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Abstract: Complex dynamical processes occurring in the earth’s climate system are strongly nonlinear and 

exhibit wave-like oscillations within broad time-space spectrum. One way to imitate essential features of such 

processes is using a coupled nonlinear dynamical system, obtained by combining two versions of the well-

known Lorenz (1963) model with distinct time scales that differ by a certain time-scale factor. This dynamical 

system is frequently applied for studying various aspects of atmospheric and climate dynamics, as well as for 

estimating the effectiveness of numerical algorithms and techniques used in numerical weather prediction, data 

assimilation and climate simulation. This paper examines basic dynamic, correlation and spectral properties of 

this system, and quantifies the influence of the coupling strength on power spectrum densities, spectrograms 

and autocorrelation functions. 
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1 Introduction 
Theory of dynamical systems enables us to explore 

temporal and spatial evolution of the earth’s climate 

system and its components [1]. The “earth’s climate 

system” is a term that is used to refer to the 

interacting atmosphere, hydrosphere, lithosphere, 

cryosphere, biosphere as well as numerous natural 

and anthropogenic physical, chemical, and 

biological cycles of our planet. Each of these 

components has unique dynamics and physics, and 

is characterised by specific time-space spectrum of 

motions, characteristic time, internal variability, and 

other properties [2].  

Dynamical processes occurring in the earth’s 

climate system have turbulent nature and exhibit 

wave-like oscillations within broad time-space 

spectrum, and, therefore, are characterized by strong 

nonlinearity [3]. In this context, numerical weather 

prediction (NWP) and climate simulation represent 

one of the most complex and important applications 

of dynamical systems theory and its concepts and 

methods. 

It is important to emphasize, that NWP and 

climate simulation focus on processes with very 

different time scales and, in more importantly, 

pursue very different objectives [4, 5]. NWP is a 

typical initial value problem aiming to predict, as 

precisely as possible, the future state of the 

atmosphere taking into account current (initial) 

weather conditions. To date, due to the intrinsic 

limits with regards to the predictability of 

atmospheric processes, the practical importance of 

NWP is limited to a time horizon of 7 – 10 days. 

Errors in the NWP are primarily generated by 

inaccuracies in the initial conditions rather than by 

the imperfections in mathematical models [6]. By 

contrast, climate change and variability simulations 

focus on much longer time scales (several months or 

even years) and involve the study of stability of 

climate model attractors with respect to external 

forcing. Despite these fundamental differences, 

deterministic mathematical models, based on the 

same physical principles and fundamental laws of 

physics such as conservation of momentum, energy 

and mass, are commonly applied to both NWP and 

climate simulations. Mathematically, these physical 

laws and principles are generally expressed in terms 

of a set of nonlinear partial differential equations 

(PDEs) and, in their discrete form, contain a large 

number of state variables and parameters. 
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Performing a detailed simulation of the dynamics of 

the earth’s climate system and its components using 

such models requires significant computational 

resources and considerable time for analysis and 

interpretation of obtained results. Consequently, 

low-order models have drawn attention of scientists 

as very compact and convenient tools for studying 

various aspects of dynamics of natural physical 

processes and phenomena, and also for estimating 

the effectiveness of numerical algorithms and 

techniques used in computational simulations.  

To simulate and predict the behavior and 

changes in the earth’s climate system, integrated 

models that link together models of the atmosphere, 

oceans, sea-ice, land surface, biochemical cycles 

including those of carbon and nitrogen, chemistry 

and aerosols are required. In environmental, 

geophysical and engineering sciences one of the 

most widely used low-order systems is a coupled 

system obtained by combining of several versions of 

the well-known original Lorenz system [7] 

(hereinafter referred to as the L63 system) with 

distinct time scales differing by a certain time-scale 

factor. Coupling of two systems, one with “fast” and 

another with “slow” time scales, allows imitating 

the interaction between a fast-oscillating atmosphere 

and slow-fluctuating ocean. This coupled system 

was successfully applied to climate studies (e.g. [8, 

9]), numerical weather prediction and data 

assimilation (e.g. [10-12]), sensitivity analysis, 

parameter estimations and predictability studies 

(e.g. [13 – 16]). The coupled Lorenz system, in spite 

of its simplicity, is capable of simulating some 

essential properties of the general circulation of the 

atmosphere and ocean and allows, with negligible 

computational costs, to obtain realistic and 

reasonable qualitative and quantitative results, while 

retaining the essential physics. The correct 

application of this system requires knowledge of its 

dynamics, spectral and other properties. 

