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Abstract: -This paper is concerned with the problem of global exponential stability for the second-order RTD-
based CNN systems. By homeomorphism mapping, applying the fundamental solution matrix of system, some
sufficient conditions that ensure the existence and exponential stability of systems. Finally, two examples are given
to illustrate the effectiveness of the results.
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1

Since the cellular neural networks (CNN) were first
proposed by Chua and Yang [1,2], numerous theories
and applications of CNN have been reported in recen-
t years. The resonant tunneling diode (RTD), a class
of quantum effect devices, is an excellent candidate
for both analog and digital microelectronics applica-
tions because of its structural simplicity, relative ease
of fabrication, inherent high speed and design flexi-
bility. In 2000, Hznggi and Chua [3] simulated the
RTD-based CNN
Lij(t) = —g(@ij (1)) + Xhien,; Gh—il-jThl

+ 2okieNy; bk—id—jurl + Zij,
wherei,j =1,2,---, N,
9(@ij () = awi;(t) + 11 (@i (t) = Vp| = [w5(8) = Vo)

+ 712 (8) + Vpl = |35 () + Vo),
which given a circuit implementation of an RTD-
based CNN. In 2001, &hggi and Chua proposed
the cellular neural networks based resonant tunneling
diode[4]. In 2003, knggi and Chua studied the appli-
cation of the RTD-based CNN, which can be used in
image processing and pattern recognition[5]. Recent-
ly, the chaotic dynamics of discrete-time RTD-based
cellular neural networks have been studied [6,7]. The
wave propagation in RTD-based cellular neural net-
works has been studied [8]. Shi and Shu et al.[9] s-
tudied RTDs based cellular neural/nonlinear networks
with applications in image processing. In [10] the au-
thors investigated tunneling-based cellular nonlinear
network architectures for image processing. In [11-
13], Authors a novel neural network architecture is
proposed and shown to be useful in approximating the
unknown nonlinearities of dynamical systems, and de-
scribes an optimized artificial neural network method
in order to estimate the settlements of roof, face and
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walls during tunneling excavation, etc., respective-
ly. Ke and Miao [14-16] investigated the stability of
BAM neural networks with inertial term and time de-
lay, pattern memory analysis of second-order neural
networks with time-delay and the existence analysis
of stationary solutions for RTD-based cellular neural
networks, respectively.

In 2001, Itoh, Julian and Chua [17] pointed out
that the bistable RTD-based CNN exhibits good per-
formance for a number of interesting image process-
ing applications because of its high-speed processing
and high cell density. thus, it is possible that a new
generation of low power, high-speed, and large array-
size CNNs appears with the introduction of the RTD-
based CNN. In that paper, they gave the second-order
RTD-based CNN by the following equations

e 250 = aggay (1) + uij(t) — glxis (1))
+ > bk—ii—jam + L,
k:JENZ'j v Y (1)
dug;
ud—Jt(t) = —x5(t) — nijuiz(t),

wherei,j =1,2,---, N,
9(xi5(t)) = axij(t)+r (|2 (8) = Vp|— |z (t) = V)

(2)

e,n;; are positive constants)V;; denotes they-
neighborhood of cel;;, ago, by; and;; denote the
feedback, control and threshold template parameters,
respectively.a, r are constantsy,, , V,, are the peak
and valley voltages of the RTD for the positive region
of z;;, respectively.

Obviously, then systems (1) contains the following
two systems:

Bonhoeffer-Van der

—r(|zij(t) + Vol — |zij (t) + Val),

Pol oscillator with an
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odd-symmetric -linear

nonlinearity
{ a2t — a(y(t) — f(z)),
W — _a(t) - By(t),

where f(z) = bz + $(a — b)(|z + 1| — |z — 1]).
Van der Pol oscillator with an odd-symmetric
three-segment piecewise -linear nonlinearity

{ dfl(tt) = - f(w))a
ay(t) _

where f(z) = bz + 1(a — b)(|z + 1| — |z — 1]).

The applied background of system (1) are investi-
gated in [17], but there are only numerical simulation.
As we all know, the theoretical result on stability of
system (1) has not yet seen. In this paper, we will in-

three-segment piecewise

"

vestigate the existence and the global exponential sta-

bility of the equilibrium point for systems (1) from
mathematical theory.

The initial conditions associated with syste)
are of the form

{ i () = ij (1),

i (1) = i (1), N

i7j:1727”'

where —oo < t < 0,¢;(t) and ¥;;(t)(i,j =
1,2,---, N) are bounded and continuous functions on
(—00,0].

