
A Dimension-Oriented Theory of Requirements Space in Business
Information Systems

ARBI GHAZARIAN
Arizona State University

Department of Engineering and Computing Systems
7171 E. Sonoran Arroyo Mall, Mesa, AZ 85212

USA
Arbi.Ghazarian@asu.edu

Abstract: Low process predictability and, consequently, excessive rework are salient characteristics in many of to-
day’s commonly-used software development life cycle processes, making it exceedingly difficult for development
organizations to deliver quality software systems within economically and technically reasonable frames. This
paper advances the argument that, as a solution to this problem, building software engineering theories provides a
fruitful avenue to increasing the predictability of the various software life cycle processes. Accordingly, we intro-
duce a reusable process design methodology that relies on building software engineering theories with predictive
power to inform the design of more predictive and, therefore, effective software processes. The usefulness of the
proposed methodology is demonstrated through an expansive case study, which aims to design a more effective
requirements engineering method for the domain of business information systems. We report results from several
empirical studies to support the arguments put forward in this paper.

Key–Words: Requirements Engineering, Theory Building, Process Design, Dimension Orientation, Business In-
formation System, Domain Engineering

1 Introduction
Compared to most other fields of engineering and
manufacturing, software engineering life cycle pro-
cesses are notorious for their low degree of pre-
dictability and consequently low degree of repeata-
bility, making industrial software projects especially
vulnerable to potential high risks in terms of the four
fundamental project constraints of scope, cost, sched-
ule, and quality. Even with the rapid and significant
software engineering advancements of the few past
decades, such as the object oriented paradigm, soft-
ware patterns, programming language technology, as
well as the emergence and wide adoption of modern
software engineering and project management prac-
tices such as eXtreme Programming (XP) [3] and
Scrum [43], major cost and schedule overruns in soft-
ware projects are still the norm, rather than the ex-
ception. The quest for an economically viable pro-
cess for the production of high-quality software sys-
tems remains relevant to this day. We advocate theory
building as a scientific approach to address these is-
sues. Accordingly, this paper contributes a software
engineering theory, called dimension-orientation, that

provides an accurate map of the requirements space
for the domain of business information systems.

The traces of this low degree of process pre-
dictability can be found in all of the pre-release soft-
ware life cycle phase activities, including require-
ments, design, implementation, and testing activities,
leading to the suboptimal construction of software
products through numerous cycles of trial and error,
of guesswork and rework, and of approximating solu-
tions, resulting in a production process that is lengthy
and consequently uneconomical. Results from a 2009
published report of software development practices
in the domain of enterprise information systems by
Ghazarian [15], who tracked the complete history of
source code changes made during the two year devel-
opment period of an enterprise resource planning soft-
ware system, are a case in point. The study found that
about 78% of the total number of source code changes
made during the two year construction period of the
studied system were reworks in the form of either cor-
rective or behavior-preserving source code changes;
only about 22% of the code changes made before re-
leasing the system involved new developments that

WSEAS TRANSACTIONS on SYSTEMS Arbi Ghazarian

E-ISSN: 2224-2678 76 Volume 13, 2014



added functional value to the system. A significant
amount of coding effort during the construction of
software systems is expended on rectifying functional
and design problems in code, rather than developing
new code. This indicates that we do not yet know of
a routine way to objectively move from a set of soft-
ware requirements to a corresponding optimal imple-
mentation. Instead, relying on engineer’s experience
and through a creative process, we build an initial ap-
proximation and, continuously and in an ad hoc fash-
ion, rework it towards satisfying the given require-
ments set. In other words, we do not have a conscien-
tiously developed software engineering theory to pre-
dict and proactively plan for what we should expect
in a software project and therefore avoid reworks as
much as possible. In their 2001 list of top 10 software
defect reduction factors [6], Boehm and Basili state
that software projects spend about 40 to 50 percent of
their effort on avoidable rework, consisting of effort
spent on fixing software difficulties that could have
been detected and fixed earlier and less expensively
or avoided altogether. They identify hastily specified
requirements as a major source of avoidable rework.

Ghazarian’s study [15] further reported that at
least 26% of added lines and 39% of deleted lines of
code were caused by corrective changes alone. More-
over, on the average, every submission of new code
to the source code repository had contained two and
half new faults, which had to be detected, fixed, and
verified at a later time, imposing further costs on the
development process. The organization and the sys-
tem reported in Ghazarian’s study [15] were a com-
mon case in the domain of enterprise systems, shar-
ing many similar characteristics with most software
projects in the same domain in terms of the choice
of programming language, development tools, frame-
works, Application Programming Interfaces (APIs),
team size and structure, and development practices.
Therefore, it is very likely that many software projects
and organizations within the domain of enterprise sys-
tems are challenged by the same problems. Studies
of software systems in other domains, such as satel-
lite ground control system [1] and real time system
[36], have found similar results, indicating that exces-
sive rework is not just a common condition in many
software engineering endeavors, but a way of working
and coping with uncertainty. Therefore, it is a highly
plausible hypothesis, if not a fact, that many software
projects are in a similar challenging situation as the
one described in [15].

Unfortunately, the situation in post-release soft-

ware life cycle phases, especially during the main-
tenance phase, is as challenging or even worse than
the pre-release software engineering phases. When
typically-late and over-budget projects eventually de-
liver their software products, transitioning into the
operation and support stage, quality issues rear their
heads, requiring numerous cycles of rework, plung-
ing the software projects into further cost and sched-
ule problems. The negative impacts of post-release
quality issues can be external such as usability and re-
liability issues that directly impact both the end users
as well as the organizations that depend on these soft-
ware systems for their services and daily operations,
as well as internal such as maintainability problems
impacting the development organization and its main-
tenance developers. Studies have shown that mainte-
nance costs, resulting from corrective, adaptive, per-
fective, and preventive changes, with a share of 40
to 90 percent of the total development costs, are the
dominant cost of software systems [4, 5, 9, 11, 13].

Corrective changes alone account for a sizable
portion of maintenance costs. Lientz and Swanson
[33], in their study of 487 data processing organiza-
tions in 1980, reported that, on the average, about
21% of the maintenance effort is spent on corrective
maintenance. Later studies in 1990 concluded that, in
spite of a decade of advancements in software engi-
neering, the maintenance problems had remained the
same [38, 49]. Today, after over 20 more years of
progress in software engineering, it is not difficult to
observe that software maintenance is still an exceed-
ingly major concern in software systems.

Recent empirical studies have demonstrated that
mechanisms, such as design regularities [16], which
increase a system’s predictability are an effective
means to address maintenance problems at a funda-
mental level [14]. Accordingly, recent effort [20] has
attempted to develop quantitative models to measure
and control system predictability. Degree of Reg-
ularity [20] and Regularity Density [20] are exam-
ples of such measures. The goal is to address post-
release problems by producing software systems that
are highly predictable. That is, systems that have a
predictable design and, therefore, are easy to reason
about and maintain. To build such systems necessar-
ily requires a process that is objectively repeatable.

To sum up, to address both the pre-release as well
as post-release software life cycle challenges at a fun-
damental level, we argue that the software engineer-
ing community needs to move towards devising objec-
tively repeatable development processes, which can

WSEAS TRANSACTIONS on SYSTEMS Arbi Ghazarian

E-ISSN: 2224-2678 77 Volume 13, 2014



only be accomplished through developing software
engineering theories that have predictive power over
aspects of software engineering interest. Such pre-
dictions can then be employed to inform software en-
gineering processes, practices, techniques, tools, and
technologies. Our observation of the status quo in the
software industry is that too much emphasis is placed
on software engineer’s experience. Although experi-
ence can be a valuable source of insight, it should not
substitute the development of theories that can afford
us predictive power and therefore help us to increase
the repeatability of various software engineering pro-
cesses. In line with this philosophy, this paper con-
tributes a general research framework that takes ex-
perience and observations from real-world software
engineering projects as input, subjects them to rigor-
ous scientific evaluation, develops software engineer-
ing theories, and uses the resulting predictions to lay
a solid theoretical foundation for the development of
more effective and repeatable software processes.

The scope of this current work is limited to the
requirements phase of software engineering. How-
ever, this work is part of a large research program
that aims to incrementally address the various areas
of software engineering towards achieving its ultimate
goal of developing a highly repeatable full software
development life cycle process. In what follows, we
will use the research framework presented in this pa-
per to develop, evaluate, and refine a specialized soft-
ware engineering theory, one that makes predictions
about software requirements space. Three fundamen-
tal premises of the work reported here are as follows:

1. Shifting from current widely used opportunistic
software engineering practices and processes to
ones that are more predictive and repeatable will
make it possible not only to eliminate a signifi-
cant amount of wasted effort in reworking soft-
ware artifacts, but also make reworks less diffi-
cult, when they are necessary. This premise has
been supported in previous work including [19],
[20], [18], and [16] as well.

2. To move from opportunistic to objectively re-
peatable software engineering processes, we
need to develop software engineering theories
with predictive power.

3. A third premise of our work is that limiting our
scope to specific domains or application areas
makes it possible to develop theories that, al-
though less powerful in explaining software en-
gineering phenomena in a wide range of do-
mains, are more detailed and accurate within

a particular domain and, thus, directly usable
by software engineering practitioners within that
domain. That is, from a pragmatic point of view,
our goal in building specialized software engi-
neering theories is to make accurate and detailed
predictions within a domain of interest to inform
the design of more effective software engineering
processes within that domain. Although higher
generality translates into a broader scope of ap-
plicability, but may demand more effort in oper-
ationalizing constructs and relationships of a the-
ory to a given situation. In contrast, lesser gener-
ality might make a theory immediately applica-
ble to a domain [44].

