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Abstract: -  Acoustical noise is one of the most relevant problem to be faced in urban areas. Since a large 

network of monitoring stations would be very expensive, the adoption of predictive model is a very common 

practice in environmental impact assessment. Usually, the standard models are based on the fit of field 

measurements in certain areas, in order to evaluate the model parameters and be able to give predictions in any 

other condition. A new approach, based on Time Series analysis, is presented in this paper. This approach 

considers that a time series can be composed by a trend (long term behaviour), a seasonality (periodicity) and 

an irregular term (random non deterministic variation). The evaluation of these components is made in the 

calibration phase and a validation can be performed evaluating the difference between observed and forecasted 

values. This scheme is applied to a case study time series, that is a daily noise levels dataset detected in the city 

of Messina, Italy. The building model procedure and results are discussed and presented in details for different 

calibration and validation subsets, in order to highlight the variation in the model predictive capabilities and to 

optimize the forecast, by means of minimization of the difference between actual data and forecasts. The 

easiness in the implementation and the good predictive performances will be the strengths of the model. 
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1 Introduction 
Urban agglomerations are quickly growing, 

according to industrial, logistics and transportation 

optimization [1]. This growth leads to 

environmental problems that need to be carefully 

threated, such as air pollution, acoustic noise, 

electromagnetic field, etc. In [2], the authors 

proposed a method to include several pollution 

agents in an unique complex index. More in general, 

environmental impact must be taken into account 

when defining urban planning policy, because of the 

risk related to noise exposure (see for instance [3]). 

Regarding acoustic noise, it must be considered 

that it has a highly random nature and it is difficult 

to be described, in terms of source, propagation and 

persistence. Thus, it is necessary on one hand to 

have a large network of measurement apparatus, or, 

on the other hand, to adopt advanced mathematical, 

statistical and probabilistic tools. The strong need 

for monitoring of acoustic emissions, in fact, is 

competing with the high costs of installing and 

maintenance of sound level meters and related 

equipment for long term acquisition. This is the 

reason why several predictive models have been 

developed in literature. For instance, regarding noise 

produced by vehicular traffic flow, the first models 

appeared in the ’60, and were typically based on 

regressive models. In [4], a detailed comparison 

between several models adopted by different 

countries regulations is presented, while in [5] the 

models predictions are compared with experimental 

data. The example of traffic noise models shows 

that it is very difficult to obtain a general statistical 

model (based on measured data), able to give 

predictions to be used in different countries and 

environments, with different boundary conditions. 

In [6-12] and references therein, these difficulties 

are largely discussed and dynamical approaches are 

suggested to overcome the shortcomings of standard 

models. In addition, the standard models very often 

adopt a hourly time base, that sometimes is not 

easily extendable to the daily noise levels.  

In this paper, the authors present a very different 

approach, based on a mathematical method, the 

Time Series analysis (TSA) (see for instance [13, 

14]), able to reproduce the behaviour of the data 
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series and to give predictions for future values of 

acoustic noise. The analysis is performed on a large 

data set of acoustic noise measurements taken in a 

city of South Italy, Messina. In this case study, the 

noise is mainly due to road traffic flow and it 

evidences very interesting features, in terms of 

periodicity and low variability.  

The reliability of the model will be discussed in 

terms of displacement between measured and 

predicted values. In addition, an analysis of the error 

of the model as a function of calibration data set size 

will furnish interesting indications for model 

optimization.  

 

 

2 Methods 
Time Series analysis (TSA) models are 

mathematical models able to reproduce the slope of 

a certain data series and to forecast future values. 

These models are largely used in several disciplines, 

such as Economics, Physics, Engineering, 

Mathematics, etc.. (see for instance [15-17]). 

TSA have two general aims: first of all, the 

identification of the intrinsic features of the 

considered data, representing the phenomenon under 

study; then, the possibility to predict the future 

behaviour of the observed data series. There exist 

different approaches, many of them deeply studied 

in literature (see for example [18]). 