This paper will look at the basic properties of a 

coupled chaotic nonlinear system obtained by 

combining “fast” and “slow” versions of the L63 

system, corresponding to time scales of the NWP 

and climate variability simulations respectively. 

 

 

 

2 Coupled Dynamical System 
 

2.1 Dynamical system concept 
In the most general sense, an abstract dynamical 

system can be formally specified by its state vector 

the coordinates of which (state or dynamic 

variables) characterize exactly the state of a system 

at any moment, and a well-defined function (i.e. 

rule) which describes, given the current state, the 

evolution with time of state variables. There are two 

kinds of dynamical system: continuous time and 

discrete time. Continuous-time dynamical systems 

are commonly specified by a set of ordinary or 

partial differential equations and the problem of the 

evolution of state variables in time is then 

considered as an initial value problem. With 

respect to the earth system simulations, discrete-

time deterministic systems are of particular interest, 

because, in a general case, the solution of 

differential equations describing the evolution of the 

earth’s climate system and its subsystems can be 

only obtained numerically. 

Let the current state of an abstract dynamical 

system is defined by the following set of n real 

variables u1, u2,…,un. The number n is referred as 

the dimension of the system. A particular state u = 

(u1, u2,…,un) corresponds to a point in an n-

dimensional space U
n , the so-called phase 

space of the system. Let tm  ( 0,1,2,m  ) be 

the discrete time, and f = (f1, f2,…,fn) is a smooth 

vector-valued function defined in the domain 
nU  . The function f describes the evolution of 

the system state from the moment of time t0=0 to the 

state of the system at the moment of time mt  such 

that f: U→U. Thus, a deterministic dynamical 

system with discrete time can be specified by the 

following equations: 

      1 0 0,   m mu t f u t u t u   ,           (1) 

m=0, 1, 2, … . 

The sequence   
0m m

u t



 is a trajectory of the 

system (1) in its phase space u U , which is 

uniquely defined by the initial values of state 

variables u0 (initial conditions): 

   0

m

mu t f u ,                      (2) 

where  0

mf u  denotes a m-fold application of f  

to u0.  

In relation to modeling of the earth’s climate 

system, the vector-function f is a nonlinear function 

of the state variables. Nonlinearity can arise from 

the numerous feedbacks existed between the 

different components of the system, external forcing 

caused by natural and anthropogenic processes and 

the chaotic nature of dynamical processes occurring 

in geospheres. 
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2.2 Coupled nonlinear dynamical system 
A multiscale nonlinear dynamical system examined 

in this paper is derived by coupling the fast and slow 

versions of the original L63 system [7] and can be 

written as follows [17, 18]: 

a) the fast subsystem 

   ,x y x c aX k     

( ),y rx y xz c aY k      

,zz xy bz c Z                

b) the slow subsystem 

   ,

( ) ( ),

( ) ,z

X Y X c x k

Y rX Y aXZ c y k

Z aXY bZ c z







   

    

  

       

where lower case letters x, y and z represent the 

dynamic variables of the fast model, capital letters 

X, Y and Z denote the state variables of the slow 

model, ζ>0, r>0 and b>0 are the parameters of the 

original L63 model, ε is a time-scale factor (if, for 

instance, ε =0.1 then the slow subsystem is ten times 

slower than the fast subsystem), c is a coupling 

strength for x, X, y and Y variables, cz is a coupling 

strength parameter for z and Z variables, k is a 

“decentring” parameter [17], and a is a parameter 

representing the amplitude scale factor (for instance, 

a=1 indicates that slow and fast subsystems have the 

same amplitude scale). The coupling strength 

parameters c and cz control the interconnection 

between fast and slow subsystems: the smaller the 

parameters c and cz, the weaker the interdependence 

between two subsystems. Without loss of generality, 

one can assume that a=1, k=0 and c=cz, then 

equations of the model can be represented in an 

operator form as follows 

 ;  
du

A u p u
dt

 ,                           (3) 