The research contributions of this paper are
twofold: first, we propose and demonstrate the use of
a general and reusable research and design method-
ology that, in practice, can be used to develop more
effective software engineering processes, tools, and
techniques. Second, although there are general guide-
lines and established best practices, such as the de-
sign science guidelines [25], for conducting informa-
tion technology research, they require a relatively high
degree of experience and both theoretical and empir-
ical understanding and research maturity on the part
of researchers, which can not be expected from be-
ginning researchers. Therefore, we believe that a re-
search and design process with step-by-step instruc-
tions can be invaluable to beginning researchers. In
this paper, we present a research and design frame-
work that while it conforms to established research
guidelines and best practices, it is easy for inexperi-
enced researchers to follow. Therefore, the work pre-
sented in this paper is making an educational contribu-
tion as well. Throughout this paper, we use the terms
business information systems, business systems, en-
terprise systems, and enterprise information systems
interchangeably.

The rest of this paper is organized as follows: in
Section 2, we introduce our general research and de-
sign methodology. In Section 3, we follow the steps
of this proposed research and design methodology to
develop and evaluate a software engineering theory
about the requirements space in the domain of enter-
prise systems. Conclusions and directions for future
research follow in Section 4.

2 A Research and Design Methodol-
ogy for Software Engineering

For a software engineering method to be effective to
its intended use, it must be based on relevant facts

WSEAS TRANSACTIONS on SYSTEMS Arbi Ghazarian

E-ISSN: 2224-2678 78 Volume 13, 2014



and solid evidence about the context in which the
method is supposed to be applied, the range of prob-
lem types the method is supposed to address as well
as the criteria for a successful outcome of the method.
In this paper, we use the general term software en-
gineering method as an umbrella term to include all
software engineering processes, practices, and tech-
niques. Software engineering methods, then, are not
solutions to single well-defined existing problem in-
stances, but rather a set of generic and possibly or-
dered steps, ideally with well-defined scopes of ap-
plication, that aim to achieve desired outcomes for
yet unobserved problems occurring within their ap-
plication scope, where the outcomes of the methods
conform to a corresponding set of desirable quality
characteristics. This emphasis of a method in ad-
dressing yet unobserved future problems necessarily
requires predictions about the characteristics of the fu-
ture problems that fall within the application domain
of the method. Therefore, when it comes to designing
engineering methods, and in particular software engi-
neering methods, it is of utmost importance to deter-
mine the range of problem types that such methods
will need to deal with within their application scopes
as a method cannot reasonably be expected to be ef-
fective in handling an unpredicted situation for which
it was not originally designed.

This determination of the range and the nature of
future problem types (i.e., their distinguishing char-
acteristics) can be best accomplished through build-
ing theories with predictive power over the domain of
concern for a method, thereby informing the design of
the method. In the absence of a solid theoretical foun-
dation that, within an acceptable accuracy, predicts fu-
ture situations that need to be dealt with and justifies
why, where, and how the method is effective, soft-
ware engineering methods are prone to being devel-
oped based on unverified assumptions, opinions, and
biases, rendering them ineffective or at best subopti-
mal. In line with this philosophy, below, we present
a 12-step design methodology to develop a require-
ments method for the domain of enterprise systems
that has a scientific software engineering foundation.
The specific objective of this current work is to devise
a requirements method that is capable of producing
high quality requirements specifications for enterprise
systems. However, the methodology can be reused to
design methods for other areas of software engineer-
ing and in various application domains.

1. Formulation of a hypothesis, based on experi-
ence and expert knowledge within a domain,

anecdotal evidence, accidental observations, re-
curring patterns, insights, ideas, and reasoning,
which, if proved correct, can potentially improve
some aspect of the software engineering life cy-
cle process. The formulation of a hypothesis can
lead to the formulation of a number of relevant
research questions.

2. Study of the relevant literature to determine if
previous work has any results that have direct or
indirect bearing or can shed light upon the hy-
pothesis and its relevant research questions.

3. Empirical verification of the hypothesis through
numerous purposeful and planned observations
of relevant real-world phenomenon, data collec-
tion, and data analysis.

4. Development of a theory, or one or more laws, or
both, based on the stability in repeated observa-
tions and the accepted hypothesis, with explana-
tory and descriptive power, respectively, over the
observed phenomenon, in case the hypothesis
proved to be correct. Whereas laws describe
the observable phenomenon (i.e., what happens),
the theory explains the phenomenon (i.e., why it
happens).

5. Evaluation of the predictive power of the formu-
lated theory, or the laws of the formulated the-
ory, in new cases within their intended domain
beyond the original dataset used to build the the-
ory or observe the laws.

6. Refinement of the theory towards more accurate
predictions based on feedback from evaluation
on new cases.

7. Formalization of the verified theory in a formal
or semi-formal language such as an ontology, do-
main model, graphical notation such as Unified
Modeling Language (UML), logic or other math-
ematical notation, or a any combination of these
as appropriate.

8. Exploitation of the theory or law’s predictions as
a theoretical foundation to inform the develop-
ment of the desired software process.

9. Controlled evaluation of the effectiveness of
the new software engineering method through
a proof-of-concept systems resembling the real-
world problem features, a benchmark or standard
problem, measurements and metrics, small-scale
real-world problem, or evaluation in a simulated
environment.

10. Using feedback from controlled evaluation to
improve the design of the software engineering
method.

WSEAS TRANSACTIONS on SYSTEMS Arbi Ghazarian

E-ISSN: 2224-2678 79 Volume 13, 2014



11. Large-scale industrial evaluation of the effective-
ness of the new process in real-life situations.

12. Using feedback from large-scale industrial eval-
uation to improve the design of the software en-
gineering method as well as to refine the under-
lying theory.

In the above methodology, steps 1 through 6 build a
solid theoretical foundation, step 7 captures and spec-
ifies this theoretical foundation in a precise language
or formalism, and steps 8 through 12 put this theo-
retical foundation into practical use through develop-
ing a theory-backed software engineering method to
be used in real-world software engineering endeavors.
In this present paper, we will specifically focus on the
first 6 steps of the process in order to develop a re-
quirements engineering theory to explain and predict
the requirements space in the domain of business in-
formation systems. The remaining steps will be the
focus of a future work, which will aim to use the the-
ory presented in this present work to design a special-
ized requirements method for the domain of business
information systems.

The proposed design methodology, which com-
bines theoretical aspects with practical concerns in
software engineering, is an adaptation of scientific
method to the software engineering practice. It should
be noted that although we conveniently described the
methodology as a sequence of steps, in practice, it will
be used in an iterative fashion with feedback loops be-
tween steps, some steps occurring in parallel, or out
of their presented order in the methodology. In the
next section, we will follow the steps of the proposed
research and design methodology to build, evaluate,
and refine a theory about the requirements space in
the domain of business information systems. In future
work, we will continue by using this newly developed
theory to design a requirements method for business
information systems.

3 Design of A Requirements Method
for Business Information Systems

Large business organizations today rely on enterprise
systems for their daily operations. Enterprise systems
are software systems that support business process of
business organizations, and as such, they are often re-
ferred to as business systems, or more precisely in-
tegrated business systems. Enterprise systems pro-
vide a technological platform that enables organiza-
tions not only to integrate and coordinate their vari-
ous business operations, but also facilitate the sharing

of information across the various functional depart-
ments and management hierarchies within organiza-
tions. Enterprise systems can link an enterprise with
its customers, suppliers, and business partners. The
ultimate business goal in enterprise system implemen-
tation is to improve the effectiveness and efficiency of
enterprise organizations.

A successful software project demands a correct
and thorough requirements specification [45]. Enter-
prise systems are no exception. In fact, enterprise sys-
tems, as models of the business world, posses high in-
formation content as they embed large amounts of in-
formation about organizational policies, business enti-
ties and their relationships, business work flows, regu-
lations, business transactions, as well as domain rules.
Therefore, in the absence of a thorough requirements
engineering approach that aims to systematically cap-
ture, validate, represent, and share this body of infor-
mation with both technical and non-technical project
stakeholders, it is unlikely to succeed in capturing a
comprehensive view of an organization and its busi-
ness. Studies have shown that incomplete specifica-
tion of requirements is a major risk and failure fac-
tor for software projects. For instance, in an industrial
case study of defect introduction mechanisms in enter-
prise systems [17], it was observed that specification-
related defects, with a share of 42.5% of all reported
defects, represented the largest category of the soft-
ware defects in the studied enterprise system. Of this
42.5%, 34.7% were caused by incomplete require-
ments specifications, while the remaining 7.8% were
a result of a lack of traceability between various re-
quirements specifications. Among other results, the
study concluded that improving the requirements pro-
cess in terms of the completeness of the produced
specification, including explicit documentation of all
business rules and data validations can play a signif-
icant role in reducing defect rates in enterprise sys-
tems. Another study of pre-release software faults in
enterprise systems [15], demonstrated that faults of
omission with a share of 24% and spurious faults with
a share of 15.7% of all the faults were among the dom-
inant classes of faults and could be largely traced back
to the requirements phase of the development life cy-
cle. This study also, not surprisingly, concluded that
more development effort should be directed toward
the specification of requirements.

There is consensus in the software engineering
literature that requirements methods that can help in
the development of high quality system and software
specifications, that is, correct, complete, and consis-

WSEAS TRANSACTIONS on SYSTEMS Arbi Ghazarian

E-ISSN: 2224-2678 80 Volume 13, 2014



tent specifications, as well as methods that can help
with the early detection and removal of problems from
specifications of requirements can significantly lower
software project costs, while at the same time increase
the quality of the delivered software system. Boehm
and Basili state that [6] finding and fixing a software
problem after delivery is often 100 times more expen-
sive than finding and fixing it during the requirements
and design phase.