TSA models are mostly adopted when the data 

sets follow recurring seasonal patterns. Thus, a 

general procedure may be resumed as follows: 

 Eventual seasonal effect detection in the data set 

 Lag (periodicity) evaluation 

 Smoothing (removal of periodicity) of the data 

time series 

 Trend and seasonality evaluation 

 Final model drawing  

 

The presence of a periodicity in the time series 

may be confirmed by means of autocorrelation 

coefficient evaluation: 
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 The maximization of autocorrelation is a useful 

instrument to evaluate the lag value. Then, the trend 

of the data may be studied by means of regressive 

tools, for example linear regression, applied on 

actual measurements or on the moving average data 

set (data not influenced by seasonality). 

The prediction may be provided by adding or 

multiplying the components of the forecast, defining 

the “additive” or “multiplicative” TSA model. 

The general theoretical assumption of the TSA 

model presented in this paper is that the random 

variable At, at any period t, is given by: 

 

          ̅          (3) 

 

where Tt the trend,   ̅  the seasonal effect 

coefficient (defined below) and et  is the irregular 

component, not deterministically predictable. Let us 

underline that the period index t varies from 1 to n, 

the total number of periods, while i varies from 1 to 

k, the lag coefficient, assuming that the seasonal 

effect is periodic. In particular, as will be explained 

below, for a given t, if t<k, i is the remainder of the 

ratio between t+k and k; if t=k, then i=k; if t>k, i is 

the remainder of the ratio between t and k. For 

instance, in this case study, assuming a weekly 

periodicity, i will vary from 1 to 7, and will 

represent each day of the week (Monday, Tuesday, 

etc.).  

A first formula for the punctual prediction of the 

model, Ft , is given by the multiplication between 

the trend and the seasonality: 

 

         ̅    (4) 

 

Therefore, the model considers that the point 

forecast at a given period is the combination of a 

trend component, i.e. long term measurements 

behaviour, and a correction due to the specific 

period in which the prediction is made. 

In this paper, the authors adopted a moving 

average technique to remove the seasonality of the 

data series. The choice was a centred moving 

average, with width given by the lag. Our data set 

suggested a lag of 7 periods (days), according to a 

weekly periodicity of the traffic noise emission. 

This lag was validated by autocorrelation coefficient 

estimation, as reported in the next section. 

Then, the seasonal effect St at a given period t, is 

obtained by the ratio between the actual data At and 

the moving average value Mt . Remember that for a 

dataset of n periods, n - k +1 values are available for 

the centred moving average and, consequently, for 

the seasonality effect St. 
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A seasonal coefficient   ̅ , evaluated on all the 

homologous periods, was estimated by averaging 

the seasonal effect, as follows: 

 

  ̅   
∑      

    

   

  
     (6) 

 

where mi is the number of homologous i-esim 

periods (in our case, the number of Mondays, 

Tuesdays, etc.) in the total time range.     

The trend component has been calculated by 

means of a linear regression model:  

 

                  (7) 

 

The coefficients have been evaluated on the 

centred moving average, defined above. 

The term et is considered to take into account 

irregularity of the data series and it may be 

evaluated in the calibration of the model, i.e. when 

the measurements are available, as the subtraction 

between actual data and forecasted values at a given 

period t : 

 

                (8) 

 

Assuming that the irregular term is normally 

distributed, its mean coincides with the mode, i.e. 

the most likely value. Thus, the mean can be added 

to the forecast, in order to improve the model 

prediction. 

The final results is a mixed TSA model, i.e. 

multiplicative between trend and seasonality and 

additive for the irregularity. 

Let us remind that this TSA model can be 

calibrated (estimation of model parameters) on a 

given time interval, according to the procedure 

described above, and then it can be validated on a 

successive range of data, not used in the calibration 

phase, comparing the forecasted values with the 

actual measurements in each period. In the next 

section, a comparison between different calibration 

and validation range choices will be presented.  

In order to estimate the effectiveness of the 

model, the statistical features of the difference 

between actual and point forecasted value (error) 

have been studied, both in the calibration and in the 

validation phases. A frequencies histogram of the 

errors is presented, together with the statistics, that 

are mean, standard deviation, median, min and max. 

In addition, skewness and kurtosis indexes are 

calculated to evaluate the normality of the error 

distributions. 

Quantitative metrics of error are given by the 

“Mean Percentage Error” (MPE) and “Coefficient of 

Variation of the Error” (CVE), according to the 

following formulas: 
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where  ̅  is the mean value of the actual data in 

the considered time range. 

