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Abstract: - The catenary and the pantograph of an electric locomotive have a dynamic-oscillatory behavior, to 
which are added a series of turbulences that cannot be approached by a classic calculation method. 
Experimental observations and reference literature point out the fact that at speeds higher than 180 km/h, the 
pantograph and the catenary temporarily lose contact and that triggers electric arcs with negative consequences. 
Some mathematical models have been developed, predicting the dynamic behavior of this assembly and of the 
contact force, but all of them have some degree of imprecision (disregarding the phenomena difficult to model). 
They also can not be used in real time to control the contact force between the pantograph and catenary.      
    This paper suggests a new method thereby the system that controls the contact force is divided into 
two sub-systems: a determinative one and a chaotic one; for each one, appropriate adjustment laws are 
suggested. The solutions resulting from simulation are encouraging and need industrial implementation.  
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1 Introduction 
The power supply of trains is made through the 
interface pantograph - catenary, which is currently 
the only system that allows the capture of electricity 
at important speeds in conditions of maximum 
reliability. In spite of the progress in the catenary 
conception, and the numerous maintenance works 
made periodically, this is a weak point of the rail 
transportation. After the breakage of the contact 
wire due to premature wear, electric arcs are getting 
out of gage and damage the pantograph, the 
locomotive cover and damages some more 
kilometers of rail until the train stops. Therefore, it 
leads to a strong disruption of traffic, measured in 
minutes lost, each being estimated at about €600. [1] 

With over one million minutes lost every year 
across Europe, the overall cost of all incidents is 
considerably high. 

Although simple in appearance, the coupling of 
the elastic catenary with a mobile pantograph that 
has its own dynamic behavior implies complex 
phenomena. [2] At pantograph speeds close to the 
wave propagation speed in the catenary, an 
instability appears, which leads to loss of contact. At 
lower speeds, when using more pantographs in 
simultaneous contact, the behavior is complex and  

 

 
difficult to be mathematically modeled. In case of 
two lifted pantographs, the disturbances caused by 
the first one are transmitted to the second one, 
which is strongly disturbed (electric arcs, contact 
losses, mechanical shocks). The waves generated by 
the mobile contact are propagated in the entire 
structure, and combine themselves to produce very 
complex movements. 

A major problem in the quality of the contact 
between the pantograph and the line is represented 
by the control of the interaction force between the 
two subsystems. This force contains a constant 
component, given by the lifting mechanism of the 
pantograph, and a variable component that depends 
on the totally different dynamic behavior of the 
pantograph and the catenary, respectively. If this 
dynamic behavior can be estimated through 
mathematical modeling, many factors that cannot be 
taken into account still remain. Also, the 
mathematical model cannot be used in real time, due 
to its complexity and long calculation time. 

As it will be seen below, the contact force varies 
depending on the speed of the pantograph. So, at 
speeds exceeding 160 km/h, this force has moments 
when it becomes zero, which indicates the 
discontinuation of the electric contact, with 
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predictable consequences (electric arc, mechanical 
shocks, etc.). To avoid this situation, the so-called 
"active control" of the pantograph appeared. In 
reference literature, there are many references to this 
topic, especially for speeds above 350 km/h. 

In [1],  J. P. Masat studies the issue of modeling 
the dynamic behavior of the couple pantograph-
catenary by classic and advanced methods (the 
method of the finite element), and a comparison 
between the results of modeling and the 
experimental ones shows that there are slight 
differences between them. The models are complex 
and can be used for an optimal design of the 
catenary. 

M. Ikeda [3] suggests an accurate method for 
gauging in real time the contact force. This method 
is already applied in Japan and it allows the 
obtaining of an accurate reaction loop. 

P. Bandi [4] suggests a pantograph control 
system design for high speed rails, based on the 
theory of estate control. The paper is based on a 
simplified mathematical model for the catenary-
pantograph assembly, but the results obtained by 
simulation have not been checked in practice. 

Karakose [5] suggests an adaptive fuzzy control 
system for dynamic pantograph-catenary 
interaction. This model was designed by using the 
Matlab-Simulink program and simulation results 
were obtained. 

The same aspect is approached in the papers [6], 
[9]. The system suggested here is simpler and more 
easily applicable in practice. 

R. Schar [7] analyzes the active control of the 
pantograph-catenary interaction in a finite element 
model; the model is complex, with good 
experimental results, but it cannot be used for the 
real time control of the pantograph.  