As we stated earlier in our third premise that un-
derlies this work, it is our position that focusing on
a particular domain, such as the domain of enterprise
systems, will better allow us to possibly identify laws
that govern the domain. Given the abundance of evi-
dence from previous studies on the importance of high
quality specifications of requirements in the success
of software projects, in this current work, we aim to
discover laws concerning the requirements space in
enterprise systems. The argument being put forward
here is that the predictions made by such laws of a
domain, as well as their encompassing theory, will al-
low us to develop specialized domain-specific require-
ments methods that, compared to current domain-
agnostic requirements methods, will be more effec-
tive in producing complete specifications of require-
ments, and consequently, help us to avoid unnecessary
and excessive reworks. As described in our design
methodology, the process begins with formulating a
hypothesis, which we will discuss in the subsection
that follows.
3.1 Formulation of the Low-Cardinality Hy-

pothesis
The idea of designing a domain-specific requirements
method specifically for enterprise systems, one that
would potentially be more effective in producing com-
plete specifications of requirements for enterprise sys-
tems and would consequently yield higher quality re-
quirements specifications than contemporary domain-
agnostic requirements methods, emerged in the indus-
try, from the observation of a recurring phenomenon,
a pattern, in the requirements for several enterprise
systems. The author of this paper, after many years
of engagement in the development of enterprise soft-
ware systems, had noticed a pattern that all enterprise
system development projects that he had encountered
thus far, regardless of their user organization, type
of business supported, or application area, essentially
had to implement similar types of requirements. The
statements of functional requirements would naturally
vary from one project to another to reflect the specific
user and business needs in their respective business

and organizational context. However, regardless of
these variances in the business or enterprise area, the
types of functional requirements would largely remain
the same from one project to another. For instance,
it was observed that diverse applications, such as ac-
counting, inventory control and management, sales
management, order processing, customer relationship
management, supply chain management, and enter-
prise resource planning, just to name a few, all in
their specifications of requirements had a large num-
ber of requirement statements that described a few
frequently-occurring software problem dimensions -
or enterprise dimensions - such as inputs to a business
process, the content and the format of the outputs of
a business process, rules for validating the inputs to
the system, and business rules or rules of the enter-
prise domain. The observation was the same regard-
less of the fact that the projects belonged to differ-
ent business organizations in different countries with
different rules for conducting business, and were con-
cerned with completely different business areas. What
was common among all the observed projects was that
they all belonged to the domain of enterprise systems.
This simple observation led to the formulation of the
following hypothesis:

The majority of functional software requirements
in enterprise systems belong to a small core set of re-
quirements classes, - or enterprise dimensions - each
class representing a problem dimension in the domain
of enterprise systems. In other words, the require-
ments space in the domain of enterprise systems, for
the most part, deals with a limited set of problem di-
mensions.

In technical terms, this hypothesis states that the
requirements space in the domain of enterprise sys-
tems can be characterized as a densely-clustered low-
cardinality multi-dimensional space. We will refer
to this hypothesis as the low-cardinality hypothesis
throughout this paper.

This low-cardinality hypothesis necessitates an-
swering the following research questions, if we aim
to evaluate its validity and eventually arrive at an en-
compassing theory with predictive laws about the re-
quirements space in the domain of enterprise systems:

1. What are the classes of functional requirements
in the domain of enterprise systems? In other
words, what are the enterprise dimensions? Or
equivalently, what would a comprehensive tax-
onomy of problem dimensions in the domain of
enterprise systems look like?

2. How frequently each identified requirements

WSEAS TRANSACTIONS on SYSTEMS Arbi Ghazarian

E-ISSN: 2224-2678 81 Volume 13, 2014



class occur? In statistical terms, what is the fre-
quency distribution of the various types of re-
quirements? Which classes of requirements are
frequently-occurring - or core - to the domain of
enterprise systems?

3. Are there any relationships among the various
identified enterprise problem dimensions? If so,
what is the nature of these relationships?

4. Is it possible to use the knowledge of the en-
terprise requirements classes (i.e., dimensions),
their frequency distributions, and the relation-
ships among enterprise dimensions to improve
the requirements process for enterprise systems?
And if so, how?

The first three research questions are ontological ques-
tions about the domain of enterprise systems regard-
ing what exists (i.e., a taxonomy of entities), which
entities are most fundamental, and what the nature of
the relationships are among the entities or classes of
concepts, respectively. The fourth research question is
pragmatic in nature as it aims to explore ways to ex-
ploit the theoretical knowledge gained from answer-
ing the first three questions to improve an aspect of
real-world software engineering. To answer the first
research question above requires the development of
a taxonomy, which, as emphasized in [44], is needed
to support theory building.

3.2 Related Work
Before attempting to evaluate the validity of the pro-
posed hypothesis and answer the ontological ques-
tions surrounding it, we conducted an extensive search
of published literature to see if previous work, to any
degree, had addressed these questions. To our disap-
pointment, there was not much work reported specif-
ically on requirements for the domain of enterprise
systems. Given the abundance of evidence in the soft-
ware engineering literature on the importance of the
requirements phase in improving software quality and
reducing cost and schedule issues in software projects,
this low number of publications on enterprise systems
development, and in particular requirements for en-
terprise systems, is surprising because enterprise sys-
tems account for a sizable sector of the software de-
velopment industry, and similar to other types of sys-
tem development, suffer from quality issues as well as
cost and schedule overruns. This observation has been
supported in [15] as well, arguing that this lack of in-
formation about enterprise systems might be due to
the commercial sensitivity of business systems, which
compels business organizations not only to make it

hard for researchers to obtain access to these systems
for research purposes, but also restrict the sharing of
knowledge gained from studying such systems.

We found that even in the broader software engi-
neering literature, a detailed and accurate understand-
ing of the nature of functional software requirements
has not received the attention it deserves. Address-
ing the research challenges posed by non-functional
requirements seems to have overshadowed the study
of functional requirements to a degree where we were
not even able to find detailed taxonomies of functional
requirement types. Published literature on require-
ments classification, for the most part, merely sepa-
rates functional requirements from non-functional re-
quirement, organizing them into broad and general-
ized categories, leaving the details to be worked out
by software engineers in an ad hoc fashion. What we
seek is a pre-conceived and accurate model of func-
tional requirements to guide the requirements engi-
neers during the requirements phase.

To give a few examples of requirements tax-
onomies, the software quality models FURP [23]
and its extensions by Rational Software [27, 30, 40]
FURPS+ have one broad category for functional re-
quirements (the F in FURPS) and four major cate-
gories for non-functional requirements, namely Us-
ability, Reliability, Performance, and Supportability
(URPS). As another example, the IEEE recommended
practice for software requirements specification [26]
does not provide a detailed classification scheme for
functional requirements. It lists four categories of
non-functional requirements: external interface re-
quirements, performance requirements, design con-
straints, and software system attributes. Functional
requirements, consisting of inputs, outputs, and pro-
cesses, are merely separated from non-functional re-
quirements and can be organized along broad dimen-
sions such as mode, user class, objects, response,
and functional hierarchy. This over-generalization of
functional requirements was probably necessary to
keep the standard applicable to a wide variety of soft-
ware domains. However, the flip side of a generalized
standard is that as we distance ourselves from the pe-
culiarities of various software domain, we lose our ca-
pability to provide detailed guidelines for the require-
ments engineering process, relying on the requirement
engineer’s experience and knowledge of the domain to
work out the details. In contrast to previous models of
functional requirements, this current work aims at ar-
riving at a detailed classification and characterization
of functional requirements in enterprise systems.

WSEAS TRANSACTIONS on SYSTEMS Arbi Ghazarian

E-ISSN: 2224-2678 82 Volume 13, 2014



In the subsections that follow, we will empirically
verify the validity of the low-cardinality hypothesis.
In the process, we will find answers to the ontologi-
cal and practical questions raised in Subsection 3.1 in-
cluding the development of an empirically derived re-
quirements taxonomy for functional requirements that
is more detailed and comprehensive compared to ex-
isting taxonomies. This will corresponds to the third
step in the proposed design methodology.

3.3 Evaluation of the Low-Cardinality Hy-
pothesis

To evaluate the validity of the proposed hypothesis,
we collected, classified, and statistically analyzed data
from software requirements for 15 software projects,
including 14 private industrial and one public projects,
all in the domain of enterprise systems. To facilitate
the evaluation process, we created a research database
to store and organize the collected data in the form
of atomic statements of functional requirements. The
atomicity [19] of requirements ensured that all the col-
lected data points (statements of requirements) are at
the same level of granularity. To increase the valid-
ity of our findings, we collected a large dataset, in-
cluding 1217 statements of functional requirements
from 171 system functions, representing a wide va-
riety of applications in the domain of enterprise sys-
tems. We then added meta-data to each statement of
requirement including the class of functional require-
ments to which the requirement statement belonged.
Quality control for the data collection and classifica-
tion phases included the independent repetition of data
classification, group reviews of the dataset, and statis-
tical random inspection of data and its classification.
After ensuring the quality of the collected data and its
classification, we generated reports about the studied
projects, including the identified classes of functional
requirements (enterprise problem dimensions), their
frequency distributions, as well as descriptive statis-
tics, such as average, standard deviation, and mean,
about each class of requirements. A detailed account
of this study can be found in [22]. For convenience,
the results are summarized in Table 1 below. Ta-
ble 2 provides brief descriptions for the requirements
classes identified in Table 1.

Table 1 provides answers to the first two re-
search questions raised in Subsection 3.1 concerning
the emergent classes of functional requirements in en-
terprise systems and their frequencies. It suggests
that the requirements space in the domain of enter-
prise systems is composed of 12 classes of require-
ments, or problem dimensions, as listed in the first

column of Table 1, with the five classes of data out-
puts, data inputs, event triggers, business logic, and
data persistence occurring more frequently than the
other classes, making them core to the domain of en-
terprise systems. These five core requirements classes
each contribute over 10% to the total number of re-
quirements in the entire dataset as well as in their re-
spective projects and together account for about 85%
of the requirements space in the studied enterprise
projects. This observed distribution of enterprise re-
quirements supports the proposed hypothesis that the
requirements space in enterprise systems is densely
clustered around a few core problem dimensions thus
a low-cardinality multi-dimensional space.

