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Abstract: This paper recommends a scaling factors fine-tuning fuzzy logic control approach to optimize the dy-
namic performance of one typical vendor managed inventory supply chain with automatic pipeline, inventory and
order based production control system(VMI-APIOBPCS), based on complex fuzzy control theory. The first thing
is to embed a dual-input single-output fuzzy logic controller into the system based on the classic control engineer-
ing model. Then, the fuzzy inputs are given different weights by the way of scaling factors in order to optimize the
system further. This methodology can make good use of managers’ experience accumulated in perennial practice
and the managers’ rational estimation of different circumstances. Lastly, the simulation results show that, this
method can improve the dynamic performance of VMI-APIOBPCS, especially the inventory dynamic behaviors.
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1 Introduction
With the progress of the information technology the
urge of mutual benefit, orgnizations (suppliers, manu-
facturers, distributors, wholesalers, retailers) in sup-
ply chain accommodate their strategies to this new
collaborative work tendency[1]. The operational pat-
tern of VMI come into being at the opportune his-
toric moment. As one of the most prevalent inte-
grated styles, the implementation of its effective con-
trol is pressing to build modern manufacturing system.
However, owning to the intrinsic complexity and tur-
bulent market changes, the effective controlling be-
came unrealistic[2, 4]. Many factors, such as fore-
cast error, the block of information delivery, demand
change etc., always result into unexpected overstock
and incremental of overall running cost[3, 5, 6, 7, 8,
12].

Those problems, existed in VMI system, are se-
vere in other classic production and inventory control
system[11], likewise, which have been discussed heat-
edly both in practical management and academic field
for decades. Early in 1982, Towill adopted control en-
gineering method to optimize the IOBPCS (inventory
and order based production control system) by setting
the proportion of inventory adjust time(Ti) and pro-
duction delay(Tp) and the proportion of demand fore-
cast smoothing time(Ta) and production delay(Tp),
respectively[3]. Later, GA was employed to optimize
three control parameters (Ta, Tw, Ti) of APIOBPC-

S, based on stability and robustness of system, and es-
pecially, considered the work in progress(WIP) adjust
time (Tw) in the optimization, a beginning of taking
the production and inventory control system as an w-
hole picture[5]. S.M.Disney, based on the research
achievement in 2000, synthesized six parameters (Ta,
Tw, Ti, Tq, G, W ) of VMI-APIOBPCS and made an
simulation optimization[6]. The centralized manage-
ment method, VMI was adopted in this paper to make
the manufacturer of APIOBPCS pay more attention
to the integrated benefit, thus the distributor’s forecast
smoothing time (Tq), the proportion of Distributors
Safety Stock and Average consumption (G) and Ratio
of production adaptation to inventory cost (W ) were
considered. In conclusion, the optimization methods
mentioned above simply adopted mathematical arith-
metic, only reached an ideal combination of control
parameters in the mathematical sense.

Although, we researched production-inventory
system all-around by the classic control engineering
method and came up with numerous of optimization
outcomes[19, 20, 21, 23, 28], many supply chains, re-
ported worldwide, still suffered from bad supply chain
performance[7]. This situation reminds us to give
deep thought about this research angle.

Actually, many researchers investigated this is-
sue in different points. White utilized proportion-
integration-differentiation (PID) controller to opti-
mize the IOPBCS, and greatly reduced the inventory

WSEAS TRANSACTIONS on SYSTEMS Wenfeng Xie, Junhai Ma

E-ISSN: 2224-2678 429 Volume 13, 2014



level[16]. B. Samanta combined PID controller with
fuzzy logic controller to optimize an inventory con-
trol system[18]. At last, the system is capable of p-
reserving the final system inventory level at the de-
sired level in spite of variations in demand. However,
the PID controller is not welcomed in the production-
inventory research field for its congenital drawback
that its corresponding hard wares is not existed in vir-
tual production-inventory systems[7].

As regards to the control of inventory and produc-
tion system, a kind of complex social economic sys-
tem, the element of social sciences is requisite. As the
Figure1 informs us, one critical parameter can be con-
nected with another three or four ones, and mostly are
determined by managers based on the relevantly in-
ternal and external factors, such as consumer loyalty,
long term profits.