Formula (9) (MPE) gives a measurement of the 

error distortion, while formula (10) (CVE) furnishes 

the error dispersion. MPE is able to describe if the 

model overestimates or underestimates the reality, 

while CVE considers the variation from the actual 

value in absolute value.  

 

 

3 Data Analysis and Results 
The data set used in this paper is related to a field 

measurement long term campaign designed and 

performed by the local government of Messina, a 

city in the South of Italy. Messina has about 240000 

inhabitants and, besides the usual air pollution 

problems of a medium size city with a commercial 

dock, a very high traffic flow and several industrial 

settlements, it has a relevant noise pollution, mainly 

due to transportation infrastructures. The local 

administration decided to place several monitoring 

stations, equipped with first class sound level 

meters, in order to measure the long term fluctuation 

of noise levels. These data have been made 

available by the local administration on a web 

platform [19]. 

The authors focused on the monitoring station of 

Viale Boccetta, considering the A weighted 

equivalent level [20, 21], defined as follows: 
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related to a daily interval of 16 hours, from 6 

a.m. to 10 p.m.. The time range goes from the 11
th
 

of May 2007 to the 26
th
 of March 2008, i.e. 321 

days/periods. 

The summary statistics of complete data set are 

resumed in Tab. 1. 

 

 
Tab. 1: Summary of statistics of the complete data set. 

Mean 

[dBA] 

Std.dev 

[dBA] 

Median 

[dBA] 

Min 

[dBA] 

Max 

[dBA] 

73.07 0.65 73.5 70.5 75.0 
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Since the data are strongly related to vehicular 

traffic flows, an evident seasonal effect is present.  

A lag of 7 days has been supposed, according to 

a weekly seasonality. The choice seems reasonable 

looking at the data time series (Fig. 1) and 

considering that during the weekend a lower traffic 

flow is observed. The evaluation of autocorrelation 

coefficient gave a value of 0.58.  

The trend has been obtained calculating the 

mobile average (removal of the seasonality) and  

evaluating the linear regression (see Fig. 2). 

 

 

 
Fig. 1: Time series of the daily equivalent levels in the 

complete range, from the 11
th

 of May 2007 to the 26
th

 of 

March 2008, i.e. 321 days/periods. 

 

 
Fig. 2: Centred moving average, with width equal to 7, of 

the daily equivalent level in the complete time range. The 

red line is the linear regression. 

 

3.1 Calibration on the first 150 data and 

validation on the following 171 data  

The first analysis has been performed calibration 

the model parameters on the first 150 data and 

validating the resulting model on the remaining 171 

data of the series.  

During the calibration phase, the error 

(difference between actual and forecasted values) 

frequencies have been plotted in a histogram (Fig. 

3). The evaluation of the skewness and kurtosis 

confirms the hypothesis of normal distribution for 

the errors.  

The tuned model has been used to predict the 

data in the remaining part of the time series (171 

data). In particular, a prediction interval has been 

fixed, assuming a half width of 2 standard 

deviations (se):  

 

                         (12) 

 

where me is the mean error evaluated (such as se) 

on the calibration data set. 

These results are resumed in Figure 4, where the 

blue line represents the actual data, the red one is 

the point forecast of the model (centre of the 

prediction interval) and the purple dashed lines are 

the lower and upper bounds of the interval. 

 

 

 
Fig. 3: Frequency histogram of the errors calculated on 

the model calibration, performed on the first 150 data. 
  

 
Tab. 2: Summary of statistics of the error distribution 

evaluated on the calibration. 
Mean 

[dBA] 

Std.dev 

[dBA] 

Median 

[dBA] 

Min 

[dBA] 

Max 

[dBA] 

skew kurt 

0.00 0.30 -0.09 -0.81 0.72 -0.03 -0.10 
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Fig. 4: Prediction interval of the model. Blue line 

represents the actual data, the red one is the average 

prediction of the model and the purple dashed lines are 

the lower and upper bounds of the interval.  

 

 
Fig. 5: Frequency histogram of the errors calculated on 

the model validation, performed on the latter 171 data. 
 