To answer our third research question regarding
the relationships among the classes of requirements
- or problem dimensions - we analyzed a large num-
ber of requirements to identify potential relationships
among them. The observation was that the existence
of one type of requirement makes the existence of
another type of requirement very probable. In other
words, in complete specifications of systems, the in-
clusion of a requirement into the specification of a
system makes it necessary, in more cases than one
would randomly expect, to add one or more other rel-
evant requirements to the specification to maintain its
completeness. That is, in a large number of cases,
the classes of functional requirements in enterprise
systems are existentially dependent upon each other.
The problem dimension of the original requirement
is what determines what additional types of require-
ments need to be specified.

As an example, it was observed that, in many
cases, requirements that specify the data input dimen-
sion of enterprise systems need additional specifica-
tions of data validation rules to prevent erroneous data
entry by end users into these systems. Without such
additional statements of requirements, system specifi-
cations would be incomplete, leading to quality, cost,
and schedule issues during the subsequent stages of
system development life cycle [17, 15].

Table 3 presents a list of probabilistically strong
relationships that we observed in our dataset. To get
a sense for the strength of the relationships among the
identified problem dimensions and system functions
in enterprise systems, we calculated the probabilities
of each of the identified relationships being true in 5
randomly selected enterprise projects from our data
set. The results are shown in the second column of
Table 3. For instance, the fifth row in Table 3 indi-
cates that 94% of system functions in the studied en-

WSEAS TRANSACTIONS on SYSTEMS Arbi Ghazarian

E-ISSN: 2224-2678 83 Volume 13, 2014



Table 1: Frequency Distribution of Identified Problem Dimensions in Business Information Systems
Enterprise % of Total Average (%) Over Standard Median
Problem Requirements 15 Enterprise Deviation (%)
Dimension N= 1217 Projects Observed
Data Output 26.37 22.21 11.29 20.51
Data Input 19.88 19.58 5.42 18.47
Event Trigger 16.18 11.70 7.84 11.11
Business Logic 11.66 14.56 8.75 14.28
Data Persistence 10.84 14.53 11.11 11.76
UI Navigation 4.84 6.43 6.75 4.54
External Call 2.62 3.00 5.70 0.00
Communication 2.30 1.32 2.04 0.00
User Interface (UI) 1.97 2.04 3.80 0.00
UI Logic 1.64 2.26 3.16 0.49
Data Validation 0.98 1.65 2.43 0.00
External Behavior 0.65 0.65 1.70 0.00

Table 2: Functional Requirements Categories and Their Descriptions
Requirement Class Description
Data Output the intermediate or final results of the system operations outputted to an

output device, including the contents of the outputs and the formatting
rules for displaying those contents.

Data Input description of the external data items that are to be inputted into the
software system.

Event Trigger description of the internal or external stimulating actions or conditions,
such as clicking on a menu item, link, or button, or a variable’s value
reaching a threshold that trigger system operations.

Business Logic description of the application or business rules including workflows
and calculations that define and govern the operations in a particular
application area.

Data Persistence descriptions of all the database related operations including reading,
updating, inserting and deleting from/to a database.

UI Navigation description of the flow of the screens (i.e. the rules for transition be-
tween screens) that make up an application.

External Call description of the function calls between two systems including the de-
scription of the parameters used to make such calls and their expected
values or responses.

Communication description of the rules and the contents for electronic communication,
such as email communication, between a system and an outside party.

UI description of the static layout of the pages and screens that make up a
system’s user interface.

UI Logic description of the dynamic behavior of a system’s user interface (i.e.,
how the user interface interacts with its users).

Data Validation description of the validation rules required to ensure the correctness of
the inputted data items in terms of the permissible domain of values,
the value ranges, and their correct formats.

External Behavior description of the behavior of an operation or function in an external
component or system.

WSEAS TRANSACTIONS on SYSTEMS Arbi Ghazarian

E-ISSN: 2224-2678 84 Volume 13, 2014



terprise systems had at least one statement of require-
ment specifying the data input dimension of the sys-
tem functions; only 6% of system functions observed
in these enterprise systems did not need an input. As
another example, the last relationship in Table 3 indi-
cates that 40% of input items in the studied systems
had at least one related data validation. It was impor-
tant to capture the concept of the strength of a rela-
tionship because the dependencies among the system
functions and problem dimensions were not always
guaranteed. For example, we observed, as expected,
that not all inputs necessarily needed validations, or
not all system functions needed inputs from end users.

Rules 2 through 7 in Table 3 collectively tell us
a great deal about the make up of system functions
in the observed enterprise systems. They suggest
that system functions in enterprise systems are largely
composed of inputs, data validations, business rules,
outputs, and persistence requirements. The other rules
(1, 8, and 9) identify dependencies among the problem
dimensions that make up the system functions.

This measurement of the strength of the vari-
ous possible relationships between classes of require-
ments can be helpful in distinguishing between acci-
dental versus persistent relationships in enterprise sys-
tems. Later, when we develop our domain model or
theory, such information can inform us on which re-
lationships to include and which ones to exclude. In
table 3, we only included strong relationships between
entities, the ones that capture an inherent characteris-
tic of the domain and therefore we wish to include
them in our domain model. In building a domain
model or theory, we are not concerned with captur-
ing accidental relationships as they do not represent
common patterns in the domain and therefore cannot
give us any insights about yet unobserved systems in
the domain, beyond the system in which they were
observed. As an example of a weaker relationship,
we considered a relationship, which was observed in
a few systems, stating that for every system function,
there exists at least one external call. The statisti-
cal probability of this relationship was calculated to
be slightly below 8% so we decided not to include
it among our strong relationships. Another example
is the relationship stating that every function of the
system has at least one communication requirement
with a statistical probability of 0% in the 5 studied
systems. This is a prime example of a weak relation-
ship, indicating an accidental requirement that might
be observed in an enterprise system, but the problem
dimension it describes does not represent an essen-

tial characteristics of the domain of enterprise appli-
cations and therefore can not be persistently and fre-
quently found in the domain of enterprise systems.

Having arrived at a first-cut in answering our first
three research questions regarding the core and non-
core problem dimensions that make up the require-
ments space as well as the nature and the strength of
the relationships in the requirements space for enter-
prise systems, our next step should be to develop an
initial theory about the requirements space in the do-
main of enterprise systems. It is only after developing
a theory with strong predictive power that we can an-
swer our forth and practical research question raised
in subsection 3.1
3.4 Dimension-Orientation: A Theory of Re-

quirements Space
Let us begin this subsection with a famous quote from
Kurt Zadek Lewin, who emphasized the importance
of theories and their practical applications: ”There is
nothing so practical as a good theory” [32]. Our posi-
tion is that, there is a shortage of conscientiously de-
veloped theories in the field of software engineering
to explain and predict software engineering phenom-
ena of interest and therefore the software engineering
research community needs to focus more on building
software engineering theories to discover, accumulate,
and communicate software engineering knowledge.
This view has also been supported by several software
engineering researchers including Basili [2], Tichy
[46], Sauer et al. [42], Kitchenham et al. [29], Endres
and Rombach [12], Herbsleb and Mockus [24], Land
et al. [31], and Jorgensen and Sjoberg [28]. Sjoberg
et al. [44], in their guidelines on building software
engineering theories, encourage theorizing as early as
possible in spite of the likelihood of failures, arguing
that in the absence of a theory to guide data collec-
tion, blindly gathered information might turn out to
be useless. Moreover, a large bulk of information may
render the beginning of theorizing next to impossible
[7].

Here, we attempt to summarize our findings thus
far into a theory that accounts for our observations in
the 15 studied systems. To describe our theory, we
adopt the four-component theory structure, suggested
by Sjoberg et al. [44], where the description for a the-
ory is divided into the following four parts:

1. Constructs
2. Propositions
3. Explanations
4. Scope

WSEAS TRANSACTIONS on SYSTEMS Arbi Ghazarian

E-ISSN: 2224-2678 85 Volume 13, 2014



Table 3: Probabilistic Existential Relationships among System Functions and Problem Dimensions
Existential Dependency Relationship Probability (%)
For every Event Trigger, there exists at least one other corresponding system
function or requirement.

100

For every system function, there exists at least one corresponding Data Vali-
dation.

100

For every Data Validation, there exists at least one corresponding Data Out-
put.

100

For every system function, there exists at least one corresponding Data Per-
sistence.

96

For every system function, there exists at least one corresponding Data Input. 94
For every system function, there exists at least one corresponding Data Out-
put.

94

For every system function, there exists at least one corresponding Business
Logic.

94

For every item of Data Input, there exists at least one Item of Data Persis-
tence.

51

For every Item of Data Input, there exists at least one corresponding Data
Validation.

40

In the above theory structure, constructs represent the
basic elements of the theory. According to [44], a
software engineering theory is defined as a theory
that includes at least one construct that is software
engineering-specific. In our study, the main con-
structs include (a) the functional requirements space
(b) its constituent problem dimensions represented by
requirements classes, (c) system functions, and (d)
atomic software requirements that make up the system
functions. Propositions, or more precisely, relational
propositions, of the theory describe the interactions
among the theory constructs. In our study, this corre-
sponds to the ontological statements about the make
up of the functional requirements space (i.e., taxo-
nomic categories of functional requirements) and their
properties (e.g., being core or non-core) as well as
the existential dependency relationships among sys-
tem functions and problem dimensions listed in Table
3. Relational propositions of a theory give rise to the
theory’s predictive power. They describe the laws of
the domain.