Let b= o=,

ful@) = 5lle + ol =z~ w],

1
@i = 2( D bemiimgam + Iig),
€ kleN

then, system (1) can be rewritten as

B0 = by (t) + Lug; (1)
—2Z [y, (45(t)) + fv, (i ()] + a5
duiz—jt(t) = —xij(t) — nijuiz(t),
(4)
wherei,j =1,2,---, N, or
Zii(t) = —Aii Zij(t) + Fij(Zij(t)) + Qij- (5

whereZ;;(t) = (z;;(t), ui; ()7,

p -1 i
Aijzll 77;17@”:[8]1'
Fu(Zi (1)) = l ~ U @) + ) ] |
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(3) can be rewritten as
Zij(t)) = ij(t), —00 <t <0, (6)

Where(bij(t) = ((,Dij(t), ¢ij(t))T, ,7=1,2,--- N.

The paper is arranged as follows: In section 2, we
will give some definitions. In section 3, the main
results are presented. Finally, in section 4, we give
two examples to illustrate our theory.

2 Definition

To obtain our results, we need introduce the following
definitions.

Definition 1 For vectorY = (yi,y2,---,%»)’ and
n x n order matrixG = (gi;)nxn, We define norm as
following, respectively

- 1 - 1
Y= wil»z, 1GI= (Y lgi*)z.
i=1

i,j=1
Definition 2 Let
_ T
X* = ((ffl,‘fb,’” 7xTN7w§17x§27"'7x7\/N)T7
Ur= (uiklau){%’”7u>1kN7u§17u§27"'7u*NN) ,

Zf; = (a3;,us;)". The point(X*", )T is called
an equilibrium point of system (1), if it satisfies the
following equations

—bx}; + %ufj - %[fvp (@) + fr, (@5)] + a5 = 0,
—af; — mijuy; = 0,4,5 = 1,2,--+ N,
(")

—AiiZi; + Fij(Z5) + Qij = 0. (8)

Definition 3 Let (X*7, U*T)T is an equilibrium
point of systent1),
(x117w127 3 TIN5, X21,222,° 3 TNN,

ULt Uiz, UIN, UL, U2, "+ UNN )L
is a solution of systerfl) with initial value(3). The e-
quilibrium point(X*T, U*T)T of systen{1) is said to
be global exponentially stable, if there exists constants
K;j > 0,65 € (0,1),h; > 0,4, = 1,2,...,N,
such that

or

% t/hi;
|zij(t) — 35| < Kz'j5z[j/ i

. t/his
|uij(t) — uij’ < Kijéz[j/ ﬂ?

where ¢t > 0, i,7 =1,2,..., N, []is the integral

function.

Definition 4 ([18])) Amap H : R — R"is a
homeomorphism ak™ onto itself if H is continuous
and one-to -one and its inverse mdp~! is also
continuous.
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3 Main results Sinceexp(—Aq;)t = ¢i;(t)¢;;' (0), we can obtain

In this section, we will derive some sufficient condi- eap(—Ai)t =

tions which can ensure that the equilibrium point of Aot At
system (1) uniquely exist and is globally exponential _ 1 (;\2 + 77@'{)‘3 — (A1 +mij)e
stable. AL —Ag | eMt et

Lemma5 [13] If H(u) € C°, and it satisfies the fol-
lowing conditions
1) H(u) is injective onR"™,

(A1 + mij) (A2 + mij) (e2t — eMt)
(A2 + mij)eMt — (A1 + mij)er?!

2) || H (u)|| — +o0, as[ul] — +oc, We have
then H (u) is a homeomorphism at™. lleap(—Aij)t|
1 Aot A2
[ S A+i.e2_A+i.€1
Lemma 6 For functionf,,(z) = 3 (jz+w|—|z—w|), a0 i) Aot ( )l\lt 727]) )\]t Aat\2
we have +[(M +77ij)(>‘2 4‘/\771'3')(6 —-€ )]}\ +2(el 12 —e™?')
fo@)] < w, [fulz1) = fulz2)] < |21 — 22, [ m)e™! = (a4 ) 2312
for z1, 25 € R. = ot A1+ n55)° + (A2 + 74)
, + (A1 4 135)* (A2 + 135 ?J (€341 + €221
It is clearly correct. — 2014 (A1 + 1) (A2 + i) Per A2t 1/2
< Wm{[(b —nij)* + (1 —1/¢)?]
Lemma 7 For matric (Mt 4 eﬁxzt)}yg
) 1 If (b— ;) — 2 >0, then
A = 1 AR
i leap(—Ai )t < Mie?.
(6= m)* =42 # 001, = 1.2+ N), then f (b—15)? — £ <0, then
g
”exp(_Al)t” S Mi'e_o—ijt7t 2 07 b+
Ry — leap(~ At < Myge~ =321
where o;; = (b+niz)— \(b Mij) —4/5\’
B Thus, we have
Moo — [ 20=ni) +2 (1/e—1)2
= [(0—nij)*—4/e]