The VMI-APIOBPCS model was rebuilt by fuzzy
difference equations, then genetic algorithms (GA)
was adopted to search optimal parameters of fuzzy
VMI-APIOBPCS model[9]. In final, bullwhip effec-
t was reduced and the overall performance was bet-
tered. Yohanes Kristianto cleverly inserted the fuzzy
logic controller with dual-input and one-output into V-
MI supply chain system, and lastly an ANOVA test ,
set to assess the assumptions, verified that the invento-
ry response is effectively improved. This method can
not only imitate the human thinking, but also absorbed
managers’ experience[14]. However, with the turbu-
lent change of modern market and the management
environment, the original experience may not be com-
pletely adaptable to the new surroundings.Fuzzy logic
controller is kind of artificial intelligence and its im-
plementation relies on complex computer techniques.
As Filippo Neri said in [10], this kind of model can
carry information about the volatility and the correla-
tion among multi-factors, which enables the modern
supply chain to be more flexible and accurate.

In view of above drawbacks and requirements,
this paper inserts the fuzzy logic controller into
the classic VMI-APIOBPCS model built in control
engineering[6].But here the continuous-time version
is considered. The potential fuzzy logic controller
is connected with a more complex system than VMI
with the expectation of extensive revenue. Then d-
ifferent weights are exerted on the dual fuzzy input-
s further to enable the experience to suit the present
surroundings.

The remaining parts of this paper proceeds as fol-
lows: section 2 includes the VMI-APIOBPCS model
and introduces the related parameters should be fuzzy;
introduces the complex fuzzy control theory and the
fuzzy inference system applied in this paper and its
optimization; the introduction of objection function.
Section 3 shows us the simulation results and corre-
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Figure 1: Causal loop diagram of VMI-APIOBPCS

sponding analysis. In section 4, the conclusions are
made.

2 Fuzzy VMI-APIOBPCS Control
Model

2.1 Construction of VMI-APIOBPCS Model
In 1961, Forrester firstly adopted industrial dynam-
ics (equals to system dynamics) in the research of
production and inventory control system. After that,
Towill expanded the model into the form of IOBPC-
S, moreover, carried out a string of optimizations of
the system dynamic performance. Simon continuing-
ly expanded the model into the more complex form of
APIOBPCS with taking WIP into consideration[32].
And the VMI-APIOBPCS is the combination of VMI
supply chain and APIOBPCS, which is displayed in
Figure1, in which the variables are classified by dif-
ferent color: words colored green are control param-
eters in the system: words colored red are parameters
been controlled; words colored blue are parameters
based on observation or recording; words colored or-
ange are the control parameters limited by consumer
loyalty. Overall, the model of VMI-APIOBPCS syn-
thesizes the multi-aspect interactions.

In VMI-APIOBPCS, distributors provide inven-
tory information and data of sales to the supplier.
Meanwhile, both of them reach a consensus in terms
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Figure 2: Block diagram of VMI-APIOBPCS

of Reorder-point, in order to avoid excess invento-
ry. While the inventory level of distributors below
the Reorder-point, the supplier will supply the prop-
er production automatically. Then, the manufacturer
of the VMI supply chain will execute the function of
APIOBPCS such that makes new production plan or
distribution plan according to its inventory level.

Six parts are included in this system: 1) distribu-
tors’ demand forecasting policy; 2) factory’s demand
forecasting policy; 3) the set of system inventory tar-
get; 5) the feedback loop of WIP; 6) production delay.
We concluded them into two classes: demand fore-
casting policy and inventory policy. We can distinctly
read the above knowledge in Figure 2(All the ins and
outs in the above block diagram mean the connection-
s with other subsystem that will be expressed in the
following parts).

All in all, VMI-APIOBPCS, as an integrated
management model, effectively slims down the supply
chain system, smoothes the information and motivates
the agile production.

2.1.1 Demand Forecasting Policy

We use exponential smoothing to predict the demand
quantities of distributors and factory. For the sake of
convenience, the sample time ∆t is set for 1 in this
continuous-time model.

