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Abstract: The paper provides conditions for constrained dynamic output feedback controller to be cost guarantee-
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1 Introduction

Treatment of nonlinearities in dynamical and control
systems is one of the research focuses of control the-
ory (see e.g. [7], [10], [29], [31], [32]). The areas of
applications of nonlinear control theory cover physics,
engineering (see [3], [6], [8], [9], [13], [26], [30],
[32], [39] from the recent literature) and also eco-
nomics (e.g. [19], [21], [27], [28]). The performance
of control systems may not be satisfactory because of
the presence of exogenous disturbances and of sys-
tem uncertainties stemming from the mismatch of the
model and the real dynamics. A performance index
assigned to the system cannot be minimized at the
presence of unknown uncertainties, however it is pos-
sible to design a controller guaranteeing that the per-
formance index will not exceed a certain bound, and it
stabilizes the system for any admissible uncertainties
and disturbances (see e.g., [2], [14], [15], [17], [20],
[23], [35], [38], [41] and the references therein). It is
favorable, if such robust controls can be given in feed-
back form. However, the state of the system is often
not available for feedback. An extended static output
feedback is applied e.g. by [33] for continuous-time
systems using both the output and its derivatives in the
construction of the controller. The same approach is
applied to discrete-time systems with polytopic uncer-
tainties in [34]. Paper [40] applies a dynamic output
feedback for T-S fuzzy systems with norm bounded
uncertainties. A dynamic output feedback can still
guarantee an adequate level of system performance
and stability (see also [18]). The present paper applies
the latter approach for both discrete and continuous-

time systems with a broad class of admissible system
nonlinearities/uncertainties. The control is also sup-
posed to be quadratically constrained (cf. [4] on sta-
bilization of uncertain linear systems by bounded in-
puts).

A recently published paper [22] gave a suffi-
cient condition for the existence of robust stabiliz-
ing observer-based dynamic output feedback control
by solving linear matrix inequalities (LMIs). Unfor-
tunately, this paper contains a technical error. The
present paper proposes a method eliminating the mis-
take, and extends the range of solvable problems in
several aspects. In our paper both continuous and
discrete-time systems are discussed. We consider
quadratically constrained uncertainties. This repre-
sentation includes, among many others, the norm
bounded uncertainty considered in [24] and [22], as
a special case. In fact, this approach proposed orig-
inally by ([1]) and further developed by ([16]) as an
abstract multiplier method allows to treat both uncer-
tainties and system nonlinearities in a common frame-
work, therefore the proposed method of design can be
applied to a broad class of dynamic systems. Further-
more, exogenous disturbances are also taken into con-
sideration. The control is also supposed to be quadrat-
ically constrained. It is assumed furthermore, that the
exact initial state is not known, but it lies in a given
ball.

The paper is organized as follows. The problem
will be stated, and some preliminary results will be
recalled in Section 2. The main results for continuous
and discrete time systems will be presented in Section
3. Two numerical examples illustrate the results in
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Section 4. Finally, the conclusion will be drawn.
Standard notations are used. The transpose of ma-

trix A is denoted by AT , In is the identity matrix of
size n × n, and P > 0 (≥ 0) denotes the positive
(semi-) definiteness of P . The maximum eigenvalue
of the symmetric matrix P is λM (P ). Symbol ∇V
stands for the gradient of the multivariable function
V , symbol ⊗ is used for Kronecker-product, while ⊕
is the direct sum. The notation of time-dependence
is omitted, if it does not cause any confusion. For
the sake of brevity, asterisks replace the blocks in hy-
permatrices, and matrices in expressions that are in-

ferred readily by symmetry (e.g.
[
A B
∗ C

]
stands for[

A B
BT C

]
, and (∗)PX stands for XTPX). In gen-

eral, we shall write nv for the number of coordinates
of a vector v, i.e. v ∈ Rnv .

2 Problem statement and prelimi-
naries

Consider system

δx = Ax+Bu+ Exw +Hxpx, (1)

y = Cx+Hypy + Eyw, (2)

ζT =
(
xTCTζ uTDT

ζ

)
, (3)

qx = Aqx+Bqu+Gxpx, (4)

qy = Cqx+Dqu+Gypy, (5)

where x ∈ Rnx is the state, u ∈ Rnu is the input,
w ∈ Rnw is the exogenous disturbance, δx stands for
ẋ in the continuous-time and x+ in the discrete-time
case. The measured output is y ∈ Rny , and ζ ∈ Rnζ

represents the penalty output, where Dζ is assumed to
be nonsingular.