lexp(—Aij)t]| < Mije™ " t >0,
Proof. We consider the following linear differential

equation (b+ni5)—=/1(b—m5;)2—4/e]

/ . o where Oij = 5 ,
Z;;(t) = —Ai; Zi;(t). () Mo = [2ommP20/e- 12
By calculation, we can obtain the eigenvalue of matric Y (b=ni5)?=4/e[
—Ayj, fori,j =1,2,---,N.
A= 5[0+ i) + /(0 —mij)? = 2],
Ny = [ (b+nij) — \/(b—1ij)2 — 4] Lemma 8 For the system (1), if
1 7 el
corres ondln eigenvector of thg and \,, respec-
tively Poneing &9 » 1659 (b—mi5)* —4/e #0,
Vi= (M +ni, -7, Vo= (A +my,—1)T.
Thus, we obtain the fundamental solution matrix of (b+ nij) \/] b—mnij)? —4/e| >0,

system(9) is
y ©) for i, =1,2,---, N, then we have

A1+ 15 et Ao + g2t
bij(t) = [ (—e>‘1t 2 ( e)\gtn i) : 235 ()] < Rij, |ug(t)] < Rijy t 20,
for i, =1,2,---, N, where

Rij = My[ll¢ijllo; + 2 (V, + Vo) + lassl) /o,
MM—SW{WMML

—OOS

o;j, M;; are given of Lemma 7.

By calculation, we can obtain

_ 1 —1 —Xo +mij
”1 2 7723
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Proof. From(5) , we have
Zij(t) = e Z(0)

+ [ MIE (505D + Quldst > 0. (10)

By Lemma 7, from(10) we have
1Zi5 ()l < Mij)| Zij (0) e~

" Mijfe-%<t—5>mFij(Zij(s))n £ 1Qsllds
<Mwuz (0)le t

+Mw[ LV, + V) + |gij|] [ e~ (t=9)
< M,z Eo>||e-% i

+M2J[ L, + Vo) + i) /oij (1 — e 75t).
If (b+ n;) — \/| b—ni)? —4/e| > 0,ie., 0 >
0(é,j =1,2,---,N), we have

||Zz'j(7f)|| < Mz‘j\l%ll
+ M2 (V, + Vo) + laijl)/os; = Ry,
for t>0, i,j=1,2,---,N.
Thus, we can obtain
[z (D) < Rij, |uii(t)| < Rij,

for t>0, i,j=1,2,...,N,

where 2‘ |
Rij = My;[l|pijlloij + =2 (Vp + Vi) + laijl] /oij,
ol = Sup_ {Haﬁu( i

o;5, M;; are glven of Lemma 7.
Theorem 9 For the system (1), if

8irl
9

1
1+ +E—2b<0,

1
1+E—277ij<0,

for i,5 =1,2,---, N, then has a unique equilibrium
point for system (1).
Proof. Let

X = (z11, %12, , BIN, T21, 22, , TNN)

U = (u11,u12, + , UIN, U1, U2, UNN) T,
H(X,U) = (H11,H12, -Hin, Ho1, Hag, - Hyn,
Hiy,Hyo, -+ Hin, Ho1, Hyo, -+, Hyn)7,

where
Hij(X,U) = —bai(t) + fuis(t) — Z[fv, (235(t))

A+ fv, (w3 ()] + aij,

Hij(X,U) = —zi;(t) — mijuij(t),
for i,j=1,2---,N.

It is known that the solutions o (X,U) = 0 are
equilibriums of system (1). If the mappind (X, U)
is @ homeomorphism oR2N*N)  then there exists
a unique point{X*, U*), such thatd (X*,U*) = 0,

i.e., system (1) has a unique equilibrium point
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(X*,U*). In the following, we shall prove that
H(X,U) is a homeomorphism.