A Matvejevs  [8] uses a computer of high speed 
train to optimize the pantograph-catenary system by 
reducing power consumption when basic parameters 
of pantograph and catenary (contact network) 
change over time randomly. 

A linear model of pantograph-catenary system is 
considered where the upper and lower blocks of 
pantograph and catenary are modeled using lumped 
masses, springs and shock absorbers. 

The input and output system signals are 
measured when the train moves. These signals are 
processed by parametric identification algorithms to 
determine the current values of the system matrices. 
State matrices are used in Riccati equation to 
calculate controller coefficients. Adaptive controller 
provides dynamic stability of the system when its 
parameters change over time, and the system is 
subject to random external perturbations. 

The essential problem of all active control 
systems shown in reference literature and existing in 
practice, irrespective of the method in use, consists 
in the fact that, generally, one cannot take into 
consideration the phenomena that are hard to model 
mathematically, the random ones and those that  are 
due to external factors (e.g. the vibrations of the 
engine case). 

For this reason, this paper suggests a double 
control method: a classic one, for the mathematical 
modellable phenomena, and another one, based on 
the chaos theory, for the rest of the phenomena. For 
the control of the chaos, the Piragas time delayed 
control method was used [10], [11], as well as a 
fuzzy system for the adaptive determination of the 
amplification factor and the delay time. This 
approach represents a novelty in this domain, as 
there is no bibliographic reference to it. As it will be 
noticed, applying the chaos theory in stabilizing the 
contact force can lead to promising results. 

In order to apply the method proposed, the actual 
drive system of the pantograph is kept, and it will be 
controlled using the analysis of the mathematical 
model of low frequencies. This was proved to be 
less influenced by random factors that cannot be 
modeled, and it describes correctly the pantograph-
catenary ensemble. 

The random and hard to model phenomena are 
present at higher frequencies in the representation of 
the real contact force, and can be mathematically 
proven that they have a chaotic behavior. To 
diminish their influence, the chaotic-control system 
will drive only the pan head of the pantograph, by 
applying the necessary corrections. The pan head 
weights very little (a few kilograms), and it is 
attached by the structure of the pantograph using 
shock absorbers.   

The control system under consideration is 
applicable particularly to regular trains which, by 
appropriate alterations of the existent infrastructure 
can run at speed of up to 225 km/k; 90% of the 
freight and passenger transport is done by these 
trains. 
 
 
2 Problem Formulation 
The structure of the aerial line of power distribution 
in electric rail transport is given in fig. 1, and the 
construction of a regular pantograph is shown in 
figure 2. 
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The phenomenological aspects of the dynamic 
behavior of the catenary-pantograph assembly show 
that the linear movement of the pantograph is also 
accompanied by a harmonic-oscillatory movement 
of the contact wire, and by a permanent oscillatory 
movement of the pan-head. The flexibility of the 
catenary allows the pan head pressure force to 
overcome the elastic force, as well as the effect      
of the equivalent of the system inertial mass, lifting 
the contact line. 
 

 
Once the pantograph has passed, the weight of 

the contact line tends to return it to the balance state, 
thus performing a harmonic-oscillatory movement 
whose waves are transmitted along the catenary. On 
the other hand, the rigidity variation of the entire 
suspension assembly determines an approximately 
sinusoidal vertical variation of the pan-head 
position. The composition of the two movements 
can lead to dynamic phenomena which, in extreme 
cases, prevent the pan-head from following the 
oscillations of the contact line. In such situations, 
the pan-head is bound to detach from the contact 
line, the contact is interrupted and electric arcs may 
arise, which implies negative effects like the wear of 

the contact line, electromagnetic pollution, etc. The 
analysis of the phenomena happening during the 
movement of the pantograph along the catenary 
leads to the conclusion that, from the kinetic-static 
and dynamic point of view, the coupling of the two 
elastic sub-systems results exclusively from the 
contact force: when the pantograph is in contact 
with the catenary wire, the movement of the 
components located in the upper area of the pan-
head and the lower wire of the catenary are identical 
and the value of the contact force is different from 
zero, it being generated by the reciprocal 
mechanical force. When the pantograph loses 
contact with the catenary wire, the contact force 
becomes null and the positions of the pantograph 
and catenary are independent. 