 
Tab. 3: Summary of statistics of the error distribution  

evaluated on the validation. 
Mean 

[dBA] 

Std.dev 

[dBA] 

Median 

[dBA] 

Min 

[dBA] 

Max 

[dBA] 

skew kurt 

0.33 0.52 0.32 -1.63 1.89 -0.29 2.57 

 

The validation on the following 171 data 

furnished good results, as shown by the statistics of 

the error distribution, resumed in Table 3. A mean 

error of 0.33 dBA evidences a little underestimation 

of the model, since the error is defined as the actual 

data minus the forecast in each period. The standard 

deviation of about 0.5 dBA gives a confidence 

interval half width of about 1 dBA.  

 

3.2 Calibration on increasing data size and 

validation on 3 different 50 data intervals 

The next analysis consists in a comparison 

between the results obtained increasing the 

calibration data size and validating the model on the 

following 50 data.  

The calibration datasets and the respective 

validation ranges are reported in Fig. 6. 

The plots of the model forecast in 3 different 

cases are reported in Figures 7, 8 and 9, while in 

Table 4 the main statistics obtained in the 3 

validations are resumed. 

Figures 7, 8 and 9 show that there is generally an 

agreement between model forecasts and actual data, 

especially after the third step (Fig. 9), with the 

largest calibration data size. This result is confirmed 

by statistics of each analysis, resumed in Table 4. 

The first step of calibration data size increase (from 

150 to 200 data) produces a lowering of the mean 

error but a growth of the standard deviation. In the 

last analysis, i.e. a calibration data size of 250 

periods, the mean is approximately the same of the 

previous step, while the standard deviation 

decreases as expected.  

The error distribution histograms corresponding 

to the three validation intervals are reported in 

Figures 10, 11 and 12. The assumption of normality 

for error distribution is more or less respected 

changing the calibration dataset size and shifting the 

validation period, except for the second case. These 

results on mean error and standard deviation, 

resumed in Fig. 13, can be explained considering the 

statistics, in particular the spread of data, of each 

validation dataset (Table 5). The standard deviation, 

in fact, shows a slight growth in the second 

validation dataset (when the model is calibrated on 

200 data), resulting in a more variable curve. It is 

important to notice that if the standard deviation of 

the data in the validation dataset increases, the 

assumption of normal distribution of error is easily 

violated. 

 

 

 
Fig. 6: Increasing calibration datasets and respective 

validation ranges. 
 

Histogram of erroriVal150[, 1]

Error [dBA]

Fr
eq

ue
nc

y 
[c

ou
nt

s]

-2 -1 0 1 2

0
20

40
60

80

WSEAS TRANSACTIONS on SYSTEMS
Claudio Guarnaccia, Joseph Quartieri, 
Nikos E. Mastorakis, Carmine Tepedino

E-ISSN: 2224-2678 749 Volume 13, 2014



 

Fig. 7: Comparison between the forecasts, obtained 

tuning the model on the first 150 data, and the following 

50 actual data. 
 

Fig. 8: Comparison between the forecasts, obtained 

tuning the model on the first 200 data, and the following 

50 actual data. 

 

Fig. 9: Comparison between the forecasts, obtained 

tuning the model on the first 250 data, and the following 

50 actual data. 

 
 

Tab. 4: Comparison between statistics of the error 

distributions as a function of calibration data size, in the 

validation phase. 
Tuning 

data size 

Mean 

[dBA] 

Std.dev 

[dBA] 

Median 

[dBA] 

Min 

[dBA] 

Max 

[dBA] 

150 0.32 0.51 0.31 -1.19 1.81 

200 -0.02 0.70 -0.02 -1.96 1.48 

250 -0.01 0.42 -0.04 -1.79 1.46 

 

 
Fig. 10: Frequency histogram of the errors calculated on 

the model validation, performed on the data from 151
st
 to 

the 200
th

. 

  
Fig. 11: Frequency histogram of the errors calculated on 

the model validation, performed on the data from 201
st
 to 

the 250
th

. 

 
Fig. 12: Frequency histogram of the errors calculated on 

the model validation, performed on the data from 251
st
 to 

the 300
th

. 
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Fig. 13: Mean and standard deviation of the error 

distribution obtained validating the model on 50 actual 

data, as a function of the calibration data size. 
 