where u=(x,y,z,X,Y,Z)
T
 is a model state vector, 

p=(ζ,b,r,ε,c)
T
 is a vector of model parameters, and 

A(u; p)
 
is the matrix operator such that 

0 0 0

1 0 0

0 0 0

0 0 0

0 0

0 0 0

c

r x c

x b c
A

c

c r X

c Y b

 

 

  

 

  
 

 
 
 

  
  
  
 

     

Thus, system of autonomous ODEs (3) has five 

control parameters (ζ, r, b, c and ε) and together 

with given initial conditions u(t0)=u0 represents an 

initial value problem. 

 

2.3 Equations in variational form 
Equations in variational form are used to study the 

system’s dynamical properties. These equations can 

be obtained by linearization of (3) around a certain 

trajectory, which is a particular solution of (3) and 

represents a vector-function ( )u t , t[0,∞). Assume 

that the system (6) operates along the trajectory u
*
(t) 

and let δu(t) be an infinitesimal perturbation of the 

state vector, i.e.  δu(t) = u(t) - u
*
(t). Approximating 

the right-hand side of (6) by a Taylor expansion in 

the vicinity of u
*
(t) and neglecting 2

nd
 order and 

higher order terms, one can obtain the following set 

of linear ODEs, the equations in variations: 

   0 0

( )
,      

d u t
J u t u t u

dt


     ,       (4) 

where   
*u u

A
J

u 





  is a Jacobean matrix: 

 

 

0 0 0

1 0 0

0 0

0 0 0

0 0

0 0

c

r z x c

y x b c
J

c

c r Z X

c Y X b

 

 

  

  

  
 

  
 
 

  
  

   
 

     

Variational equations (4) can be rewritten as 

 0 0 0( ) ,      tu t L u u t u     ,             (5) 

where Lt is a linear solution operator. 

 

 

2.4 Model parameters 
The time evolution of coupled nonlinear system (3) 

is conditioned by a set of ODEs and control 

parameters ζ, r, b, c and ε. By setting parameter c 

equal to zero, one can restore the original L63 

model. Standard values of the L63 parameters 

corresponding to chaotic behaviour are: 

10,  8 3,b   and 28r   [7]. These parameters 

are used in this study since the motions in the 

atmosphere and ocean are inherently chaotic. It is 

important to note, that for 10   and 8 3b   there 

is a critical value for parameter r, equal to 24.74, 

and any r larger than 24.74 induces chaotic 

behaviour of the L63 system [19]. The time scale 

factor ε is taken to be 0.1. Thus, in our study, the 

main control parameter is the coupling strength c, 

which essentially determines the strength of 
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interactions between fast and slow models and, 

therefore, the behaviour of the entire coupled 

system. In numerical experiments values of this 

parameter have been chosen in accordance with [17, 

18]:  0.15,  1.0с . 

 

 

2.5 Numerical integration procedure 
The system of equations (3) is numerically 

integrated by applying a fourth order Runge-Kutta 

algorithm with a time step 0.01t  . To begin with, 

equations (3) are transformed into a discrete-time 

form and then integrated. This integration produces 

time-series for each of the dynamic variables at 

equally-spaced time-points starting from 
0t , denoted 

by 

  ,  ,  0, , 1m m mu u t t m t m M     , 

where t  is the integration time step, also known as 

the sampling interval. To discard the initial transient 

period the numerical integration starts at time 
142Tt t     with the initial conditions 

 0.01; 0.01; 0.01; 0.02; 0.02; 0.02Tu


     (6) 

and finishes at time 
0t . In addition, this ensures that 

the calculated vector of dynamic variables u0=u(t0) 

is on the system’s attractor. The state vector u0 is 

then used as the initial conditions for further 

numerical experiments. Note that, for 0.01t  , the 

numerical integration with length of 100 time steps 

corresponds to one non-dimensional unit of time. 