It is generally accepted that the catenary-
pantograph assembly represents the critical 
component of the traction system, particularly in the 
actual situation of a higher speed of trains because: 

- the catenary and the pantograph form an 
oscillatory system whose elements are dynamically 
coupled, and excited by the contact force;  

- the pantograph introduces non-linear 
characteristics in the functioning of the oscillatory 
system, generating non-linearities in the 
manifestation of the dynamic phenomenon;   

- the dynamic response of the system is 
influenced both by the rigidity characteristics of the 
components and the degrees of liberty of the 
generally articulated connections, as well as by the 
geometric structure of the assembly; 

- the higher the speed, the more serious are the 
problems of dynamic interaction, which shows that, 
from the point of view of the dynamic behavior, the 
rigidity of the ideal catenary must be as even as 
possible, this element requiring particular geometric 
configurations for the high speed train traffic; 
because of the catenary rigidity  variation, an 
excessive increase of the contact force can cause 
significant distortions in the movement of the 
catenary, which leads to even higher dynamic 
excitations, whose effect is the contact braking 
particularly in the more rigid zones of the catenary. 
But if the pressing force is too low, even slight 
distortions can cause contact breaks, which cause 
not only an interruption of the power supply but also 
an electric arc that can severely damage the catenary 
and pantograph, significantly reducing their active 
life. 

An illustration of the above is given in figures 
3,4,5,6, which show the recordings of the real 
pantograph-catenary contact force, at running 
speeds of 140, 160, 180 and 225 km/h. 
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Fig. 3 - Contact force at 140 km/h 

 
Fig. 4 - Contact force at 160 km/h 

 
Fig. 5 - Contact force at 180 km/h 

 
Fig. 6 - Contact force at 225 km/h 

 

As it can be noticed from figures 5 and 6, 
starting at approximately 180 km/h, there are areas 
where the catenary-pantograph contact force 
becomes zero, which leads to contact breaking. The 
curves mentioned above have significantly different 
aspects from those obtained by modeling and given 
in reference literature. This difference results from 
the very hard-to-model elements previously 
mentioned. 

 
 

3 New Solution Using Two 
Compensation Systems for 
Pantograph Control   
In order to underline the chaotic character of the 
contact force, the time series given in fig. 3 – 6 have 
been low pass (1.5 Hz) and high pass (3 Hz) filtered, 
the resulting curves being shown in fig. 7 – 14   
 

Fig. 7 - Signal filtered - low pass filter (140 km/h) 
 

Fig. 8 - Signal filtered - low pass filter (160 km/h) 

 

Fig. 9 - Signal filtered - low pass filter (180 km/h) 
 

 
Fig. 10 - Signal filtered - low pass filter (225 km/h) 

 

 
Fig. 11 - Signal filtered - high pass filter (140 km/h) 

 

 
Fig. 12 - Signal filtered - high pass filter (160 km/h) 

 

 
Fig. 13 - Signal filtered - high pass filter (180 km/h) 
 

 
Fig. 14 - Signal filtered - high pass filter (225 km/h) 
 

As it will be further demonstrated, the low 
frequency components of the contact force 
correspond to the simplified mathematical model of 
the catenary-pantograph assembly, while the high 
frequency components correspond to a chaotic 
behavior. For this reason, the compensation of 
contact force pulsation is made through two control 
elements: the FL1-force acting on the lifting 
element of the pantograph, and the F3 force for the 
control of the chaotic frequency exceeding 3 Hz, 
generated by the nonlinear chaotic subsystem 
(Figure 15). A proposal for the implementation      
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of a servo-mechanism that generates force F3 is 
shown in Figure 16, where the hydraulic absorber is 
replaced by an active element of the linear form of 
the figure. 

 
Fig. 15 – The dual action control for contact force 

compensation 
 

 
Fig. 16 – High speed active force compensator  

 
 

3.1 The design of a state reaction system for 
the linear model of the catenary system (low 
speed movement)   
The dynamic model of this assembly is presented in 
figure 17 where F1, F2, F3 are the static lifting 
forces, and Fl1, Fl2, Fl3 are their dynamic 
components. 
 

 
Fig. 17 - The dynamic model of the pantograph-

catenary assembly 

The equations of motion are given by relations 
(1), (2), and (3): 

 

where: Kspeed is a coefficient that depends on speed 
and y3 chaotic is the catenary displacement under the 
effect of the chaotic forces. 

The stiffness of the catenary is variable and it is 
described by (5), (6), (7) and (8): 

 

 
 
where: Kmax is the maximum value of the stiffness 
coefficient on a span; Kmin is the minimum value of 
the stiffness coefficient on a span; V represents the 
speed of the pantograph; L the length between two 
supporters. 