Firstly, we prove thatH (X,U) is an injective
mapping onR2(NVxN),

In fact, if there exist

(X,U) = (11,212, *, TIN, T21, 22, , ENN,
UL, U2, 0, ULN, U1, U2, UNN)
(X,U) = (z11, %12, - - leﬁzl,@z,”‘@Nm
U11, U2, -, UIN, U1, U22, -+ UNN) 5
such thattl (X,U) = H(X,U) for (X U) #(X,U)
, then
—b(wij (t) — Zij (1) + 2 (ui; () — 135(1))
—2 [ fy, (i (1) — fv, (Z5(t))
+fv, (i (1) — f, (Z45(t))] = 0. (11)
—(w45(t) — Ti5(t)) — mij(ugi(t) — uy(t)) = 0, (12)

fori,j=1,2---,N.
From (11) and (12), we obtain

—b(zi;(t) — T45(t))?
+ L(ugg(t) — @y () (i (t) — Z45(t))
2z = (wij (t) — 245(1) [fv,, (i (8) — fv, (Z45(2))
+ v (@i5(t)) — fv, (Zi5(2))] = 0. (13)
— (w45 (t) — Zi5 (1)) (wij () — wi5(t))
—nij(uj (t) — @i (1)) = 0, (14)

for i,7=1,2---,N.

From (13) and (14), we obtain
—b(wij () — Tij (1)) + o= [(wij (t) — wi5(t)))?
4r

() =745 (0)" + —

3l(xi () — 745(6) + (ui; () — 35 (t))°]

(w35 (t) —Z45(t))* > 0. (15)

—1ij (ui; (1) — g5 (t))* > 0, (16)
for 4,j =1,2---,N.
From (15) and (16), we have
(1+ 3 L 2b) (g5 (t) — 745 (t))?
1
+(1 + - 2i) (ugj (t) — ug5(t))* >0, (17)
for 4,j =1,2,---,N.
Since
8|r|

1+—+——2b<0

1
1+E—277ij<0,

fori,j7=1,2,---,N.
From (17), itis easy to see that; = Z;;, w;; = U4,
for i,7 = 1,2---, N, which contradict(X,U) #
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(X,0).
R2NXN)
Secondly, we prove thatH
I(X,U)]| — +oc. Let
H*(X,U) = H(X,U) — H(0,0)
= (ijl’I{j%”'?L[jN?H;l’H;Z’ T
Hfl? Hik2v e
where
H5(X,U) = —baij(t) + £uij(t)
=21 fy, (z55(t) = fu,(i;(0))
+ v, (i (t) — fv, (245(0))].
H;;(X, U) = —:L'Z'j(t)
for ¢,j=1,2---,N.
By (18) and (19), we can find
(X, U)TH*(X U)

_ z i Hi(X,U) + _z i H (X, U)

So H(X,U) is an injective mapping on
(X, U)|| - +oco as

7H]>§[N7
* [T+ TT* 7% T
7H1N7H21>H22>"'>HNN) )

(18)

— i (t), (19)

1,j=1 1,j=1
- jzlgc,j{ bxi;(t) + Eu,-j(t)
— Z[fv, (i (1) — fv, (25(0))
+ f]vvv (zi5(t)) = fv, (2i3(0))]}
+ i ]_21 wij{—wi;(t) — miju;(t)}
< ;1{ b2 () + Luij (1) || + a; ()]}
+ ]Z_ {lug () |2i5] — mijus; (t)}
al 8|r| 1 2 1 2
< ) {0+ - +E—2b)xij(t)+(1+g—2n,-j)u,-j(t)}.
ij=1
J (20)
Using the Schwartz inequality
Xy < [XTY| < |X] -1V, (21)

where|| X ||, ||Y’|| are the norms of vector¥ andY,
respectively. From (20) and (21), we get
1O - [1H (X, U)

N 8r|
> > (2-1—-">—

i,7=1
+ 1<m1n {2772j -1- l} Z Huw( )i
4,J< 1,5=1
> M(|X[]* + [U]*) = M|[(X,0)]]?,
where

M = min{(2b— 1—M—é),l<m1n {2n;—1-11}.

When||(X,U)|| # 0, we have
IH* (X, U)[| = M|[(X, U)]].

Therefore |H*(X,U)|| — +oo as |(X,U)]l
+00, which implies that|H(X,U)|| — 4o as

Dlzi; ()]
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|(X,U)|] — +oco. By Lemma 5, we know that
H(X,U) is a homeomorphism oR™*™. Thus , sys-
tem (1) has a unique equilibrium point.