 

 

3 Coupled System Properties 
 

3.1 Equilibrium points 
Equilibrium (fixed) points of the system of ODEs 

(3) occur whenever 0u  . Because this system is 

homogeneous, it has at least a trivial solution, which 

is also one of the equilibrium points. In addition, for 

given parameter values, system (3) has eight non-

trivial equilibrium points, all of which can be found 

numerically. Coordinates of fixed points depend on 

the parameter c and are listed in Table 1 for c = (0.8; 

0.15). The stability of the system in the local 

vicinity of equilibrium points can be studied by 

evaluating the Jacobean matrix J at each of the fixed 

points of the system (3) and then finding the 

resulting eigenvalues. If at least one eigenvalue has 

a positive real part, the equilibrium is an unstable 

node. For instance, for c=1.0 at the origin, the 

Jacobean has the following six eigenvalues 

1 2 3

4 5 6

22.87,  11.90,  1.22,

2.35,    2.13,  0.80.

  

  

   

     
 

Since two of the eigenvalues are positive, the origin 

is an unstable node and since the remaining four of 

the eigenvalues are negative this point is saddle. 

Stability of the system in the vicinity of the 

remaining fixed points can be examined 

analogously. 

  
Table 1: Non-trivial equilibrium points of the coupled system for 

c=0.15 (numerator) and c=0.8 (denominator) 

0x  0y  0z  0X  0Y  0Z  

8.6244

11.9392
 

8.6202

11.8783
 

27.0182

27.5491
 

0.2751

0.7612




 

1.0186

8.7902
 

15.3028

85.2914




 

8.6244

11.9392




 

8.6202

11.8783




 

27.0182

27.5491
 

0.2751

0.7612
 

1.0186

8.7902




 

15.3028

85.2914




 

8.3103

7.8413
 

8.1437

6.2459
 

26.8420

25.8088
 

11.1123

19.9433




 

9.8657

13.6702




 

26.0129

24.8091
 

8.3103

7.8413




 8.1437

6.2459




 26.8420

25.8088
 11.1123

19.9433
 9.8657

13.6702
 26.0129

24.8091
 

8.1879

6.7233
 8.3404

7.9473
 27.1900

29.2784
 10.1619

15.2997
 11.3901

20.6783
 28.1103

30.8040
 

8.1879

6.7233




 8.3404

7.9473




 27.1900

29.2784
 10.1619

15.2997




 11.3901

20.6783




 28.1103

30.8040
 

0.0457

0.4400
 0.0837

0.5140




 1.5182

8.1275
 8.6242

11.9254




 8.6174

11.5734




 27.3743

27.0154
 

0.0457

0.4400




 0.0837

0.5140
 1.5182

8.1275
 8.6242

11.9254
 8.6174

11.5734
 27.3743

27.0154
 

WSEAS TRANSACTIONS on SYSTEMS Sergei Soldatenko, Denis Chichkine

E-ISSN: 2224-2678 760 Volume 13, 2014



3.2 Dissipativity 
Let V be the volume of some region of phase space. 

The rate of volume contraction is given by Lie 

derivative, 

  

1

           1 1 0.

dV x y z X Y Z

V dt x y z X Y Z

b  

     
      
     

     
. 

Since the rate of volume contraction is always 

negative under the chosen model parameters, the 

coupled system (3) is dissipative and, therefore, 

volumes in phase space shrink exponentially with 

time. This is represented mathematically by  

   0

tV t V t e . 

 

 

3.3 Symmetry and invariance 
One can easily to show that the coupled system (3) 

remains invariant under the transformation 

 :  ( , , , , , ) , , , , ,F x y z X Y Z x y z X Y Z     . 

This means that if 

 ( ), ( ), ( ), ( ), ( ), ( )x t y t z t X t Y t Z t
 

is a solution of (3), then 

 ( ), ( ), ( ), ( ), ( ), ( )x t y t z t X t Y t Z t     

is also a solution. The invariance of z and Z axes 

indicates that all trajectories on the z and Z axes 

remain on these axes and approach the origin. 