According to [20], we can obtain the relationship
between the factory’s demand forecasting constant αa

and factory’s time to average sales: αa = 1/(1+Ta).
For same argument, as to distributors, the relationship
is: αq = 1/(1 + Tq). Forecast error ε is a stochastic
variable, with mean zero. At last, the initial input of
the whole system is consumer consumption such that

market demand

CONSt =

{
0 if t < 0

1 if t ≥ 0

.

2.1.2 Inventory Policy

In this paper, TINVt = 0[3, 6]. Tp is a parame-
ter beyond of control , restricted to manufacturing fa-
cility, product type, efficiency of production and so
on[3], and in this paper we set Tp = 4. From the
Figure2, we can obtain that the ORATE is decided
by factory’s demand forecasting, product of inventory
deviation and (1/T i), product of WIP deviation and
(1/Tw). As to Ti, Tq is decided by αi, αa, such that
αi = 1/(1 + Ti), αa = 1/(1 + Tw)[14]. T p̄ is the
estimate of the average production delay, and T p̄ = 4.
G is the proportion of distributors’ safety stock be-
tween average consumption, reflecting the consumer
service level.

2.1.3 Optimization of Parameters

Towill built the IOBPCS model, and acquired the op-
timal parameters by analyzing the sensitivity of the
control parameters. Disney optimized the control vari-
ables (Ta, Ti, Tw, Tq, G, W ) by simulation, and
the results were assessed by ITAE (Product of Time
and Absolute Error)[6]. Darya Kastsian adopted nor-
mal vector method to optimized the control parameter
(Ta, Ti, Tw, Tq), based on the stability and robust-
ness of system[33].

Kuo Ping Lin combined fuzzy mathematics and
GA to obtain optimal dynamic performance of VMI-
APIOBPCS [9]. Yohanes Kristianto pointed out there
is a drawback for the forecast changed can unilater-
ally decided the smoothing constant. The decision
support system should take more errors or inevitable
deviations[14].

Disney obtained strict optimal parameters (Ta,
Ti, Tw), based on the stability and robustness of sys-
tem, then, analyzed the impact of change of single
control parameter on the dynamic inventory response
and received that the change of Ti incurred maximum
variation of the dynamic inventory level[5]. To dis-
cern the indication of the fuzzy logic controller op-
timization more distinctly, we just choose Ti as our
optimization parameter.

Furthermore, in order to make a more pragmatic
optimization, we additionally select two deviations as
the fuzzy inputs. According to [14], we select demand
change and the difference between inventory level and
demand as inputs.
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Figure 3: Fuzzy logic controller

2.2 Complex Fuzzy Control Theory

The variables of complex system always have no
definite relationships in mathematical sense, even
are impossible to quantitative analysis with diverse
assumptions[13, 15]. Traditional control theory is
confined. In contrast, fuzzy control can make good
use of experts’ knowledge and experience, relying on
fuzzy inference and decision-making to realize the
control of complex system, especially the complex so-
cial economic system with nonlinear lumped or dis-
tributed parameter [29, 30, 17].

The human factors in decision-making mainly in-
clude attitude to risk, intuition, experiences, or the
combination of some of them. Those factors can
directly act on the result of decision-making[1, 31].
In practical, managers can accumulate lot of experi-
ence that the management can receive excellent per-
formance. If we can apply the experience in the future
management, we can get good work.

In conclusion, fuzzy control can make good use
of this experience, which can be an ideal method to
investigate complex production-inventory issues.

2.2.1 Fuzzy Logic Controller

Fuzzy logic controller is the core of fuzzy control, in-
cluding fuzzification input interface, fuzzy inference
system (database, rule-base), defuzzification output
interface.

1) Fuzzification input interface
Input variables should be fuzzified, then can be

available to fuzzification input interface. As regard-
s to fuzzification, we need to determine the fuzzy s-
cale, which is inadvisable to be divided neither too
raritas or too compact, otherwise, it is apt to in-
duce bad consequence of information distortion. Be-
sides, defuzzification should be in accordance with the
membership function that is general in several form-
s such as straight lines, triangular, trapezoids, haver-
sine, exponential[22]. And we adopt the simple and
effective triangular one as our membership function,

Linguistic scale input ∆(δ,ε) Smoothing
constant(α)

Very High (VH) 0.75≤∆≤∞ 0.5;1;1
High (H) 0.51≤∆≤0.74 0.25;0.75;1
Medium (M) 0.26≤∆≤0.50 0.25;0.5;0.75
Low (L) 0.05≤∆≤0.25 0;0.25;0.75
Very Low (VL) ∆≤0.04 0;0;0.5

Table 1: Membership function
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Figure 4: Membership function

which is expressed in Table1. We can understand it
by Figure4 more intuitively.