Theorem 10 For the system (1), #,; > 4|r|/e,
(b —nij)°

8irl
9

—4/e £0,

1
1+ +E—2b<0,

1
41+g—2?’h‘j<0,

for i,7 = 1,2,---, N, then the equilibrium point of
system (1) is globally exponentially stably, whefe
is given of Lemma 7.

Proof. Obviously, the condition of Theorem 9 holds,
from Theorem 9 system (1) has a unique equilibrium
point. In the following, we will prove the equilibrium
point (X*7, U*T)T is globally exponential stable.

Let
xii(t) —
Wii(t) = J iﬁ ,
i) [uij(t)_uij ]

rywyn) = | T |

where
Fis(Wig () = =2 (v, (@35 (1)) —
+ (fv, (i (t) — fv (@)

From(5) and(8) , we have

fv, (275))

Wij(t) = —AyWi (1) + Fy(Wis (1) (22)

From(22), we get
d g =
E(QA”tWij(t)) = M Fy (Wi (¢)).

Integrating both sides of (23) i0, ¢](t > 0), we have
Wij(t)) = e Wi;(0))

(23)

t
+ / e~ M=) F (Wi (s) ) ds. (24)
0

If 055 > 4|r|/e > 0, then

b + 772j \/| 772]
for i,7=1,2,-
By Lemma 7 and Lemma 8, we have

—4/e| >0,

|z (t) < Rij, |ug(t) < Rij, t >0,

and z7;, u;; are bounded, then there exist constants

R” > 0, such that
Wi (@)l
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- \/(:Elj(t) o "E;'kj)2 + (uij(t) — u%kj)2 < R;j,
for t>0, i,j=1,2,---,N.
From(24) we have

HWZJ(t)H < MinWij(O)He_Uijt

i _
+ M;j [ e=oult=)|| Fy;(Wi;(s))||ds
0

_ ot
< Mz’jRije_Uijt + %Minijofe_oij(t_s)ds

+ 2l

< MijRijleot + 20 (1 — e770")]

Afr|

< RMU[ —oijt + —
€03

(L—e )], (25)

where i,5 =1,2,--
Let

N, R = max {R;;}.
<i,j<

Ar|
€0jj

Mjle™79" + —

(L—e™79")).  (26)

pij(t) =

If o;; > 4|r|/e, then

arl, _ ..
pl5(8) = Mylooy + et < o
i.e.,pi;(t) is monotone decreasing function.
If we selectT}; = max{0, - soln %} then
from (26) we have

:Mij[ ot A ‘(

£05j

pij(t) —e 7] <1, (27)
fort > T;;,4,5 =1,2,---, N.
From (27), there exi§tZJ > Tj;, such that

Lij = Mjj[e~ oM 4 i]‘ (1—eihi)] <1,
for t > hy;, 4,7 =1,2,---,N.
From (25), we obtain

Integrating both sides of (23) ifk;;,t](t > hij;), by
(28), we have

||le(t)H < MinFij[e_UU(t_hij)
4|r i (t—his
+ %M‘_(l — et hz]))L t > hyj,
fori,j =1,2,---, N.
Thus we can obtain
IWi; (1)|| < RT%, t > 2hyj,i,5 = 1,2,---, N.
(29)

Repeat the above process, we obtain
Wi ()] < My RT}; emouli=hhis)

21— etk
< RMyT ' U+ 28, ¢ > khy,
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for i,57=1,2,---,N.
We have
4’7" t/h“
[Wi; ()] < RM;5[1 + — ]Iy t>0, (30)
E0;j
for i,7=1,2,---,N.
From (30), we can obtain

where K;; = RM;[1 + 2 ‘] Ty < 1,hi; > 0, by

Definition 3, the equnlbrlum poin{ X*7' U*T)T of
system (1) is globally exponentially stable.

Theorem 11 For the system (1), if + 4|r] — be <
0,7;; > 1, and

8irl
9

1
1+ +E—2b<0,

1
1+ E — 277@' <0,
fori,j = 1,2,---, N, then the unique equilibrium
point of system (1) is globally exponentially stable.

Proof. Obviously, the condition of Theorem 9 holds,
by Theorem 9, system (1) exists unique equilibrium
point (X*T, U*T)T. Let

Yij(t) = w45(t) — ;kgv zij(t)
fo, (4i5(1)) = fo, (2i5(t)) — fvp(x;‘kj)7
Jouo (Wi (£)) = fo, (@35 () — fo, (7;).