Indeed, if 

   0 0 0 0 0 0 0 0, , , , , 0,0, ,0,0, ,x y z X Y Z z Z  

then the model equations are as follows 

z bz cZ   ,                             (7) 

Z bZ cz   .                            (8) 

Differentiating equation (7) with respect to t and 

then substituting equation (8) into the result of 

differentiation gives the following second order 

ODE 

   2 21 0z b z c b z      . 

This equation is a dumped harmonic oscillator 

which can be rewritten as 

2

02 0z z z    ,                    (9) 

where  1 2b    is a damping constant, and

 2 2 2

0 c b    is a natural frequency.  

Equation (9) is a linear homogeneous ODE and 

its general solution depends on the relationship 

between damping constant γ and natural frequency 

ω0.  

In our example a damping constant 1.47   

and the natural frequency 0  depends on the 

coupling strength parameter c (Table 2). Critical 

frequency 0

c , at which 
0  , occurs when 

1.2c  . Since for our experiments  0.15;  1.0c , 

oscillator (10) is over-dumped (
0  ) and its 

general solution is given by the following equation 

  1 2t tz t Ae Be    ,                (10) 

where  
2

1,2 0 0 1       , and A, B are 

unknown constants of integration. The solution of 

equation (10) asymptotically tends to the 

equilibrium z=Z=0 without oscillations: as t  , 

the dynamic variables z and Z tend to zero. 

 

Table 2: Natural frequency 0  for different values of the coupling strength parameter  

c 0.01 0.15 0.5 0.8 1.0 1.2 1.5 

0  0.8422 0.8565 0.9804 1.1624 1.3081 1.4667 1.7208 

 

3.4 System attractor 
The structure of the resulting attractor depends on 

the coupling strength parameter c. Figs. 1 and 2 

illustrate phase portraits in x–y, x–z, and y–z phase 

planes of both fast and slow subsystems for weak 

(c=0.15) and strong (c=0.8) coupling, respectively. 

It is known, that the L63 model produces chaotic 

oscillations of a switching type: the structure of its 

attractor contains two regions divided by the stabile  

 

manifold of a saddle point in the origin. For 

relatively small coupling strength parameter (c<0.5), 

the attractor for both fast and slow subsystems 

maintains a chaotic structure, which is inherent in 

the original L63 attractor. As the parameter c 

increases, the attractor for both fast and slow sub-

systems undergoes structural changes breaking the 

patterns of the original L63 attractor. 
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Fig. 1: Phase portraits for fast and slow subsystem 

for c=0.15. 

 

Fast and slow subsystems affect each other 

through coupling terms, and at some value of the 

coupling strength parameter ( 0.5c  ) a chaotic 

behavior is destroyed and dynamic variables begin 

to exhibit some sophisticated motions which are not 

obviously periodic. Moreover, qualitative 

examination shows that the evolution through time 

of both subsystems becomes, to large degree, 

synchronous (however, phase synchronization 

requires specific analysis which is not within the 

scope of this paper). For example, for c=0.8 the 

plane phase portraits X – Y, X – Z and Y – Z of the 

slow subsystem represent closed curves which are 

mostly smooth and have no visible kinks. These 

portraits indicate that the motion possesses periodic 

properties. At the same time, the attractor of the 

slow subsystem for c=0.8 has a more complex 

structure. 

 

 

3.4 Correlation properties 
Numerical integration of equations (3) produces the 

time series of dynamic variables hereinafter referred 

to as signals or oscillations. We can conduct the 

diagnosis of the coupled dynamical system by 

analysing the signals using standard tools such as 

autocorrelation functions and the distribution of 

power density in the frequency domain from signals 

obtained in the time domain. 

Autocorrelation functions (ACFs) enable one to 

distinguish between regular and chaotic processes 

and to detect transition from order to chaos. In 

particular, for chaotic motions, ACF decreases in 

 
 

Fig. 2: Phase portraits for fast and slow subsystem 

for c=0.8. 

 

time, in many cases exponentially, while for regular 

motions, ACF is unchanged or oscillating. In 

general, however, the behaviour of ACFs of chaotic 

oscillations is frequently very complicated and 

depends on many factors (e.g. [20, 21]). 