In this paper, the two input variables are demand
change (δt) and deviation between system level and
demand(εt). δt = Dt − Dt−1, εt = AINVt −
CONSt. εt can be produced by system itself in the
simulation. Besides we assume δt = 0.2 such that the
demand change of system is 0.2 (Actually, the demand
change is a stochastic variable, which is dependent on
season, promotion, product life cycle and so on. Here
we assume it as a constant just for simplifying simu-
lation process).

2) Database
Database stores all the membership functions that

are used in input and output, providing data to the in-
ference system. In this paper, the membership func-
tions of inputs and output are in form of Figure4, col-
laboratively.

Finally, the combination of database and rule-
base produces the fuzzy inference system, which is
illustrated by Figure5. After a series of fuzzy oper-
ations, all the rules can form the fuzzy rule curved
surface, like Figure6.

In Figure4 and Figure6, ECa means smoothing
constant αi; DEF means ε; DC means δ.

3) Rule-base
The Rule-base of fuzzy logic controller is based

on experts’ knowledge and frontline workers’ experi-
ence accumulated for long time, expressed as a lan-
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Figure 5: Fuzzy inference system
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Figure 6: Fuzzy rule camber

guage form of human intuitive inference. In general,
we use ’If-then’ as the rule that should be translated
to enable the inference rule to be quantified. The rule-
base of this paper is shown in Table2.

Finally, the combination of database and rule-
base produces the fuzzy inference system, which is
illustrated by Figure5. After a series of fuzzy oper-
ations, all the rules can form the fuzzy rule curved
surface, like Figure6.

4) Defuzzification output interface
Defuzzification output interface can transform the

fuzzy outputs into the normal form the control sys-
tem can identify and accept. In this paper, we adopt
the frequently-used centroid calculation, known as the
center of gravity of area defuzzification (the explicit
process, which is carried out in the fuzzy logic con-
troller (FLC in Figure7, is in [14]). After defuzzifica-
tion, we get the smoothing constant αi, consequently
converted though a series mathematical calculations
into the form of Ti based on αi = 1/(1 + Ti). The

ε
VH H M L VL

δ VL VL VL L L M
L VL L L M H
M L L M H H
H L M H H VH
VH M H H VH VH

Table 2: Rule-base

subsystem of the calculations in simulink is displayed
in Figure7.

2.2.2 Optimization of Fuzzy Logic Controller

Generally, in the simple fuzzy logic controller, all in-
puts have the same influence on the fuzzy logic con-
troller such that we rigidly follow the original experts’
experience. However, this natural extraction of ex-
perts’ a priori knowledge is not always easy or possi-
ble to realize[37], for some of the experience may not
be suitable for present situation due to uncertainties.
In this paper, after exerting different weights on the
inputs by scaling factors, managers can flexibly mas-
ter the inputs to be better for the control[24, 25, 26].

µ, δ and ε are the fuzzy variable of their own
discourse domain, so the control table of the simple
fuzzy logic controller can be expressed by the follow-
ing analysis formula.

µ = ⟨(δ + ε)÷ 2⟩ (1)

In order to enable the fuzzy logic controller to suit
for different surroundings, we need to expand the con-
trol table to have more space to be revised. In this
paper, we expand (1) into

µ = ⟨K1× δ +K2× ε⟩ (2)

K1, K2 ∈(0,1). K1, K2 are independent from
each other, used to regulate the degree of impact of
inputs on fuzzy control. In other words, we consider
the scaling factors K1,K2 as the subjective weight-
s of inputs given by managers in different situations.
Meantime, we assume K1+K2 = 1, K1, K2 ∈(0,1).
Then we can adjust the scaling factors to find the op-
timal result.

2.3 Evaluation of Fuzzy VMI-APIOBPCS
Control System

The complex of production-inventory system direct-
ly makes its evaluation intractable, for it is involved
in versatile factors, such as dynamic response time,
errors, deviations etc.. But in this paper, we have
only one goal for evaluation of the system control–
minimum cost. According to this criterion, we can
draw up the objective function.