From (4) and (7), we derive

= ug;(t) — ujj,

8

S b (t) + 22 (0)
N (t) 2] fop (g () + Fo, (yig ()],

g = —Yi(t) — nijzis(t),

(31)

fori,j=1,2,---,N.
From (31), by Lemma 6 we can obtain
dlyij
W = sgnluis(){=buss () + 1235 (1
— o, (Wi (8) + fo, (i (1)1}
< —=blyi; ()] + Lz (O] + Ly (1)

=gl + 0, (32

W = sgn(2ij (£)){—vij (t) — nijzi; (1)}

<y (t)] (33)

— mizl2ij (1)1,
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fori,j =1,2,---,N.
From (32) and (33), we can obtain
lyij ()] < e@Ir/==0)y5(0)]

1 t
o [z s, (34)
0

t
|23 (£)] < €7 |235(0)] +/ e |y (s)|ds,
0
(35)
for i,7=1,2,---,N.
We considering the functiong(¢) and G;;(&),
which are given by
9(§) =&+ 1+4lr| —be, Gi;(§) =&+ 1—ny,
for i,j=1,2,---,N.
By the condition of Theorem, obviously

d

W 0. tim_gl€) = +oc. 9(0) <0
dG;;

dyg(é.) >0, ggrfoo Gij(§) = +o0, Gy;(0) <0,

for i,j=1,2,---,N.
Therefore, there exist constants, o;; € (0,+00),
such that

9(01):0, Gij(dij):() i,j:1,2,...,N.
We chooset = min{o1,011,012,...,0NN}, then
€ >0,when0 < o < £, we have

oe+1+4|r|—be <0, o+1-—mn;;<0, (36)

for i,7=1,2,---,N.

Since the initial valuesy;;(s),;(s) are bounded
and continuous functions, then exiét, Ny > 0, such
that

lpij(t)] < N1, |y(t)| < Na,

fori,j=1,2,---,N,t € (—00,0].
Let L = max{Ny, Ny}, we will show that for any
sufficiently small constant > 0,

lyi; (1)) < (L+38)e™"

wheret >0, i,7 =1,2,---

, zig (0] < (L+6)e™"", (37)

LN, 0< o <&

Considering the method of contrary. If (37) does

not hold, there exists some! € {1,2,---, N} and
t1 > 0, such that
lyri(t1)] = (L 4 6)e= 7"
lyi; ()] < (L +8)e™, t €[0,1), (38)
|Zij(t)| < (L +5)€_0t, t e [O,tl],
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or
lyri(t1)] = |zra(t1)] = (L + 6)e™ ",
|yij(t)| < (L +5)6_0t7 te [Oatl)v (39)
|2i;(t)] < (L4 8)e™7, t € [0,t1),

or
|2k (t1)| = (L + d)e=",
lyij(t)] < (L +0)e=", t € [0,t1], (40)
|2ij(t)] < (L +6)e~"", t €[0,t1),

for i,7=1,2,---,N.
From (34) and (38)(0r 39), we obtain
‘yw(tl)’ = (L +d)e < ellrl/e= btl‘y (0)]
+1 ft1 (4]r|/e=b)(t1—s ‘Z ( )]ds
L+5)[6(4|r|/5 b)t1
e(&lr|/e=b)(t1—s)— Usds]
L+ 5)[6(4\7’\/a—b)t1
ol /e=b)ty 1
b—A4|r|/e—0c
L+ 5)[ (4|r]|/e=b)t1
N 1
e(b—A4|r|/e — o)
fori,j=1,2,---,N.
H 1
By (36), we obtamm < 1, from (41),
we have

=~
O

+ IA + IA

/\("}I}—‘

(e(b—4\r\/e—o)t1 _ 1)]

(e7 —¢

(4frl /=)ty

(41)

L+4§<L+6,

which is a contradiction.

By (35) and (40), we obtain

|35 (t0)] = (L + 5)6‘”“

< etz (O)] + fo' ey ()| s
(L+®knmL+ﬂ1—%@1®Uwﬂ
(L +@)emmts 4 <221 (elms—ol — 1))
1
Nij — 0O

fori,j =1,2,---, N.