Autocorrelation functions can also be used to define 

the so-called typical time memory (typical 

timescale) of a process [22]. If it is positive, ACF is 

considered to have some degree of persistence: a 

tendency for a system to remain in the same state 

from one moment in time to the next. The ACF for a 

given discrete dynamic variable  
1

0

M

m m
u




 is defined 

as  

  m m s m m sC s u u u u   , 

where the angular brackets denote ensemble 

averaging. Assuming time series originates from a 

stationary and ergodic process, ensemble averaging 

can be replaced by time averaging over a single 

normal realization 

 
2

m m sC s u u u  . 

Signal analysis commonly uses the normalized 

ACF, defined as      0R s C s C .  

ACF plots for realizations of dynamic variables x 

and X, and z and Z calculated for different values of 

the coupling strength parameter c are presented in 

Figs. 3 and 4, respectively. For relatively small 

parameter c ( 0.4c  ), the ACFs for both x and X 

variables decrease fairly rapidly to zero, consistently 

with the chaotic behaviour of the coupled system.  

WSEAS TRANSACTIONS on SYSTEMS Sergei Soldatenko, Denis Chichkine

E-ISSN: 2224-2678 762 Volume 13, 2014



 

Fig. 3: Autocorrelation functions for dynamic 

variables x and X for different parameter c. 

 

However, as expected, the rate of decay of the ACF 

of the slow variable X is less than that of the fast 

variable x.  

The ACFs for variables z and Z (really, their 

envelopes) also decay almost exponentially from the 

maximum to zero. For coupling strength parameter 

on the interval 0.4 0.6c   the ACF of the fast 

variable x becomes smooth and converges to zero. 

At the same time, the envelopes of the ACFs of 

variables X, z and Z demonstrate a fairly rapid fall, 

indicating the chaotic behaviour. As the parameter c 

increases, the ACFs become periodic and their 

envelopes decay slowly with time, indicating 

transition to regularity. For 0.8c   calculated 

ACFs show periodic signal components.  

 

 

3.5 Spectral properties 

For a given discrete-time signal  
1

0

M

m m
u




 the power 

spectrum density (PSD) characterizes the signal 

intensity (power) per unit of bandwidth. For a wide-

sense stationary process, the Wiener-Khinchin 

theorem relates the ACF to the PSD by means of a 

Fourier transform (i.e. PSD is a Fourier transform of 

ACF) and provides information about correlation 

structure of the time series generated by the system.   

 

Fig. 4: Autocorrelation functions for dynamic 

variables z and Z for different parameter c. 

 

The term “power spectral density function” is 

frequently shortened to spectrum. The units of PSD 

are u
2
/Hz, irrespective of what the units of u are. 

Oscillations of different types have specific spectral 

properties and, therefore, can be characterized by 

their PSD. For instance, a periodic motion 

consisting of the sum of finite number of sine curves 

has a set of lines in its spectrum, whereas a chaotic 

motion has a continuous spectral density function. 

 

  

  
 

Fig. 5: PSD estimates of fast (x and z) and slow 

(X and Z) dynamic variables for c=0.15. 
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Fig. 6: PSD estimates of fast (x and z) and slow (X 

and Z) dynamic variables for c=0.8. 

 

Generally, the ACF and spectrum represent 

different characterization of the same time series 

information. However, the ACF analyzes 

information in the time domain, and the spectrum in 

the frequency domain.  

There are several methods, both parametric and 

nonparametric, for spectrum estimation [23, 24]. 

This paper uses periodogram, which is the most 

common nonparametric method for computing the 

PSD estimate of time series. This method calculates 

PSD based on the discrete Fourier transform (DFT). 

Let’s define the DFT of sequence  
1

0

M

m m
u




 as 

 
1

2

0

,   0, , 1
M

i M mk

k m

m

U u e k M







   , 

where k is a discrete normalized frequency. Then 

the spectrum can be represented as follows 

2

,   0, , 1
k

k

s

U
P k M

Mf
    . 