Tab. 5: Summary statistics of validation data used to test 

models tuned with different data size. 
Validation

data  

Mean 

[dBA] 

Std.dev 

[dBA] 

Median 

[dBA] 

Min 

[dBA] 

Max 

[dBA] 

151-200 73.23 0.62 73.5 72.0 74.5 

201-250 73.23 0.74 73.0 71.5 75.0 

251-300 73.33 0.67 73.5 70.5 75.0 

 
Tab. 6: MPE and CVE (error metrics) values, calculated 

in the calibration and validation phases, for different 

calibration data set size. 
 Calibration data size 

 150 200 250 

MPE (calibration) -0.00697 -0.01818 -0.02172 

MPE (validation) 0.43773 -0.03565 -0.02035 

CVE (calibration) 0.004097 0.005047 0.006159 

CVE (validation) 0.008246 0.009509 0.005691 

 

 

Finally, the prediction errors MPE and CVE 

defined in section 2, respectively formula (9) and 

formula (10), are calculated in the three steps 

described above. Results are reported in Table 6. 

 

3.3 Calibration dataset size increasing to the 

past and validation on the same 50 observed data  

In order to check the model capability to predict 

future measurements, the authors performed the 

calibration, enlarging the dataset, on three different 

time ranges: starting from the 101
st
  day to the 250

th
 

(150 days), from the 51
st
 to the 250

th
 (200 days) and 

from the 1
st
 to the 250

th
 period, considering all the 

data available before the validation period, i.e. from 

the 251
st
 to the 300

th
 day (50 days). 

The calibration datasets and the fixed validation 

range are reported in Fig. 14. The model parameters 

estimated using the three different data ranges are 

reported in Table 7. 

 

 
Fig. 14: Increasing calibration datasets and fixed 

validation range. 
 

 
Tab. 7: Model parameters estimated using the three 

different data ranges. 
 Calibration ranges [days] 

 101-250 51-250 1-250 

b0 0.002804236 0.00295778 0.00205197 

b1 72.93012543 72.763531 72.7738095 

  ̅ monday 1.00380 1.00354 1.00321 

  ̅ tuesday 1.00038 1.00101 1.00184 

  ̅ wednesday 1.00171 1.00248 1.00243 

  ̅ thursday 1.00224 1.00248 1.00280 

  ̅ friday 1.00484 1.00443 1.00514 

  ̅ saturday 0.99957 0.99908 0.99826 

  ̅ sunday 0.98741 0.98707 0.98625 

 

 

Examining model coefficients is possible to 

obtain a lot of information about the behaviour of 

the pollutant agent under study. In our case the noise 

levels in the area subjected to measurement do not 

show a relevant variation in the trend: the b0 slope 

of the regression line is close to zero. Thus, the b1 

coefficient can be read as the mean value of the 

noise level in the substantially short period of time 

under analysis. This type of pollutant agent seems to 

have a fast response to the human activities: the 

seasonal coefficients are lower than one in Saturday 

and Sunday, i.e. during the weekend, where there is 

a decreasing in the noise sources like traffic flow 

and activity in the commercial dock near the 

measurement station. 

The results of the three models are reported in 

Fig. 15, 16 and 9. Let us remind that the last model 

application, calibrated on the dataset from the 1
st
 to 

the 250
th
 period and validated on the last 50 days 

(from the 251
st
 to the 300

th
), is the same as in 

subsection 3.2. 
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Fig. 15: Comparison between the forecasts, obtained 

calibrating the model on the data from the 101
st
 to the 

250
th

. The comparison is on the 50 actual data from the 

251
st
 to the 300

th
.  

 

Fig. 16: Comparison between the forecasts, obtained 

calibrating the model on the data from the 51
st
 to the 

250
th

. The comparison is on the 50 actual data from the 

251
st
 to the 300

th
.  

 
Tab. 8: Comparison between statistics of the error 

distributions in the validation phase as a function of 

calibration range. 
Calibration 

range 

Mean 

[dBA] 

Std.dev 

[dBA] 

Median 

[dBA] 

Min 

[dBA] 

Max 

[dBA] 

101-250 -0.37      0.44     -0.37         -2.22     1.14     

51-250 -0.25      0.43     -0.28          -2.07       1.25       

1-250 -0.01     0.42       -0.04         -1.79      1.46       

 

 
Fig. 15: Mean and standard deviation of the error 

distribution, on the same 50 validation data, as a function 

of the calibration data size, increasing to the past. 

 
Fig. 18: Frequency histogram of the errors calculated on 

the model validation, obtained calibrating the model on 

the data from the 101
st
 to the 250

th
. 