Towill evaluated the IOBPCS by

P.I. =

∫ ∞

0
((COMRATE)2+µ2(INV.DEV )2)dt

, COMRATE means completion rate, INV.DEV
means deviation between inventory and inventory tar-
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Figure 7: Subsystem of transform calculations and scaling factors

get, µ means the weight coefficient[3]. Disney de-
signed a comprehensive objective function

SCORE =
1√

ITAE2 + ω2
N + PR2 +WIPR2 + SV 2

, ωN is the noise of ORATE, meaning ’bullwhip ef-
fect’ in management, PR means robustness to produc-
tion lead-time variations, WIPR means robustness to
pipeline level information fidelity, SV means systems
selectivity), based on the stability and robustness for
APIOBPCS [5]. Disney concisely adopted

SCORE = K × V RORATE + V RAINV

as the objective function of DE-APIOBPCS(a special
situation of APIOBPCS, in which Ti equals to Tw).

Based on the deep thoughts about the features of
VMI-APIOBPCS, we adopted three dimensions Eu-
clidean distance as the form of objective function. The
minimum value of the objective function is the best.
The objective function is equation(3).

D =

√
V R2W + ITAEAINV

2 + ITAEV CON
2

(3)

In (3), V R =

[∫ ts
0 (ORATE(t))2dt∫ ts
0 (CONS(t))2dt

]2
,

ITAEAINV =
∫ ts
0 |EAINV |tdt

a , ITAEV CON =∫ ts
0 |EV CON |tdt

b (ts means the moment the system
response becomes stable). In the following phase,
the three parts of the objective will be interpreted
explicitly.

1) V R =

[ ∫ ts
0 (ORATE(t))2dt∫ ts
0 (CONS(t))2dt

]2

In this paper, VR is made to be the measurement
of bullwhip effect, which is obviously different from
the expression ωN =

∫ π
0 |ORATE(ω)|2dω in related

works [3, 5].
In this paper, all the simulations are operated in

time domain in which the tradition expression is re-
fractory. Here, in order to gain precise data, we create
a new form of metric for bullwhip effect strictly based
on the definition of bullwhip effect (a tendency for s-
mall changes in end-consumer demand to be amplified
as one moves further up the supply chain[8]. In com-
munication engineering, W ′ =

∫∞
−∞(f(t))2dt means

the total power of signal (equals to the spectral densi-
ty estimate). Naturally, W ′ =

∫ t0
0 (f(t))2dt (t0 means

particular moment) means the power of signal in a pe-
riod of time. O =

∫ ts
0 (ORATE(t))2dt represents

the total variations of order rate from the beginning
of response to the last stability. The same argument,
I =

∫ ts
0 (CONS(t))2dt represents for the total varia-

tions of consumer consumption from the beginning of
response to the last stability. Then V R = O/I . So

V R =

[∫ ts
0 (ORATE(t))2dt∫ ts
0 (CONS(t))2dt

]2
can be competent for the

measurement of bullwhip effect. Its calculation sub-
system is in the Figure8.

2) ITAEAINV =
∫ ts
0 |EAINV |tdt

a ,

ITAEV CON =
∫ ts
0 |EV CON |tdt

b

As to the meaning of |EAINV |, |EV CON |, we can
refer to [6].

But the meaning of a, b is different. The function
of a, b in ITAEAINV , ITAEV CON is to simplify the
value to the same order of magnitude. However, the
coefficients inevitably change the proportion between
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Figure 8: Subsystem of calculating VR

Figure 9: Subsystem of calculating ITAE

ITAEAINV and ITAEV CON in the objective func-
tion. The subsystem of calculating ITAE in simulink
is displayed in Figure 9.

When a = 250, the value of the subsystem is
ITAE for inventory response , noted as ITAEainv;
When a = 10, the value of the subsystem is ITAE
for virtual demand, noted as ITAEvcon.

At last, the above three subsystems are assembled
together to be the system of objective function, which
is expressed in Figure10.

3 Simulation Results and Analysis

In this paper, the simulation was implemented in the
simulink of matlab7.0.1. The block diagram is shown
in Figure 11.