Explanations, or more precisely, explanatory
propositions of a theory, are further propositions that
explain why the relational propositions hold (i.e, the
notion of causality). Explanatory propositions are
what give the theory explanatory power. While the
propositions (i.e., laws) of a theory describe what hap-
pens, the explanations of a theory describe why they
happen [48, 41]. The scope of a theory describes the
universe of discourse in which the theory is applica-
ble. That is, it describe the conditions under which
the theory’s propositions are supposed to be applica-
ble [10]. In our study, the domain of business infor-

mation systems (i.e., enterprise information systems)
is the scope of our software engineering theory.

Tables 4 and 5 below explicitly present the con-
structs, propositions, explanations, and the scope of
the dimension-oriented theory. Its 12 propositions
express relationships among its 21 constructs. Each
proposition is explained by a corresponding expla-
nation. The first construct, Functional Requirements
Space, refers to the set of all imaginable statements
of atomic requirements in the domain enterprise sys-
tems. The construct System Function is a general
term that refers to a set of logically related atomic
requirements that together provide a piece of func-
tionality. From a functional point of view, enterprise
systems are composed of a set of system functions.
We use the term system function throughout this pa-
per as synonymous with other commonly-used terms
such as use case, feature, and high-level requirement.
Since each atomic statement of requirement can have
only one type (i.e., belongs to exactly one class of re-
quirement), system functions and their encompassing
requirements space are partitioned into a set of func-
tional requirements classes. The descriptions for the
identified classes of functional requirements, denoted
in Table 4 by symbols C5 through C16, was provided
earlier in Table 2. Core functional requirement classes
are those classes of functional requirements that de-
scribe inherent characteristics of the domain as evi-
dence by their frequent occurrence in specifications of
systems in the domain. Non-core functional require-
ments classes, in contrast, are accidental, and not in-
herent, to the domain. They occur infrequently and
do not represent fixed characteristics of the domain.

WSEAS TRANSACTIONS on SYSTEMS Arbi Ghazarian

E-ISSN: 2224-2678 86 Volume 13, 2014



Requirements classes of data input and data persis-
tence often provide a list of data items that must be
inputted or stored into the system. Constructs, C19
and C20, data input items and data persistence items,
refer to these data items, respectively. Compound re-
quirements are a combination of two or more atomic
requirements. Such statements of requirements must
be decomposed into their constituent atomic require-
ments before they can be classified under one of the
requirements classes.

3.5 Evaluating the Predictive Power of the
Dimension-Oriented Theory

In the proceeding subsection, we formulated a theory
about the requirements space in the domain of en-
terprise systems. However, an important step in the
theory-building process remains to be done, which
is to evaluate the validity of the theory’s predictions
through empirical studies. In the case of our theory,
we need to empirically verify whether the proposi-
tions - or laws - of the theory hold true for new (i.e.,
unobserved) systems from the domain of enterprise
systems. To do so, we conducted case studies using
three new industrial projects from the domain of en-
terprise systems. We refer to these three projects as
Test Case 1, Test Case 2, and Test Case 3, respectively.
Test Case 1, which was an online marketplace for au-
dio content, had 46 pages of requirements, including
71 system functions (i.e., use cases) and a total of 577
atomic functional requirements. We included the en-
tire requirements set for Test Case 1 in our study. Test
Case 2 was a web-based investment management and
trading system with a 71-page requirements specifica-
tion. Test Case 3 was an online banking software sys-
tem with a 94-page requirements specification. We
randomly sampled a set of 50 atomic functional re-
quirements from each of the Test Case 2 and Test Case
3. Overall, this gave us a test dataset including 677
atomic statements of requirements from three new en-
terprise systems. To evaluate the the first three propo-
sitions of the theory (P1, P2, and P3), as shown in Ta-
ble 4, we replicated the data classification and analy-
sis procedure described in subsection 3.3 with the new
dataset. Table 6 shows the results for each of the three
test cases.

As it can be calculated from Table 6, Proposition
P1 of the theory presented in Table 4 correctly pre-
dicted 99.31% of problem dimensions in Test Case 1,
94% in Test Case 2, and 100% in Test Case 3, respec-
tively. Another way to look at these results is that we
analyzed 677 atomic functional software requirements
in the domain of enterprise systems and we only found

7 statements of requirements that could not be classi-
fied under one of the categories provided by the do-
main model of the proposed dimension-oriented the-
ory. The remaining 670 requirements, accounting for
98.96% of the total number of requirements in our
three test data sets, were covered by the 12 functional
requirements classes listed in Proposition P1 of the
theory. We only need to add two new non-core re-
quirements classes, namely post-condition and data
source, to achieve 100% coverage in all the of the
three new system.

It must be noted that the field of empirical soft-
ware engineering shares many common methodologi-
cal issues with behavioral and social sciences, includ-
ing the notion of the falsification of a theory. In such
fields of study, regarding a theory as false based on its
predictions is rarely feasible [44, 34, 50]. If a predic-
tion is not supported, or only partially supported, by
empirical evidence, an alternative theory or a refine-
ments of the existing theory is sought, rather than the
complete rejection of the theory. In Subsection 3.6,
we will use feedback from the results of the evalua-
tion of the theory to refine it.

Proposition P2 of the theory identifies data out-
puts, data inputs, event triggers, business logic, and
data persistence as the five dominating classes of func-
tional requirements in the domain of enterprise sys-
tems. As indicated by Table 6, In Test Case 1, data
inputs, data outputs, and event triggers are indeed
among the most frequently-occurring functional re-
quirements classes as predicted by Proposition P2.
However, the two functional requirements classes
of business logic and data persistence, contrary to
the prediction, are not among the core requirements
classes in Test Case 1; instead, the three requirements
classes of user interface and user interface logic fol-
lowed by user interface navigation are among the most
frequently-occurring categories of requirements. This
is an interesting observation because the three require-
ments classes that were not predicted by the theory as
core requirement types are all user interface-related.

We found an explanation for this discrepancy. In
practice, it is not uncommon for development organi-
zations to capture their user interface-related require-
ments using wireframes, prototypes, screen mocks,
and other similar techniques that are visual rather
than textual. In such case, as a result, fewer user
interface-related requirements end up in the require-
ments specification documents, which can introduce
noise in theories of requirements that are built merely
based on data from these textual specifications. As it

WSEAS TRANSACTIONS on SYSTEMS Arbi Ghazarian

E-ISSN: 2224-2678 87 Volume 13, 2014



Table 4: Constructs, Propositions, Explanations, and the Scope of the Dimension-Oriented Theory
Constructs
C1 Functional Requirements Space
C2 Functional Requirements Classes (Problem Dimensions)
C3 System Functions
C4 Atomic Functional Requirements
C5 Data Output Functional Requirement Class
C6 Data Input Functional Requirement Class
C7 Event Trigger Functional Requirement Class
C8 Business Logic Functional Requirement Class
C9 Data Persistence Functional Requirement Class
C10 UI Navigation Functional Requirement Class
C11 External Call Functional Requirement Class
C12 Communication Functional Requirement Class
C13 User Interface Functional Requirement Class
C14 UI Logic Functional Requirement Class
C15 Data Validation Functional Requirement Class
C16 External Behavior Functional Requirement Class
C17 Core Functional Requirements Class (Core Problem Dimension)
C18 Non-Core Functional Requirements Class (Non-core Problem Dimension)
C19 Data Input Item
C20 Data Persistence Item
C21 Compound Requirement
Propositions
P1 The Functional Requirements Space is composed of 12 known Functional Requirements Classes, including Data Output,

Data Input, Event Trigger, Business Logic, Data Persistence, UI Navigation, External Call, Communication, User Interface,
UI Logic, Data Validation, and External Behavior.

P2 The five functional requirements classes of Data Output, Data Input, Event Trigger, Business Logic, and Data Persistence
belong to Core Functional Requirement Classes.

P3 The seven functional requirements classes of UI Navigation, External Call, Communication, User Interface, UI Logic, Data
Validation, and External Behavior belong to the Non-core Functional Requirement Classes.

P4 For every Event Trigger, there exists one corresponding System Function, Compound Requirement, or Atomic Functional
Requirement.

P5 For every System Function, there is a high probability that at least one requirement of type Data Validation should also exist.
P6 For every requirement of type Data Validation, there is a high probability that at least one corresponding requirement of type

Data Output should also exist.
P7 For every System Function, there is a high probability that at least one corresponding requirement of type Data Persistence

should also exist.
P8 For every System Function, there is a high probability that at least one corresponding requirement of type Data Input should

also exist.
P9 For every System Function, there is a high probability that at least one corresponding requirement of type Data Output should

also exist.
P10 For every System Function, there is a high probability that at least one corresponding requirement of type Business Logic

should also exist.
P11 For every Data Input Item, there is a high probability that at least one corresponding Data Persistence Item should also exist.
P12 For every Data Input Item, there is a high probability that at least one corresponding requirement of type Data Validation

exist.

WSEAS TRANSACTIONS on SYSTEMS Arbi Ghazarian

E-ISSN: 2224-2678 88 Volume 13, 2014



Table 5: Table 4 Continued

Explanations
E1 The functional requirements space in the domain of enterprise applications can be logically divided into two partitions: (a)

core functional requirements classes and (b) non-core functional requirements classes. As of yet, there are 5 known core and
7 known non-core classes of functional requirements. The sets of core and non-core classes of functional requirements will
be updated with future observations and discoveries. See E2 and E3 as to why core and non-core classes exist in the domain.

E2 Enterprise software systems, in order to support their corresponding business processes in the real-world, frequently need
to run system functions (through Event Triggers), which collect information (Data Input), execute the prescribed business
rules pertaining to the supported business processes (Business Rules), store information as a result of executing the system
functions (Data Persistence), and interact with users through displaying the results of executing the system functions, or
messages indicating success or failure of the processes (Data Output). The sequence of event trigger, input, business rule
execution, output, and persistence, or a variation of this sequence, is very common in business systems, giving rise to the 5
core classes of functional requirements.