 

 
Fig.19: Frequency histogram of the errors calculated on 

the model validation, obtained calibrating the model on 

the data from the 51
st
 to the 250

th
. 

 
Tab.9: MPE and CVE (error metrics) values, calculated 

in the calibration and validation phases, for different 

calibration ranges. 
 Calibration ranges [days] 

 101-250 51-250 1-250 

MPE (calibration) -0.4164 -0.22847 -0.02172 

MPE (validation) -0.51539 -0.34955 -0.02035 

CVE (calibration) 0.008159 0.006848 0.006159 

CVE (validation) 0.007955 0.006866 0.005691 

 

Observing the curves in Figures 15, 16 and 9 is 

evident that the model presented in this paper gives 

the best forecasts increasing the calibration dataset 

size. This is due to the fact that the behaviour of the 

noise levels does not drastically change in the 

calibration datasets, both in terms of trend and 

periodicity. This result is confirmed by the error 
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analysis reported in Table 8: mean and standard 

deviation of the error decrease, in absolute value, if 

there is the possibility to calibrate the model 

parameters on a larger dataset (Fig. 17).  

Frequency histograms of the errors evaluated in 

the validation phase (on the data from the 251
st
 to 

the 300
th
 period), reported in Figures 18 and 19, 

show that the assumption of normal error 

distribution is reasonable.  

Model performances, evaluated in accordance 

with error metrics described in section 2, are shown 

in Table 9. The error dispersion highlighted by CVE 

decreases constantly, when increasing the 

calibration dataset size. The MPE metric slightly 

reduces (in absolute value) in the first step, i.e. 

adding 50 data to the calibration dataset. In the 

second step, when 100 data are added to the 

calibration dataset, MPE drastically approaches 

zero. This result is obtained because the data 

inserted in the last step of calibration (from the 1
st
 to 

the 50
th
) have a behaviour very similar to the data in 

the validation period.  

 

 

4 Conclusions 
In this paper the authors presented a model based 

on Time Series Analysis (TSA), founded on a mixed 

approach, multiplicative between trend and 

seasonality and additive for the error (irregularity), 

and its application to an acoustical noise levels 

dataset. 

The analysed data had an almost stationary trend, 

with a slightly increasing regression line. The model 

tuned on the first 150 periods provided a good 

prediction on the next 171 data, with an average 

error of 0.33 dBA and a standard deviation of 0.52 

dBA. In addition, the error histogram shape and 

kurtosis and skewness indexes, confirmed the 

hypothesis of normal distribution of errors. 

An analysis of the model performances varying 

the calibration data set size has been performed and 

reported. An improvement of the error statistics was 

expected and confirmed in the last step (largest data 

set size). Moreover, the growth of spread of actual 

values in the second validation range, measured by 

an increase of standard deviation of data, pointed 

out a degradation of model forecast performance in 

this step. As expected, the Mean Percentage Error 

(MPE) on the validation data decreased when the 

amount of calibration data size grew. The error 

dispersion (CVE) slightly increased when the model 

was tuned on 200 data instead of 150, because of the 

growth of spread of data described above, but 

significantly reduced when the calibration was 

carried out on 250 periods. 

In addition, a model calibration on three different 

time ranges, enlarging the calibration dataset to the 

past, has been performed, validating on the same 50 

data. The latter application confirmed the 

improvement of predictive capabilities of the TSA 

model when the calibration range increases. This 

result, that is supported by error distribution 

statistics and error metrics values, can be explained 

considering that the behaviour of the noise levels 

does not present drastic change in the dataset, both 

in terms of trend and periodicity. 

Finally, the proposed model has shown good 

predictive performances, resulting at the same time 

easy to be implemented and with a low 

computational duty. It can be installed and compiled 

in low performance computers and laptops, giving 

the opportunity of being implemented in “on site” 

monitoring and forecasting stations, able to transmit 

measured data and expected values for future 

periods. In this case, the first calibration data range 

variation analysis may help the operator to 

understand when the model will begin to give 

reliable forecasts, starting from the installation and 

turn on date, and which range is more appropriate to 

be considered in the calibration phase. Moreover, 

the second analysis on variable calibration dataset, 

may be useful to understand how many past data 

have to be taken into account to have the best 

prediction on a given future interval. 
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