline that shadowing property of dynamical 

systems is a fundamental attribute of hyperbolic 

systems that was first discovered in [16, 17]. Since 

most physical systems are non-hyperbolic, the 

shadowing property should be verified for each 

particular dynamical system. However this problem 

is not trivial. We computed pseudotrajectories for 

the system under consideration using the approach 

developed for sensitivity analysis of chaotic systems 

[25]. 
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