Uncertainty constraints. All system
nonlinearities/uncertainties are represented by
functions px and py possibly depending on t, x
and u. Functions qx and qy are the uncertain
outputs. The only available information about
pT =

(
pTx , p

T
y

)
∈ Rlp and qT =

(
qTx , q

T
y

)
∈ Rlq

is that their values are constrained by the set
Ω = Ω1 × ...× Ωs,

Ωi =

{[
pi
qi

]
∈ Rlpi+lqi :[
pi
qi

]T [
Q0i S0i

ST0i R0i

] [
pi
qi

]
≥ 0

}
, (6)

i = 1, ..., s, where Q0i = QT0i, R0i = RT0i ≥ 0 and
S0i are constant matrices, p ∈ Rlp , and q ∈ Rlq are

partitioned appropriately. We shall use the notations
Q0 = diag{Q01, ..., Q0s}, R0 = diag{R01, ..., R0s},
S0 = diag{S01, ..., S0s}. We note that the positive
semi-definiteness of R0 assures that the system (1)-
(5) is well posed, i.e. for any (x, u) there is a p so
that

[
pT , qT

]T ∈ Ω. It is worth noting that the con-
sidered model of uncertainties involves several types
of uncertainties frequently investigated in the litera-
ture. For example, if Q0 = 0, S0 = I and R0 = 0,
then one speaks about positive real uncertainty, if
Q0 = −I , S0 = 0 and R0 = I , then one has norm-
bounded uncertainties, (thus, the uncertainty of [24]
and [22] can be obtained as a special case), and if
Q0 = 1

2(KT
1 K2 + KT

2 K1), S0 = 1
2(K1 + K2)T and

R0 = I , then one faces the case of sector-bounded
uncertainties.

Control constraints. The control is supposed to
be quadratically constrained, i.e.

uTQuu ≤ 1 (7)

must be satisfied for a given matrix Qu = QTu > 0.
State constraints. Since the state is not measured,

its initial value is not supposed to be known, but it is
assumed that

‖x0‖2 ≤ ρ,

where ρ is a given positive constant. We remark
however that the initial state x0 may supposed to be
known.

Constraints on disturbances. The disturbances
are produced by an exosystem, the input of which is
the penalty output ζ of the original system, the output
is w, and (ζ, w) satisfy the inequality

‖w‖2SL = wTSLw ≤ γ∆‖ζ‖2

with a given positive definite and symmetric matrix
SL and with γ∆ < 1.

Assign the cost function

J(x0, u, w) =



∞∫
0

L(x(t), u(t), w(t))dt,

if t ∈ R,
∞∑
t=1

L(x(t), u(t), w(t)),

if t ∈ Z

(8)

to system (1)-(2), where

L(x, u, w) = xTQLx+ uTRLu− wTSLw

with QL = CTζ Cζ , RL = DT
ζ Dζ and SL given above.

Thus, it follows from their definitions that QL, RL
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and SL are symmetric, QL is positive semidefinite,
RL and SL are positive definite matrices.

The aim is to keep the value of the cost function
by the appropriate choice of the control as low as pos-
sible for all realizations of the uncertainties and the
external perturbations. Because of the presence of un-
certainties a minimum (or minimax) value of the cost
cannot be achieved; one can only expect a guaranteed
upper bound of it. The corresponding guaranteed cost
control has to be determined in feedback form. Since
the state is not available for feedback, a dynamic out-
put feedback is sought. We look for the controller in
the following form:

δx̂ = Acx̂+ Lcy, x̂(0) = 0, (9)

u = Kcx̂ (10)

where x̂ ∈ Rnx .
Introduce the new variable z =

(
xT , x̂T

)T
. With

this notation, u = κz, where κ = (0,Kc) , and the
augmented closed-loop system is

δz = Az + Ew +Hp, (11)

q = Aqz + Gp, (12)

where G = diag{Gx, Gy},

A =

[
A BKc

LcC Ac

]
, Aq =

[
Aq BqKc

Cq DqKc

]
, (13)

E =

[
Ex
LcEy

]
, H =

[
Hx 0
0 LcHy

]
. (14)

Set K = diag{Inx ,Kc}. The running cost of the aug-
mented closed-loop system is

L(z, w) = zTQLz − wTSLw,

where QL = KT diag{QL, RL}K.
To formulate the notion of guaranteeing cost con-

troller, consider an arbitrary nonlinear/uncertain sys-
tem

δz = f(z, u, w, p), (15)

q = g(z, u, p),
[
pT , qT

]T ∈ Ω,

and a function V : Rnz → R+.
For system (15) introduce the following notation:

V∗(15)(z, u, w, p) =

=

{
∇VT (z) f(z, u, w, p), if t ∈ R,
V(f(z, u, w, p))− V(z), if t ∈ Z.

Definition 1 Consider the nonlinear/uncertain sys-
tem (15) with cost function of the type (8) and with a
given set of nonlinearities/uncertainties Ω. The state-
feedback u = k(z) is a guaranteeing cost robust mini-
max strategy if there exists a function V : Rnz → R+

such that

sup[
pT , qT

]T
∈Ω

{V∗(15)(z, k(z), w, p)

+ L(z, k(z), w)} < 0 (16)

holds for all z and w,
[
zT , wT

]
6=
[
0T , 0T

]
. In this

case V(z0) is called a guaranteed cost.