E3 In addition to the core functional requirements classes, enterprise systems occasionally need to support features that are
not common in the domain, but specific to particular applications within the domain. Although compiling an exhaustive
list of non-core requirements classes would require surveying every imaginable application in the domain and therefore an
impossible task to carry out, in our studies thus far, we have empirically discovered 7 classes of non-core requirements.

E4 Event triggers, by definition, force the execution of either a single atomic requirement, a compound requirement, or a system
function (e.g., a collection of atomic and compound requirements).

E5 Most business services, and system functions as their implementations in enterprise systems, need to collect information,
typically from end users, who can potentially input erroneous data into the system, necessitating, as a best practice, the
validation of the inputted data for correctness of value and format. Therefore, it is very likely that most system functions will
have one or more statements of requirements, describing such validation rules.

E6 When the execution of a data validation rule results in the detection of a violation of the corresponding correctness rules
(i.e., detection of erroneous input), as a best practice, the user of the system needs to be notified, through appropriate error
messages and possibly be given instructional messages, describing a course of action that can be taken to rectify the problem.
Therefore, the existence of a requirement of type data validation, with a high probability, implies the existence of one or more
related requirements of type data output.

E7 Most business services, and system functions as their implementations in enterprise systems, need to store information,
typically collected from end users or generated as a result of a business transaction with the end user. Therefore, it is very
likely that most system functions will have one or more statements of requirements, describing the data persistence aspects
of the system function.

E8 Most business services, and system functions as their implementations in enterprise systems, need to collect information, typ-
ically from end users. Therefore, it is very likely that most system functions will have one or more statements of requirements,
describing the data input aspects of the system function.

E9 According to E5, it is very likely that a system function will have at least one requirement of type data validation. According
to E6, the existence of data validation requirements implies a high probability for the existence of corresponding data output
requirements. From E5 and E6, we can conclude P9. Moreover, System functions often need to notify their end users of
the successful completion or failure of the system function through requirements of type data output, giving rise to further
opportunities for the existence of requirements of type data output in system functions.

E10 Most business services, and system functions as their implementations in enterprise systems, involve the execution of business
rules. Therefore, it is very likely for system functions in the domain of enterprise systems to have one or more statements of
requirements, describing the related business rules.

E11 Business services, and system functions as their implementations in enterprise systems, often need to store information
collected from end users to conduct business and process business transactions. Therefore, it is very likely for input data items
to be stored in the system. From a specification point of view, input data items reappear in statements of data persistence
requirements.

E12 To prevent data entry errors, when such errors are possible, as a best practice, system functions need to validate inputted data
items before consumption and storage in the system. Therefore, data input items may need one or more relevant statement of
requirements describing the data validation rules.

Scope
S1 The Domain of Enterprise/Business Information Systems

WSEAS TRANSACTIONS on SYSTEMS Arbi Ghazarian

E-ISSN: 2224-2678 89 Volume 13, 2014



Table 6: Frequency Distribution of Identified Problem Dimensions in Business Information Systems
Problem (%) Test Case 1 (%) Test Case 2 (%) Test Case 3
Dimension N = 577 N = 50 N = 50
Data Output 9.53 36.00 24.00
Data Input 16.81 0.00 10.00
Event Trigger 25.12 14.00 10.00
Business Logic 1.90 16.00 12.00
Data Persistence 0.17 0.00 0.00
UI Navigation 8.31 10.00 6.00
External Call 0.00 0.00 0.00
Communication 0.34 0.00 0.00
User Interface (UI) 25.99 10.00 4.00
UI Logic 10.39 8.00 2.00
Data Validation 0.69 0.00 22.00
External Behavior 0.00 0.00 0.00
Post Condition 0.69 0.00 0.00
Data Source 0.00 6.00 0.00

can be seen in Table 1, this phenomenon can be ob-
served in the dataset that was used to build our orig-
inal theory, where the median values for the user in-
terface navigation, user interface, and user interface
logic class of requirements are 4.57, 0.00, and 0.49,
respectively. These low median values are an indi-
cation that in many of these enterprise systems user
interface-related requirements were not thoroughly
specified textually within their corresponding require-
ments specifications. In other words, in building our
theory about the requirements space in the domain of
enterprise systems, we assumed that textual specifi-
cations of requirements for enterprise systems are an
accurate representations of requirements that actually
get implemented in these systems. This assumption
is not accurate in cases where a statement of require-
ment is missing from the textual specification of re-
quirements, but actually gets implemented in the soft-
ware system (i.e., discrepancy between textual spec-
ification and implementation). This assumption, we
believe, was a reasonable assumption to begin with.
However, we realize that in Level I information sys-
tem theories [44, 35, 51, 8], which describe working
relationships that are concrete and based directly on
observations, such discrepancies can lead to inaccura-
cies in the propositions of the theory. Therefore, we
need to reflect all reasonably valid explanations of dis-
crepancies between theory predictions and empirical
observations to refine and therefore increase the ac-
curacy of a theory’s predictions. In the case of our
theory, this means that we will need to refine it to
regard user interface related requirements as core re-
quirements in enterprise systems.

In Test Case 2, event triggers, business logic, and
data outputs were the three core classes of functional

requirements that were correctly predicted. The the-
ory correctly predicted four core classes of functional
requirements in Test Case 3.

Two further observations deserve attention in Test
Case 2 and Test Case 3. First, we noticed that there are
no requirements of type data input in Test Case 2. Sec-
ond, data validations are among the most frequently-
occurring requirements in Test Case 3. Both of these
empirical observations are inconsistent with our the-
ory predictions. As reflected in the theory proposi-
tions, in the majority of systems we have looked at
in the past, data inputs have typically been among
the core requirement types whereas data validations
have been among the least-frequently occurring re-
quirement types, accounting for a small share of re-
quirements in this domain.

To understand the reason for these contrasting ob-
servations, we inspected the requirements specifica-
tion documents for Test Case 2 and Test Case 3 and
compared them to all the previous systems we had
studied. We noticed a striking difference in terms
of the specification style and format; whereas all of
the previous cases we had studied had their require-
ments specified in the form of use case documents,
the requirements for Test Case 2 and Test Case 3
were specified using proprietary templates. In Test
Case 2, the template for the requirements document
included a table for each application screen, with rows
for each item on screen and columns for the format
and data validation rules for each item. It was pre-
cisely this imposed documentation structure that had
obliged the requirements engineers to capture a large
number of data validation rules. In the absence of
such an structure, many of these data validation re-
quirements would have remained implicit and undoc-

WSEAS TRANSACTIONS on SYSTEMS Arbi Ghazarian

E-ISSN: 2224-2678 90 Volume 13, 2014



umented. In light of this finding, we inspected the
requirements specifications for the enterprise systems
that were used to build the theory and found that the
low number of data validations in these systems and
their consequent identification as a non-core class of
functional requirements were in fact a result of under-
specification of data validations in these systems; had
these systems specified all their missing data valida-
tions, data validations would become a core require-
ments class. As a result, we should update out theory
to regard data validations a core requirement class.

In Test Case 3, the specification of requirements
was driven by screen mock-ups. The screen mock-
ups were not meant to serve as the final design for the
system’s user interface; they were only employed as a
means to facilitate the capturing of requirements and
for illustrative purposes only. Editable user interface
components on screen mock-ups were meant to im-
plicitly suggest the data input requirements for each
application screen and as such they were not explicitly
specified. This implicit and visual style of specifica-
tion is in contrast to the use case format for require-
ments specification, where, typically, the textual de-
scription of the use case includes one or more steps to
capture data input requirements. This explained why
there were no statements describing data inputs in Test
Case 3. The absence of data inputs in Test Case 3 was
a byproduct of a stylistic choice in the specification
of requirements rather than any indication of features
that do not require data inputs. If we were to convert
the requirements documents for Test Case 3 into tex-
tual use case format, data inputs could well be among
the core requirements types. This means that data in-
puts should remain a core requirement class and there-
fore no changes are needed to be made to the theory in
spite of the fact that we do not explicitly see require-
ments of type data input in the test system.

In the light of these explanations as to why there
are a few inconsistencies between theory predictions
and empirical observations, we conclude that require-
ments belonging to the core classes, whether implicit
or stated, tend to exist in almost all systems in this do-
main and occur more frequently, though due to speci-
fication style and other factors, some core requirement
classes might remain unstated and implicit. Non-core
requirements classes, in contrast, are not commonly
observed in systems in a domain and even when they
occur, they account for a relatively small share of the
total number of requirements.

3.6 Theory Refinement - Dimension-
Orientation Version 2

Theory building is an iterative process, involving con-
tinuous development and refinement. In this subsec-
tion, we will use feedback from the theory evaluation
process, described in the previous subsection, to re-
fine the theory. Based on observations and analyses
of the 15 industrial cases in the domain of enterprise
systems that were used to build the initial version of
the theory as well as the three test cases that were
used to evaluate the original theory, we have identified
a domain model, consisting of 9 core requirements
classes. These core requirements classes include data
output, data input, event trigger, business logic, data
persistence, data validation, user interface, user inter-
face logic, and user interface navigation. Non-core
requirements classes that we have observed so far in-
clude the requirement classes of external behavior, ex-
ternal call, communication, post-condition, and data
source. Accordingly, we will need to make the first
three of the following changes to the propositions of
the original theory described in Table 4. Further spec-
ulations lead to the last two necessary changes below:

1. Update Proposition p1 to include the new func-
tional requirements types of post-condition and
data source.

2. Update Proposition P2 to add data validation,
user interface, user interface logic, and user in-
terface navigation to the list of core functional
requirements types.