The variation of the stiffness coefficient of the 
catenary, for a distance between the poles of 45 m, 
is given in the figure 18. Taking into account the 
relations (5), (6), (7) and (8), the equivalent stiffness 
of the catenary for various values of L is calculated 
in Table 1. The values presented in Table 1, for 
K(x), allow an analysis of the dynamic model of the 
pantograph-catenary system. 

Theoretically, from the relation (3) results that 
the contact force has a cosine variation (at low 
speeds, when Kspeed tends to zero). Making actual 
measurements of contact force, it was found that its 
variation is significantly different from the 
theoretical estimates. The causes may be sought in 
the simplifications made at the mathematical 
modeling (neglecting the vibrations of the engine 
case, neglecting the weather conditions, the 
variations of material characteristics, etc.). 
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Fig. 18 – The stiffness of the catenary (for a span 

length of 45 m) 
 

L 
(m) 

K0 
(N/m) α K(s) 

40.5 
45 

29.5 
63 

2435.6 
2172 

2126.6 
1916.7 

0.1256 
0.0823 
0.1247 
0.1776 

2435.6(1-0.1256 cos0.155x) 
2172(1-0.0823 cos0.14x) 

2126.6 (1-0.1247cos0.127x) 
1916.7(1-0.1776 cos0.1x) 

Table 1- Equivalent functions of the stiffness for 
each span 

The linear model of the catenary is variable for 
low speeds. The use of such model allows the 
design of a state reaction controller, capable of 
granting an acceptable contact force. 

The ISI mathematical model for the current 
catenary is [4]: 
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In order to design the state-based control on, the 
system has to be controllable. This can be checked 
by the controllability matrix, given as:  
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The degree of the matrix is equal to the order of 
the control system and, as a result, the system state 
is controllable. In order to obtain the gain matrix, 
one has to choose the closed loop poles. The desired 
poles in this case are: -15±30j and -50±80j. Thus, 
one can consider -15±30j as a pair of closed loop 
dominant poles, hence ξ=0,4475 and                   
ωn= 33,54rad/sec.  

By means of Acker function under Matlab, the 
gain matrix has been calculated as: 

 
[ ]47500176341.033240.1106.411 −=K   (12) 

The new state system becomes: 
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The design of the controller is done by means of 
Matlab functions, respectively Control Toolbox 4: 

The response of the closed loop system with state 
controller is given in figure 19. 

 

 
Fig. 19 - Step response of active pantograph control 

system after feedback design (v < 140 km/h) 
 

The results of the simulations confirm the fact 
that, at train speeds below 140 km/h, the first 
contact force control system (the pantograph main 
drive) is adequate.  
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3.1 The compensation of oscillations at high 
speeds, by means of an adaptive “time delay 
feedback” controller   
In order to define the chaotic character of the signals 
given in figures 11, 12, 13, 14 they are going to be 
thoroughly analyzed. 

 
 

3.2.1 The chaotic characteristics of the contact 
force  
As a rule, in an experiment one measures just a few 
physical magnitudes, which are characteristic for the 
given process, sometimes even just one. The values 
taken by this magnitude in time constitute the so-
called time series. Starting from the time series of 
the values of one state variable, i.e. one component 
of the state vector, one can reconstruct the entire 
phase space, identifying the attractor and assess its 
dimension. The method is called “The delay 
coordinates” [12], [13].  

The basic idea in reconstructing the phase space 
is that the time series contains the entire information 
about the past and future of the state variables, 
including the non-observable ones, of the dynamic 
system and that this information can be used to 
define the state of this system at the present 
moment. Thus, one can check if the system intricate 
dynamics is a determined or a stochastic one or 
(and) if the system has an attractor and, if so, what 
is its dimension and, finally, which is the minimal 
dimension of the phase space in which the attractor 
is embedded. 

The past and future information contained 
included by the time series is described by the late 
vector. Thus, of the scalar time series is given by the 
values of x0(t), (of the xk(t) possible, with 
k=0,1,2,...m), the first step is to identify the 
acceptable set of variables that determine the phase 
space. 