The spectrum Pk can be plotted on a dB scale, 

relative to the reference amplitude Pref =1, therefore  

 1010 log ,   0, , 1dB

k kP P k M    . 

The frequency fk corresponding to point k of the 

DFT is 

s
k

f
f k

M
  

The PSD estimates for fast (x and z) and slow (X 

and Z) variables as well as for weak (c=0.15) and 

strong (c=0.8) coupling are shown in Figs. 5 and 6, 

respectively. For weak coupling, the signal power 

for all dynamic variables decreases exponentially 

from low frequencies toward higher frequencies and 

distinctive energy peaks are not present for almost 

all variables. The only exception is the fast variable 

z, for which a local peak is observed at frequency 

~1.2 Hz. For weak coupling, the spectrum of the fast 

subsystem is similar to the spectrum of the L63 

model: the fast subsystem generates a broadband 

spectrum reminiscent of random noise 

corresponding to irregular aperiodic oscillations. At 

the same time, the low-frequency component 

strongly dominates in the spectrum of slow 

subsystem. As the coupling strength increases, the 

power spectrum of both fast and slow subsystems 

shifts toward the low frequencies, which 

predominate in the spectra. 

 

  

  

  
 

Fig. 7: Spectrogram for fast and slow dynamic 

variables for c=0.15. 

 
Spectrogram is another powerful technique used 

in many applications for estimating the spectrum of 
the time series data. Spectrogram provides 
information about power as a function of frequency 
and time, and is generally presented as plot with the 
frequency of the signal shown on the vertical axis, 
time on the horizontal axis, and signal power on a 
colour-scale. Thus, for a given time frame the 
spectrogram provides the information about 
frequency content of a signal. Normalized 
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spectrograms for fast (x, y and z) and slow (X, Y and 
Z) variables for weak (c=0.15) and strong (c=0.8) 
coupling are shown in Figs. 7 and 8, respectively, 
with red color representing the highest signal power 
and blue the lowest. Calculated spectrograms are 
fully consistent with the PSPs, providing additional 
information about dominant and minor frequencies 
in the spectrum for a given time.   

 

  

  

  
 

Fig. 8: Spectrogram for fast and slow dynamic 

variables for c=0.8. 

 

 

4 Conclusion 
The low-order coupled chaotic dynamical system 

discussed in this paper represents a powerful tool to 

study various physical and computational aspects of 

numerical weather prediction, data assimilation and 

climate simulation. However, the NWP and climate 

modeling pursue very different objectives and are 

focused on dynamical processes of significantly 

different spatial and time scales.  

The integration time η of the system equations 

can be classified based on its duration as short, 

intermediate, long and very long [14], with the 

corresponding values of η set to η  = 0.1, η  = 0.44, η 

= 2.26 and η = 131.36, respectively. The short 

integration times traverse some portion of a 

trajectory along the attractor, the intermediate 

integrations correspond to complete circle around 

the attractor, the long integrations complete several 

circles, and the very long integrations correspond to 

movement along the attractor of about 100 times. 

The time step Δt=0.01 used in the numerical 

integrations is equivalent to 1.2 hours of a real time 

[7]. Therefore, intermediate and long-time intervals 

defined above correspond to 2.2 and 11.3 days, 

respectively, which are consistent with the NWP 

and data assimilation time of integrations. In turn, 

the very long integration intervals correspond to 

climate modeling time scales.   

This paper analysed the basic dynamical, 

correlation and spectral properties of the nonlinear 

chaotic coupled dynamical system consisting of two 

versions of the L63 model. The autocorrelation 

functions, power spectrum densities and 

spectrograms for dynamic variables of the fast and 

slow subsystems were computed by numerical 

integration of the system equations. The influence of 

the coupling strength parameter on the ACFs, PSDs 

and spectrograms of system’s dynamic variables 

was estimated.  

By changing the coupling strength parameter 

c, one can obtain the system behaviour that 

reflects the major dynamical patterns of weather 

and climate for given natural conditions. The 

results of this paper can be applied to study 

multiscale chaotic dynamical processes occurring in 

complex technical systems, nature and society. 
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