Figure 10: Subsystem of objective function

Figure 12: Fine regulating function of scaling factors

We selected nine groups data of the control pa-
rameters in simulation and every group is simulated in
the conditions with and without FLC . Besides, under
the condition with FLC, the fuzzy input variables are
given nine different weights (K1 = 0.9, K2 = 0.1;
K1 = 0.8, K2 = 0.2; K1 = 0.7, K2 = 0.3;
K1 = 0.6, K2 = 0.4; K1 = 0.5, K2 = 0.5;
K1 = 0.4, K2 = 0.6; K1 = 0.3, K2 = 0.7;
K1 = 0.2, K2 = 0.8; K1 = 0.1, K2 = 0.9). Take
the simplicity of human thinking into consideration,
we just choose the simple and intuitive numbers as
the weights given to the fuzzy inputs.

3.1 Overall Dynamic Performance Compar-
ison

In Table3, we can find that the values of objective
function with FLC are obviously smaller than that
without FLC. And after the regulation of scaling fac-
tors, the performance is further optimized. From Fig-
ure 13, the overall dynamic performances in the three
different conditions are compared. The value of D
without FLC is about three times larger than that with
FLC . Figure 14 shows the effect of fine-tuning of the
scaling factors on the performance of the whole sys-
tem.

The distinct comparisons are the strongest evi-
dence of optimizing quality. After the connection with
fuzzy logic controller, the dynamic performance of
VMI-APIOBPCS is greatly optimized. Although, the
scaling factor cannot change the performance obvi-
ously, the fine-tuning can enable the managers to flex-
ibly manipulate the business activities, so as to pre-
serve the maximum profit in spite of disturbances.

3.2 Management Insights

In this paper, the fuzzy logic controller is ap-
plied to optimize the dynamic performance of VMI-
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Value of control parameters With FLC Without FLC
(Ta, Ti, Tq, Tw, G, W ) D D(without Sf) D(with Sf) Optimal Sf
(6, 7, 6, 42, 1, 1) 4.05 1.33 1.28 K1 = 0.9,K2 = 0.1
(2, 16, 3, 35, 4, 0.2) 6.09 3.25 3.15 K1 = 0.9, K2 = 0.1
(3, 3, 2, 4, 1, 0.05) 1.10 0.65 0.64 K1 = 0.9, K2 = 0.1
(7, 12, 6, 63, 2, 5) 9.00 2.48 2.46 K1 = 0.9, K2 = 0.1
(1, 5, 1, 5, 2, 0.01) 1.21 1.02 0.96 K1 = 0.9, K2 = 0.1
(10, 20, 6, 63, 4, 20) 27.89 4.80 4.79 K1 = 0.6, K2 = 0.4
(7, 27, 6, 63, 8, 5) 28.95 9.55 9.48 K1 = 0.7, K2 = 0.3
(14, 27, 2, 63, 16, 1) 37.53 10.78 10.36 K1 = 0.4, K2 = 0.6
(30, 26, 3, 35, 32, 1) 135.24 26.00 24.65 K1 = 0.8, K2 = 0.2

♢ Sf is the abbreviation of Scaling factor
♢ All the value of control parameters are recommended settings in[3].

Table 3: Performance comparison

Figure 11: Block diagram of simulation
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Figure 13: Overall dynamic performance
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APIOBPCS model, furthermore, the fuzzy input vari-
ables are given different weights to adjust the knowl-
edge in the new surroundings. After the investigation,
we can reach the several important conclusions about
innovations in this paper:

With the application human intelligence in the
model, we can get new results that the fuzzy controller
can greatly optimize the integrated performance of
VMI-APIOBPCS. The scaling factors can tune the
system performance finely, which makes the system
optimization flexible to different new surroundings.

The dual-input, single input fuzzy logic controller
can take demand and deviation between the inventory
level and demand into consideration to make a more
rational decision.

What’s more, an auxiliary benefit, the inventory
dynamic performance is largely improved. It is prof-
itable for the inventory control.

After the conclusions, several points of manage-
ment insight are obtained:

In the practice of forecasting, we should take
more factors, both direct and indirect, into consider-
ation according to the feature of our own business.