One way of doing this is to “dismantle” the 
original time series ( )tx0  by shifts, i.e. time 
translations, successively larger, defined as integer 
multiples of a determined interval τ . This interval 
is tΔ= ατ , where α  is an integer, and tΔ  is the 
interval between successive samplings. Taking N 
equidistant points from the data set, one can build 
the next vector set, which can be set into a matrix as 
follows:  
 
 
 
 
 
 

 
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( )( ) ( )( )

1 20 0 0

1 20 0 0

1 20 0 0

10 0

2 2 2

1 1

N

N

N

N

x t x t x t

x t x t x t

x t x t x t

x t m x t m

τ τ τ

τ τ τ

τ τ

⎛ ⎞⋅ ⋅ ⋅
⎜ ⎟

+ + ⋅ ⋅ ⋅ +⎜ ⎟
⎜ ⎟+ + ⋅ ⋅ ⋅ +⎜ ⎟
⎜ ⎟⋅ ⋅ ⋅ ⋅ ⋅ ⋅
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⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎜ ⎟
⎜ ⎟⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎜ ⎟
⎜ ⎟⎡ ⎤ ⎡ ⎤+ − ⋅ ⋅ ⋅ ⋅ + −⎣ ⎦ ⎣ ⎦⎝ ⎠

  (15) 

 
 

This matrix is a collection of vectors, each 
having dimension m. Each vector, i.e. each 
column, is considered as representing the 
system at a given moment, and the evolution of 
the system state is given by the passage from 
one vector to another, i.e. from one column to 
another. Thus, on principle, this is a passage 
from the one-dimensional space of the time 
series to a multiple dimension space and this is 
expected to offer information about the 
dynamics of the system state. One can notice 
that in matrix (15) the important parameters are 
m andτ . 

Parameter m is called the embedding 
dimension. According to Whitney’s theorem 
(1936), (the embedding theorem), an 
embedding is obtained by the method of the 
delay reconstruction time for space phases, if m 
> 2d, where d is the dimension of the attractor. 

For the time series in figures 12-14, the 
embedding dimensions are given in fig. 20-22. 

 

 
Fig. 20 – Embedding dimension - 160 km/h 
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Fig. 21 – Embedding dimension - 180 km/h 
 

 
 

Fig. 22 – Embedding dimension - 225 km/h 
 

The corresponding plot delay diagrams [14] are 
given in figures 23, 24, 25 

 
 

 
Fig. 23 – Delay plot – 160 km/h 

 
Fig. 24 – Delay plot – 180 km/h 

 
Fig. 25 – Delay plot – 225 km/h 

 

At all speeds, one can notice the existence of an 
attractor around the origin. 

Essential information on the dynamics of the 
system are given by the spectrum of Lyapunov 
exponents, li, (i=1,2,3...n) n being the dimension of 
the phase space. [14], [15], [16]. 

The presence of a positive Lyapunov exponent is 
sufficient to let know that the system is chaotic and 
shows local instability. If the system has an 
attractor, then it is a dissipative one, with 
contraction in the phase space. In order to achieve 
global stability, the total rate of the contraction 
process has to exceed the expansion one. Thus, even 
if the system has several positive Lyapunov 
components, the sum of all exponents in the entire 
spectrum has to be negative.  

Figures 26, 27, 28 show the variation curves of 
the highest Lyapunov exponent. 
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Fig. 26 – Variation at 160 km/h 

 
Fig. 27 – Variation at 180 km/h 

 
Fig. 28 – Variation at 225 km/h 

 
Table 2 shows the values of such coefficients for 

the signals filtered by speed. 
 

Speed 
[km/h] 

Σλi 
(sum of all 
Lyapunov 

coeficients) 

εK 
(Kolmogorov 

entropy) 

LLE 
(the highest 
Lyapunov 

coefficients) 
140 -0.0084 0.0047 2.54 
160 -0.0025 0.0142 2.85 
180 -0.0136 0.0309 4.70 
225 -0.0132 0.0409 3.91 

Table 2-  Lyapunov coefficients for the contact 
force 

The Kolmogorov entropy measures how chaotic 
a dynamic system is and its positive values are an 
index of the chaotic behavior. 

The analysis shows beyond any doubt that the 
contact force has a chaotic component and it can 
therefore be stabilized by methods that are specific 
to the theory of chaos. 

 
 

3.2.2 The adaptive control system of the chaotic 
component  
As mentioned before, the role of this system is to 
compensate the chaotic component of the contact 
force and it only acts upon the pan head. 