By (36), we obtainmjl—_g < 1, from (42), we have

L+3d<L+5,

which is a contradiction.
Thus (37) holds, lef — 0, we have

lyij(t) < Le™, |zi5(t)] < Le™"

wheret > 0,0 > 0,4, =1,2,---, N.
From (43), there exist constantd > 0,5 = e~ ! ¢
(0,1), ando > 0, such that

|l’ij(t) — :L';kj| < M(;Ut, t >0,

|ugj(t) — ujl < M8, ¢ >0,
for i,j =1,2,---,N.
This implies that the equilibrium of system (1) is glob-
ally exponentially stable.

<
<

= (Lt o)le ™M 4 —— (e — ), (42)

(43)

Volume 13, 2014



WSEAS TRANSACTIONS on SYSTEMS Yunquan Ke, Chunfang Miao

1 1
0.5 1
0.5 1
o |
o 2 4 6 8 10 05 2 4 6 8 10
t t
1.5

2
1.5
=
N
1
0.5

o ]
05 2 a 6 8 10 o) 2 4 6 8 10
t t
Fig.1l. Transient response of state variables >i1(t),xlz(t),x21(t),x22(t) of Example 4.1
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Fig.2. Transient response of state variables Lil(t),ulz(t),u21(t),u22(t) of Example 4.1
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Fig.3. Transient response of state variables )il(t),xlz(t),x21(t),x22(t) of Example 4.2
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Fig.4. Transient response of state variables Lil(t)’ulz(t)’u21(t)’uzz(t) of Example 4.2

4 Numerical simulation Figs.1-Figs.2 depict the time responses of state vari-
ables ofz; (t), X129 (t), o1 (t), x99 (t), U1 (t),
u12(t), ug1 (t), ux(t) of system in example 4.1, re-
spectively.

On the other hand, we have the following results by
simple calculation, we can obtain

In this Section, we give two examples to demonstrate
our results.

Examples. Consider the following second-order
RTD-based CNN systeri®dy = 2)

b=2790 =3 ¢t>0b—mn,)*—4 0
Bit) — o0z () 4 uii(t) — gz (t)) + qui, T, (b_n_)g_ﬁt/j”) /e 70,
e = qooz1a(t) + ura(t) — glz12(t) + iz, 7ij = B > 4|r|/e,
e — go0a01 (1) + g1 () — gl (£)) + qar, 1+ 384l o9p <0, 141 —2m; <0,
de22(t) = agozan(t) + uga(t) — (222 (t)) + oo, Lorldz ,j =1, 2 thus the conditions of Theorem 10
du11( ) old.
e 211 (t) = muun (t), From (44), we can get the equation of the equilib-
2 = —212(t) — mawa(t), riums
uo1 (t
= —x91(t) — n21u21(t),
duglzt(t) — —aoo(t —3x11 + %Ull - i[fvp (x11) + fv, (z11)] + 1 =0,
= —w(t) — naguaa(t), 7 190 B
(44) —3x19 + Lugy — @[fvp (z12) + fu, (z12)] +2 =0,
where —3T21 + ?U21 o5 Lfv, (721) + fv, (w21)] +3 = 0,
9(@i5 (1)) = awij (£) 1 (i ()= Vo | — iy (- Vi) —3w2 + g2 — ol (@22) + fr(2)l +4 =0,
— V(|25 () + Vol — |zi; (1) + Vo), 11+ 0.5u11 =0,
Gij = > br—ig—jam + Lij,i, 5 = 1,2. T12 + 2u12 =0,
k€N o1 + Jug1 =0,
Example 4.1 For system (44), let = 2, agy = _
T + jug2 =0,
37 o = 97 7= 0017 qi1 = 17 qi12 = %7 q21 = (45)
2, g2 =4, m1 =05, m2=2, na1 =3, N2 = where
2 VED =1LV =2 1
For numerical simulation, the following eight cases , e 1] — s — 1145 = 1.2
are given with the initial state T (@iy) = 2“36” A = feyg =165 = 1.2,
[£11(0), ©12(0), 21 (0), 22(0), 1
¥11(0),%12(0), 921 (0), 122(0)] = fv, (zi5) = —Hx” + 2| — |2 — 2],4,5 = 1,2.
[0.8;0.7;1.2;0.8; —0.4; —0.2; —0.9; 0.1];
[0.1;0.5;0.9;0.7;0.4; 0.2; 1; —0.6]; Obviously, from(45), we can solve the unique equi-
[-0.3; —0.1;0.7;1.2; — 1 —0.4; —0.6; —0.4]; librium point
[ 09 02 04 1501 04 02 08] Z*—( 1]21312,1'21, 2 1,'1,L1 u21,u22)T
00150 119? g g2) g,
[0.6;0.6; 170 9; —0.6; =0.1; —0.8;0.5]; = (%5, 337, T8t Too0» — 14 e 1_61’__m):,j'
vidently, this consequence is coincident wi e
[04080305060105 05] Evidently, thi dent with th
[—0.5;—0.5; —0.1; 1.2; —0.2; —0.3; —0.4; —1]; results of numerical simulation.
[—0.7;0.4; 0.8;1.8;0.2;0.3; 0.4; —-0.9]. Example 4.2 For system (44), let = 4, agy =
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q11 1, qi2
y M2 = 2, n2