Production-inventory system is complex social e-
conomic system, in which human being play irre-
placeable roles. Therefore, in the designing of opti-
mization method, the unique thinking pattern needs to
be taken into account.

In the process of management, we not only ab-
sorb the lessons but also conclude the precious expe-
rience. And we need to ponder how use the experience
in the future work. This is the ideal of fuzzy control
in this paper, meanwhile, the philosophy of learning
organization[41].

When we adopt control engineering to research or
optimize the production-inventory system, we should
assess the practicability and whether it is proper for
the control of production-inventory system, for it in-
stinctively differently from the system like electronic
and mechanical system[38, 39].

In a word, fuzzy control, as one kind of artificial
intelligence, can imitate the way of human thinking,
exploit experts’ knowledge and experience, and re-
new the knowledge constantly. It is greatly significant
to improve operational performance, reduce manage-
ment cost, and elevate the flexibility[34, 40].

4 Conclusion

In this paper, the novel artificial intelligence–fuzzy
control is adopted to optimize the production-
inventory system. The simulation results verify that
the overall dynamic performance is greatly improved
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and the inventory dynamic response is obviously im-
proved. Fuzzy control can imitate thinking of human
beings and make good use of experts’ knowledge and
experience to avoid the turbulent fluctuations in inven-
tory dynamic changes.

By the way, further research can adopt optimiza-
tion algorithm, liking GA, to initiatively search the op-
timal scaling factors, or investigate the effect of other
variables on the determination of control parameter-
s. Besides, the excellent inventory response may lay
much pressure on the production, and this can be fur-
ther researched. The relationship between the optimal
performance and scaling factors can also be explored.
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single supplier-single retailer system with an
order-up-to level inventory policy, Operations
Research Letters 36 ,2008, pp. 543–546.

[12] Joong Y. Son, Chwen Sheu, The impact of re-
plenishment policy deviations in a decentralized
supply chain, em Int. J. Production Economics
113, 2008, pp. 785–804.

[13] Ciufudean, C., Neri, F, Open research issues
on Multi-Models for Complex Technological
Systems, WSEAS Transactions on Systems 13,
2014, in press.

[14] Yohanes Kristianto, Petri Helo, Jianxin (Roger)
Jiao, Maqsood Sandhu, Adaptive fuzzy ven-
dor managed inventory control for mitigating
the Bullwhip effect in supply chains, European
Journal of Operational Research 216, 2012, p-
p. 346–355.

[15] Neri, F. , Open research issues on Computational
Techniques for Financial Applications, WSEAS
Transactions on Systems 13, 2014, in press.

[16] White AS., Management of inventory using con-
trol theory, International Journal of Technology
Management 17, 1999, pp. 847–60.

[17] Doroshin, A. V., Neri, F., Open research is-
sues on Nonlinear Dynamics, Dynamical Sys-
tems and Processes, WSEAS Transactions on
Systems 13, 2014,in press.

[18] B. Samanta , S.A. Al-Araimi, An inventory con-
trol model using fuzzy logic, Int. J. Production
Economics 73, 2001, pp. 217–226.

[19] Stephen M. Disney, Denis R. Towill, Roger D.H.
Warburton, On the equivalence of control the-
oretic, differential, and difference equation ap-
proaches to modeling supply chains, Int. J. Pro-
duction Economics 101, 2006, pp. 194–208.

[20] Li Zhou, Mohamed M. Naim, Ou Tang, Denis R.
Towill, Dynamic performance of a hybrid inven-
tory system with a Kanban policy in remanufac-
turing process, Omega 34 ,2006, pp. 585–598.

WSEAS TRANSACTIONS on SYSTEMS Wenfeng Xie, Junhai Ma

E-ISSN: 2224-2678 438 Volume 13, 2014



[21] A. Ancarani, C. Di Mauro, D. D’Urso, A human
experiment on inventory decisions under supply
uncertainty, Int. J. Production Economics 142,
2013, pp. 61–73.

[22] Swarup Medasani, Jaeseok Kim, Raghu Krish-
napuram, An overview of membership function
generation techniques for pattern recognition,
International Journal of Approximate Reasoning
19, 1998, pp. 391-417.

[23] Darya Kastsian, Martin Mönnigmann, Opti-
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