3. Update Proposition P3 to remove data validation,
user interface, user interface logic, and user in-
terface navigation from the list of non-core func-
tional requirement types. Also, the two new
non-core functional requirements classes of post-
condition and data source should be added to the
list of non-core requirements classes.

4. A new proposition to complement Proposition
P4, taking into account the reverse case, where
the existence of a system function necessarily
requires the existence of a corresponding event
trigger.

5. Proposition P12 subsumes Proposition P5 and
therefore Proposition P5 is redundant and can
be removed from the theory, making the theory
more parsimonious. As we will discuss later in
this paper, parsimony is a goodness criterion for
empirically-based theories like ours [44].

We will accordingly need to update explanations
E1, E2, and E3 to account for the changes in propo-
sitions P1, P2, and P3, We also need to add a new

WSEAS TRANSACTIONS on SYSTEMS Arbi Ghazarian

E-ISSN: 2224-2678 91 Volume 13, 2014



Table 7: Version 2 - Constructs, Propositions, Explanations, and the Scope of the Dimension-Oriented Theory

Constructs
C1 Functional Requirements Space
C2 Functional Requirements Classes (Problem Dimensions)
C3 System Functions
C4 Atomic Functional Requirements
C5 Data Output Functional Requirement Class
C6 Data Input Functional Requirement Class
C7 Event Trigger Functional Requirement Class
C8 Business Logic Functional Requirement Class
C9 Data Persistence Functional Requirement Class
C10 UI Navigation Functional Requirement Class
C11 External Call Functional Requirement Class
C12 Communication Functional Requirement Class
C13 User Interface Functional Requirement Class
C14 UI Logic Functional Requirement Class
C15 Data Validation Functional Requirement Class
C16 External Behavior Functional Requirement Class
C17 Core Functional Requirement Class (Core Problem Dimension)
C18 Non-Core Functional Requirement Class (Non-core Problem Dimension)
C19 Data Input Item
C20 Data Persistence Item
C21 Compound Requirement
Propositions
P1 The Functional Requirements Space is composed of 14 known Functional Requirements Classes, including Data Output,

Data Input, Event Trigger, Business Logic, Data Persistence, UI Navigation, External Call, Communication, User Interface,
UI Logic, Data Validation, External Behavior, Post-Condition, and Data Source.

P2 The Nine functional requirements classes of Data Output, Data Input, Event Trigger, Business Logic, Data Persistence,
Data Validation, User Interface, User Interface (UI) Logic, and User Interface (UI) Navigation belong to Core Functional
Requirement Classes.

P3 The five functional requirements classes of External Call, Communication, External Behavior, Post-Condition, and Data
Source belong to the Non-core Functional Requirement Classes.

P4 For every Event Trigger, there exists one corresponding System Function, Compound Requirement, or Atomic Functional
Requirement.

P5 For every requirement of type Data Validation, there is a high probability that at least one corresponding requirement of type
Data Output should also exist.

P6 For every System Function, there is a high probability that at least one requirement of type Data Persistence should also exist.
P7 For every System Function, there is a high probability that at least one requirement of type Data Input should also exist.
P8 For every System Function, there is a high probability that at least one requirement of type Data Output should also exist.
P9 For every System Function, there is a high probability that at least one requirement of type Business Logic should also exist.
P10 For every Data Input Item, there is a high probability that at least one corresponding Data Persistence Item should also exist.
P11 For every Data Input Item, there is a high probability that at least one corresponding requirement of type Data Validation

exist.
P12 For every System Function, there exists at least one corresponding Event Trigger.
P13 For every violation of a business rule, there exists a system reaction as a corresponding compound requirement, consisting of

a set of atomic requirements.

WSEAS TRANSACTIONS on SYSTEMS Arbi Ghazarian

E-ISSN: 2224-2678 92 Volume 13, 2014



Table 8: Table 7 Continued

Explanations
E1 The functional requirements space in the domain of enterprise applications can be logically divided into two partitions: (a)

core functional requirements classes and (b) non-core functional requirements classes. As of yet, there are 9 known core and
5 known non-core classes of functional requirements. The sets of of core and non-core classes of functional requirements
will be updated with future observations and discoveries. See E2 and E3 as to why core and non-core classes exist in the
domain.

E2 Enterprise software systems, in order to support their corresponding business processes in the real-world, frequently need
to run system functions (through Event Triggers), which collect information (Data Input), check the validity of inputted
data (Data Validation), execute the prescribed business rules pertaining to the supported business process (Business Rules),
store information as a result of executing the system functions (Data Persistence), and interact with users through displaying
the results of executing the system functions, error messages, or success messages (Data Output). In GUI-based enterprise
systems, Data Inputs and Data Outputs are tied to user interfaces; Inputs are collected through a user interface and system
outputs are displayed on the user interface. These give rise to the three user interface-related classes of requirements including
User Interface, User Interface Logic, and User Interface Navigation. The sequence of event trigger, input, data validation,
business rule execution, output, and persistence, or a variation of this sequence, is very common in business systems, giving
rise to the 9 core classes of functional requirements.

E3 In addition to the core functional requirements classes, enterprise systems occasionally need to support features that are
not common in the domain, but specific to particular applications within the domain. Although compiling an exhaustive
list of non-core requirements classes would require surveying every imaginable application in the domain and therefore an
impossible task to carry on, in our studies so far, we have discovered 5 classes of non-core requirements.

E4 Event triggers, by definition, force the execution of either a single atomic requirement, a compound requirement, or a system
function (e.g., a collection of atomic and compound requirements).

E5 When the execution of a data validation rule results in the detection of a violation of the corresponding correctness rules
(i.e., detection of erroneous input), as a best practice, the user of the system needs to be notified, through appropriate error
messages and possibly be given instructional messages, describing a course of action that can be taken to rectify the problem.
Therefore, the existence of a requirement of type data validation, with a high probability, implies the existence of one or more
related requirements of type data output.

E6 Most business services, and system functions as their implementations in enterprise systems, need to store information,
typically collected from end users or generated as a result of a transaction with the end user. Therefore, it is very likely
that most system functions will have one or more statements of requirements, describing the data persistence aspects of the
system function.

E7 Most business services, and system functions as their implementations in enterprise systems, need to collect information, typ-
ically from end users. Therefore, it is very likely that most system functions will have one or more statements of requirements,
describing the data input aspects of the system function.

E8 From P7 and P11, we can deduce that it is very likely that a system function will have at least one requirement of type data
validation. According to P5, the existence of data validation requirements creates a high probability for the existence of
corresponding data output requirements. Therefore, from P7, P11, and P5, we can conclude P8. Moreover, System functions
often need to notify their end users of the successful completion of the system function through requirements of type data
output, giving rise to further opportunities for the existence of requirements of type data output in system functions.

E9 Most business services, and system functions as their implementations in enterprise systems, involve the execution of business
rules. Therefore, it is very likely for system functions to have one or more statements of requirements, describing the related
business rules.

E10 Business services, and system functions as their implementations in enterprise systems, are very likely to need to store
information collected from end users to conduct business and complete transactions. Therefore, it is very likely for input
data items to be stored in the system. From a specification point of view, input data items reappear in statements of data
persistence requirements.

E11 To prevent data entry errors, when such errors are possible, as a best practice, system functions need to validate inputted data
items before consumption and storage in the system. Therefore, data input items may need one or more relevant statement of
requirements describing the data validation rules.

E12 All System Functions should be accessible through at least one Event Trigger.
E13 Systems need to respond to violations of the business rules. This response is specified in the form a set of requirements.
Scope
S1 The Domain of Enterprise/Business Information Systems

WSEAS TRANSACTIONS on SYSTEMS Arbi Ghazarian

E-ISSN: 2224-2678 93 Volume 13, 2014



explanation to explain the newly added proposition.
We further need to remove Explanation E5 as a re-
sult of removing the Proposition P5 from the theory.
The updated theory, which is shown in Tables 7 and
8, will serve as input to the remaining steps of the re-
search and design methodology presented earlier in
this paper (Steps 6 through 12), which aims to pro-
duce a fully validated and theory-backed software en-
gineering process. These remaining steps will be the
focus of a future work.
4 Conclusions and Directions for Fu-

ture Work
The development of large industrial-strength software
systems within acceptable economic and technical
frames has remained a great challenge to this day as
both pre-release and post-release software processes
are, to a large degree, unpredictable, resulting in ex-
cessive rework, incurring not only cost and sched-
ule overruns, but also quality issues. We put for-
ward the argument that a fruitful avenue to address
these challenges is to shift from current opportunis-
tic software processes to ones that are more predic-
tive and repeatable, that this shift can best be accom-
plished through developing software engineering the-
ories with predictive power, and that focus on do-
main or application specific theories will make their
resulting processes readily usable by software engi-
neering practitioners. In line with these premises, we
introduced a reusable step-by-step research and de-
sign methodology to develop more predictable soft-
ware processes. We demonstrated the first half of the
proposed methodology (Steps 1 through 6) through an
expansive case study that aimed to develop a theory
of the requirements space. In future work, we will
demonstrate the second half of the process (Steps 7
through 12), producing a more effective requirements
engineering method for the domain of enterprise sys-
tems. We reported results from several empirical stud-
ies to support the arguments put forward in this paper.

The ideas put forward in this paper can be contin-
ued in several directions. A great avenue to continue
this research is to apply the proposed design method-
ology to various software engineering areas and to
different software domains, such as scientific compu-
tations [21], agent-based systems [37], Geographical
Information Systems (GIS) [39], Intelligent systems
[47], and embedded systems, to devise more effective
software processes.
References:

[1] V. R. Basili, S. Chang, J. Gannon, E. Katz, N. M. Panlilio-
Yap, C. L. Ramsey, M. Zelkowitz, J. Bailey, E. Kruesi,

and S. Sheppard, Monitoring an ada software development,
ACM SIGAda Ada Letters, July-August 1984, 4(1):3239.