421
122

1, « 9, r =1 =
2, q2=1, m = =
4, V,=1,V, =2,
For numerical simulation, the following eight cases
are given with the initial state
[£11(0), 012(0), 21 (0), 22(0),

Y11 (0)7 1/}12(0)7 a1 (0)7 a2 (O)] =
.8;0.7;1.2;0.8; —0.4; —0.2; —0.9; 0.1];
.1;0.5;0.9;0.1; 0.4; 0.2; 1; —0.6];

—0.3; —0.1;0.7; —0.2; —0.1; —0.4; —0.6; —0.4];
.2;0.2;0.4; —0.5;0.1; —0.6; 0.2; —0.8];
6
4

= ) 27
_ 3
= 3 3,

.6;0.6;1;0.2; —0.6; —0.5; —0.8; 0.5];
4;0.8;0.3;0.5;0.6; 0.1;0.5; —0.5];
;1;—-0.1;1; —0.2; —0.3; —0.4; —1];
[—0.7;0.4;0.8;0.3;0.2; —0.1; 0.4; —0.9].
Figs.3-Figs.4 depict the time responses of state vari-
ables ofzq1 (t), 192 (t), 91 (t), x99 (t), U111 (t),
u12(t), u21(t), uge(t) of system in example 4.2, re-
spectively.
On the other hand, we have the following results by
simple calculation, we can obtain

@:2, L+4lr| —be <0, nyj > 1,

b=

8Jr|
13

Thus the conditions of Theorem 11 hold.

From (44), we can get the equation of the equilib-
riums

1 1
1+ =24 -—20<0, 1+=—2n;; <0, 4,5 =1,2.
15 15

=211 + Juig — %[fvp(lﬂn) + fv, (11)] +1 =0,
—2a12 + quiz — 3[fv, (212) + f, (212)] +2 =0,
—2w91 + TUy — %[fvp (z21) + fv, (v21)] +2 =0,
—2w99 + FUz2 — 5[ fv, (x22) + fv, (x22)] + 1 =0,
211 + Suip =0,
T12 + 2u12 =0,
o1 + 3ug = 0,
Tog + duge = 0,

(46)

where

1 L
fv, (zij) = 5[!%’ + 1| = |zi; = 1],4,5 = 1,2,

1 .
fv, (wi5) = §[lﬂfz‘j + 2| = |z —2[],4,5 = 1,2.

Obviously, from(46), we can solve the unique e-
quilibrium point

7% — 33'* ZL'* 33'* ZL'* U* ’LL* U* ’LL* T
ST N Sl Ll
—\%,25,37,49> 21 25> 37> 49/ - )

Evidently, this consequence is coincident with the
results of numerical simulation.
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Remark 12 Example 4.1 and Example 4.2 showed
their equilibrium point are exponential stable. In Ex-
ample 4.1, there ig;; = 0.5 < 1. But this condi-
tion isn't satisfied Theorem 11. While in Example 4.2,
there is(b — 121)? — 4/e = 0. This condition isn't
satisfied Theorem 10. It showed that theorem 10 and
theorem 11 have different applications.

In fact, the parametef);; in Theorem 10 must be
satisfy (b — n;;)? — 4/ # 0, allow n;; < 1. But for
Theorem 11 it is required to satisfy; > 1, allow
(b — nij)* — 4/e = 0. Therefore, Theorems 10 and
Theorem 11 can solve different problems.

5 Conclusions

In this paper, we give three theorems to ensure
the existence and the exponential stability of the
equilibrium point for second-order RTD-based CNN
system. Novel existence and stability conditions
are stated with simple algebraic forms and their
verification and applications are straightforward and
convenient. Especially, we give different conditions
in Theorems 10 and Theorems 11 to ensure the
exponential stability of the equilibrium point, which
have different advantages in different problems and
applications.  Finally two examples illustrate the
effectiveness in different conditions.
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