The delayed feedback control (DFC) method 
[10] is reference-free and makes use of a control 
signal obtained from the difference between the 
current state of the system and the state of the 
system delayed by one period of the UPO. The 
block diagram of the method is presented in figure 
29 (y(t), is an output variable; p, a control 
parameter; p0, its value at which the dynamical 
system has an unstable periodic orbit with a period 
t; and K, the feedback gain). 

 

 
Fig. 29 – Block diagram of the delayed feedback 

control method y(t) 
 
Alternatively, the DFC method is referred to as a 

method of time-delay auto synchronization, since 
the stabilization of the target orbit manifests itself as 
a synchronization of the current state of the system 
with its delayed state. The method allows us to treat 
the controlled system as a black box; no exact 
knowledge of either the form of the periodic orbit or 
the system of equations is needed. Taking into 
account only the period of the unstable orbit, the 
system under control automatically settles on the 
target periodic motion, and the stability of this 
motion is maintained with only small perturbations. 
The DFC algorithm is especially superior for fast 
dynamical systems, since it does not require any 
real-time computer processing. 

The train can run at various speeds and along 
areas of various stiffness values. They will influence 
the variation shape of the contact force. In order     
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to apply the DFC method, the parameters and K 
have to be continuously adjusted, according to the 
magnitudes mentioned before [17], [18], [19].     
This is performed by the “Fuzzy decision” block, 
whose structure is given in fig. 30.   

 

 
Fig. 30 – The structure of Fuzzy decision block 

 
An appropriate functioning of the DFC involves 

the continuous alteration of the amplifying factor K 
and of the delay τ according to the dynamics of the 
assembly pantograph-catenary, which depends 
particularly on the train speed and the rigidity of the 
suspension. The determination of the optimal values 
for τ  and K can also be done by other methods  
[17], [18], [19], [20], [21], [22], [23] but the 
algorithms proposed require long computation time 
sometimes. This is the motive why it was chosen an 
adaptive system, based upon Fuzzy logic, which 
works very fast.      

The membership’s functions for the magnitudes 
of the system are given in figures 31-34. 

 

 
Fig. 31 – Membership function “speed” 

 
Fig. 31 – Membership function “stiffness” 

 
Fig. 31 – Membership function “delay” 

 

 
Fig. 31 – Membership function “gain” 

 
 

 
Table 3 – Rules table 

 
 

Table 3 shows the tables of rules and figures 32 
and 33 the command surfaces obtained by 
simulation. 

 
 

 
Fig. 33 – Command surface “gain” 

 

 
Fig. 34 – Command surface “delay” 

 
The general structure of the control system of the 

contact force, considering both its components is 
given in figure 35. 
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Fig. 35 – The control system of the contact force  

 

Figure 36 shows a step response of control 
system. One can notice the decisive influence of the 
delay time upon the damping of contact force 
oscillations. Thus, for τ = 0.1 s, the oscillations are 
damped in 0.09 seconds. At the speed of 225 km/h, 
the value τ  = 2 s is most inadequate. This is the 
very role of the Fuzzy adaptive system, i.e. to 
impose the adequate values of τ  and K, for any 
speed and any stiffness of the catenary. 

 
 

 
Fig. 36 – The response of the control system of the 

contact force 
 
 
4 Conclusion 
The power supply of trains is made through the 
interface pantograph - catenary, which is currently 
the only system that allows the capture of electricity 
at important speeds in conditions of maximum 
reliability. In spite of the progress in the catenary 
conception, and the numerous maintenance works 
made periodically, this is a weak point of the rail 
transportation, causing losses measured in minutes 
lost, each being estimated at about €600. 

With over one million minutes lost every year 
across Europe, the overall cost of all incidents is 
considerably high. 

The major cause of these defections is the 
variation of the contact force, which is hard to 
control by classical methods; that is because of the 

imprecise mathematical model of the pantograph-
catenary ensemble.  

This paper introduces an improvement of the 
control systems of the contact force, as compared to 
the existing achievements worldwide. To this 
purpose, a chaotic component of the contact force 
was taken into consideration, after having proved its 
existence. An adaptive TDF allows the use of the 
method at any speed of the train and for any 
configuration of the catenary. 

The method proposed in this paper neutralizes 
the influence of the contact force components that 
cannot be modeled, by considering their behavior as 
chaotic. The subsystem proposed in this paper is 
based upon chaos theory and it stabilizes the values 
of the contact force in normal limits.   

In future, this concept should be put into 
practice, in order to test its performances in real 
conditions and, eventually, to make the appropriate 
corrections. 
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