[2] V.R. Basili, Editorial, Empirical Software Engineering,
1(2), 1996.

[3] K. Beck, Extreme Programming Explained: Embrace
Change, Addison-Wesley Professional, 1999.

[4] E. Bersoff, V. Henderson, and S. Siegel, Software configu-
ration management, Prentice Hall, 1980.

[5] B. Boehm, Software and its impacts: A quantitative assess-
ment, Datamation, May 1973, 9:4859.

[6] B. Boehm and V.R. Basili, Software Defect Reduction Top
10 list, IEEE Computer, vol. 34, no. 1, pp. 135-137, 2001.

[7] M. Bunge, Scientific Research: The Search for a System,
Springer-Verlag, New York, 1967.

[8] J. Carroll and P.A. Swatman, Structured Case: A Method-
ological Framework for Building Theory in Information
Systems Research, European Journal of Information Sys-
tems, 9:235-242, 2000.

[9] J. Cleland-Huand, C. Chang, and M. Christensen, Event-
based traceability for managing evolutionary change, in
IEEE Transactions on Software Engineering, Sep. 2003,
29(9):12261242.

[10] B. Cohen, Developing Sociological Knowledge: Theory
and Method, 2nd Edition, Belmont, CA, Wadsworth Pub-
lishing, 1989.

[11] P. Devanbu, R. Brachman, P. Selfridge, and B. Ballard,
Lassie: A knowledge-based software information system,
in Communications of the ACM, 1991, 34(5):3449.

[12] A. Endres and D. Rombach, A Handbook of Software and
Systems Engineering, Empirical Observations, Laws, and
Theories, Fraunhofer IESE Series on Software Engineer-
ing, Pearson Education Limited, 2003.

[13] R. Fjelstad and W. Hamlen, Application program mainte-
nance study - report to our respondents, Technical Report,
IBM Corporation, DP Marketing Group, 1986.

[14] A. Ghazarian, A Design-Rule-Based Constructive Ap-
proach to Building Traceable Software, Ph.D. Thesis, Uni-
versity of Toronto, 2009.

[15] A. Ghazarian, A Case Study of Source Code Evolution, in
Proceedings of the 13th European Conference on Software
Maintenance and Reengineering (CSMR 2009), Kaiser-
slautern, Germany, IEEE Computer Society, March 2009,
pp. 159-168.

[16] A. Ghazarian, Coordinated Software Development: A
Framework for Reasoning about Trace Links in Soft-
ware Systems, in Proceedings of the IEEE’s 13th Inter-
national Conference on Intelligent Engineering Systems
(INES 2009), IEEE Computer Society, Barbados, April
2009, pp 236-241.

[17] A. Ghazarian, A Case Study of Defect Introduction Mech-
anisms, in Proceedings of the 21st International Con-
ference on Advanced Information Systems Engineering
(CAiSE 2009), Springer, Lecture Notes in Computer Sci-
ence (LNCS), Amsterdam, The Netherlands, June 2009,
pp. 156-170.

WSEAS TRANSACTIONS on SYSTEMS Arbi Ghazarian

E-ISSN: 2224-2678 94 Volume 13, 2014



[18] A. Ghazarian, Effects of Source Code Regularity on Soft-
ware Maintainability: An Empirical Study, in Proceedings
of the IASTED International Conference on Software En-
gineering and Applications (SEA 2010), Marina del Rey,
USA, November 2010.

[19] A. Ghazarian, M. Sagheb-Tehrani, A. Ghazarian, A Soft-
ware Requirements Specification Framework for Objec-
tive Pattern Recognition: A Set-Theoretic Classification
Approach, in Proceedings of the 16th IEEE International
Conference on Engineering of Complex Computer Systems
(CECCS 2011), Las Vegas, USA, April 2011, pp. 211-220.

[20] A. Ghazarian, A Probabilistic Mathematical Model to
Measure Software Regularity, in Proceedings of the 15th
IASTED International Conference on Software Engineer-
ing and Applications (SEA 2011), Dallas, USA, 2011.

[21] A. Ghazarian, A Domain-Specific Architectural Foun-
dation for Engineering of Numerical Software Systems,
WSEAS Transactions on Systems, No. 7, Vol. 10, pp.
193208, July 2011.

[22] A. Ghazarian, Characterization of Functional Software Re-
quirements Space: The Law of Requirements Taxonomic
Growth, in Proceedings of 20th IEEE International Re-
quirements Engineering Conference (RE’2012), Chicago,
USA, September 2012.

[23] R. B. Grady, Practical software metrics for project manage-
ment and process improvement, Prentice Hall, 1992.

[24] D.J. Herbsleb and A. Mockus, Formulation and Prelimi-
nary Test of an Empirical Theory of Coordination in Soft-
ware Engineering, ACM SIGSOFT Software Engineering
Notes, 28(5):138-147, 2003.

[25] A.R. Hevner, and S.T. March, and J. Park, and S. Ram, De-
sign Science in Information Systems Research, MIS Quar-
terly, Vol. 28, No. 1, March 2004, pp. 75-105.

[26] IEEE Recommended Practice for Software Requirements
Specification, IEEE Std 830, 1993.

[27] I. Jacobson, G. Booch, and J. Rumbaugh, The Unified Soft-
ware Development Process, Addison Wesley, 1999.

[28] M. Jorgensen and D.I.K. Sjoberg, Generalization and The-
ory Building in SOftware Engineering Research, in Em-
pirical Assessment in Software Engineering (EASE2004),
IEE, 2004, pp. 29-36.

[29] B.A. Kitchenham, S.L. Pfleeger, L.M. Pickard, P.W. Jones,
D.C. Hoaglin, K. El Emam, and J. Rosenberg, Prelimi-
nary Guidelines for empirical Research in Software En-
gineering, IEEE Transactions on Software Engineering,
28(8):721-734, 2000.

[30] P. Kruchten, The Rational Unified Process: An Introduc-
tion, 2nd Edition, Addison Wesley Longman Inc., 2000.

[31] L.P.W. Land, B. Wong, and R. Jeffery, An Extension of the
Behavioral Theory of Group Performance in Software De-
velopment Technical Reviews, in Proceedings of the 10th
Asia-Pacific Software Engineering Conference, 2003, pp.
520-530.

[32] K. Lewin, The Research Center for Group Dynamics at
Massachusetts Institute of Technology. Sociometry, 8:126-
135, 1945.

[33] B.P. Lientz, and E.B. Swanson, Software Maintenance
Management, Addison-Wesley, 1980.

[34] C.E. Lindblom, Alternatives to Validity. Some Thoughts by
Campbell’s Guidelines: Creation, Diffusion, Utilization,
8:509-520, 1987.

[35] R.K. Merton, Social Theory and Social Structure, 3rd Edi-
tion, The Free Press, Ney York, 1978.

[36] A. Mockus and L. G. Votta, Identifying reasons for soft-
ware changes using historic databases, in Proceedings of
the International Conference on Software Maintenance
(ICSM 2000), 2000, pp. 120130.

[37] F. Neri, Empirical investigation of word-of-mouth phenom-
ena in markets: a software agent approach, WSEAS Trans-
actions on Computers,WSEAS Press (Wisconsin, USA),
issue 8, vol. 4, pp. 987-994, 2005.

[38] J. T. Nozek, and P. Palvia, Software Maintenance Manage-
ment: Changes in the Last Decade, Journal of Software
Maintenance: Research and Practice, 1990, Vol. 2, No. 3,
157-174.

[39] R. Pulavarthi and A. Ghazarian, An Interactive Network of
Events with Geographic Perspective, WSEAS Transactions
on Information Science and Applications, No. 12, Vol. 9,
pp. 369-378,World Scientific and Engineering Academy
and Society, December 2012.

[40] Rational Software Inc., RUP - www.rational.com.
[41] D. Sandborg, Mathematical Explanation and Theory of

Why-Questions, The British Journal for the Philosophy of
Science, 49(4):603-624, 1998.

[42] C. Sauer, D.R. Jeffery, L. Land, and P. Yetton, The Effec-
tiveness of Software Development Technical Reviews: A
Behaviorally Motivated Program of Research, IEEETrans-
actions on Software engineering, 26(1), 2000, pp. 1-14.

[43] K. Schwaber and M. Beedle, Agile Software Development
with Scrum, Prentice Hall, 2001.

[44] D.I.K. Sjoberg, T. Dyba, B.C.D. Anda, and J.E. Han-
nay,Building Theories in SOftware Engineering, Guide to
Advanced Empirical Software engineering, F. Shull et al.
(eds.), Springer, 2008, pp. 312-336.

[45] M.S. Tehrani and A. Ghazarian, Software Development
Process: Strategies for Handling Business Rules and Re-
quirements, Journal of ACMSIGSOFT, Software Engineer-
ing Notes, Volume 27, Issue 2, pp. 58-62, March 2002.

[46] W.F. Tichy, Should Computer Scientists Experiment More?
16 Excuses to Avoid Experimentation, IEEE Computer,
31(5):1998, pp. 32-40.

[47] T-S Tsay, Intelligent Guidance and Control Laws for an
Autonomous Underwater Vehicle, WSEAS Transactions on
Systems, Issue 5, Volume 9, pp. 463-475, May 2010.

[48] B. Van Fraassen, The Scientific Image, Oxford University
Press, New York, 1980.

[49] H. V. Vliet, Software Engineering: Principles and Prac-
tices, 2000, John Wiley & Sons.

[50] K.E. Weick, Theory Construction as Disciplined Imagi-
nation, Academy of Management Review, 14(4):490-531,
1989.

[51] R.K. Yin, Case Study Research: Design and Methods, Sage
Publications, Thousand Oaks, CA, 1984.

WSEAS TRANSACTIONS on SYSTEMS Arbi Ghazarian

E-ISSN: 2224-2678 95 Volume 13, 2014