Remark 2 (A) Similar definitions of guaranteed cost
are frequently used in the literature (see e.g. [23],
[42], [14], and the references therein). The rational-
ity of this definition is explained by Theorem 7 given
below.
(B) Observe that a cost guaranteeing control with spe-
cial choice of matricesQL, RL and SL is anH∞ con-
trol with the penalty output (3).

The main problem is to find an appropriate V and
a feedback k(z) because of the need of maximization
over Ω. The main idea of the multiplier method is that
an equivalent inequality will be solved over a linear
space at the expense of introducing a new matrix vari-
able. The method assures that the feasibility set of the
new inequality is the same as that of the original prob-
lem. In this way, the investigation of the inequality
and of the uncertainty bounding set is separated and
the problem becomes tractable. Paper [16] presented
an abstract multiplier method. We recall here the ba-
sic definitions and the lemma to be used. Let Q ⊂Rl

be given.

Definition 3 ([1], [16]) A symmetric matrix M is
called a multiplier matrix for Q if ξTMξ ≥ 0 for all
ξ ∈ Q. If this inequality is strict, then M is called a
positive multiplier matrix for Q. The setM+ of pos-
itive multiplier matrices for Q is called a sufficiently
rich set of positive multipliers forQ, if for any positive
multiplier M for Q there exists an element M ∈M+

such that M ≤M .

Consider positive constants τi and εi, i = 1, ..., s and
set

τ = diag
{
τ1Ilp1 , ..., τsIlps

}
,

τ = diag
{
τ1Ilq1 , ..., τsIlqs

}
,

ε = diag
{
ε1Ilp1 , ..., εsIlps

}
,

ε = diag
{
ε1Ilq1 , ..., εsIlqs

}
.
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We note that, if s = 1, matrices τ , τ , ε and ε consist of
a single block, thus two scalar parameters can be used
instead. In order to avoid the repetition of big formu-
las, we shall use the matrix notations in the special
case of s = 1, as well.

Lemma 4 ([17]) The set

M+ =

{
M : M =

[
τQ0 + ε τS0

ST0 τ τR0 + ε

]
,

τi, εi > 0, i = 1, ..., s

}
(17)

consists of positive multiplier matrices for Ω. If s =
1, thenM+ is sufficiently rich.

The recently published paper [22] gave a suffi-
cient condition for the existence of robust stabiliz-
ing feedback based on a Luenberger type observer for
continuous-time systems with norm-bounded uncer-
tainties. The condition was formulated as an LMI.
It was stated that the given LMI contains three ad-
justable parameters. In fact, there is only one free
parameter. The source of the error was that authors
failed to multiply the 6th and the 8th term from the left
hand side and the 7th and 9th term from the right hand
side by P−1 in equation (10). If the Schur comple-
ment is applied two more times after the correct con-
gruence transformation, it turns out that only param-
eter ε1 is adjustable. This certainly results in a lower
αmax in the second numerical example of that paper.
We made several experiments for fixed ε4 = 0.01 and
for different values of ε2 and ε3 with changing mag-
nitudes. It was found that αmax < 0.98 for the con-
sidered parameter combination.

The present paper solves a more general prob-
lem. Both continuous and discrete-time systems
are examined with a far broader class of uncertain-
ties/nonlinearities, and exogenous disturbances are
considered, too. Also state and control constraints can
a priori be given.

3 Main results

Assumption 1 Inequalities (1) R0 ≥ 0 and

(2) Q0 + GTST0 + S0G + GTR0G < 0
hold true.

The second inequality of the Assumption 1 implies
that

[
pT , pT GT

]T ∈ Ω if and only if p = 0, thus
the origin is an equilibrium point of the unperturbed
uncertain/nonlinear system. Moreover, the set of un-
certain input vectors satisfying

[
pT , qT

]T ∈ Ω is
bounded if q is defined by (4)-(5) and (x, u) comes

from a bounded set, which is also a reasonable re-
quirement. Similar conditions are applied e.g. in [41].

Set N = 5nx + nu + nw + lp + lq, Ξ =
diag{QL, RL,−SL}. Introduce the 2nx× 2nx matrix

φ =


φc =

[
0 I
I 0

]
, if t ∈ R,

φd =

[
−I 0
0 I

]
, if t ∈ Z,

and the matrices

LT1 =

[
I AT KT 0 0 ATq
0 ET 0 I 0 0

]
,

LT0 =
[
0 HT 0 0 I GT

]
. (18)

Lemma 5 Suppose that Assumption 1 holds true for
the set Ω given by (6). The dynamic output feedback
controller (9)-(10) defined by the matrices Ac, Lc,
Kc yields a guaranteeing cost robust minimax strat-
egy k(z) = κz and V(z0) is the guaranteed cost with
V(z0) = zT0 Pz0, P = P T > 0 if there exists an
M ∈ M+ such that P , M satisfy the matrix inequal-
ity [

∗
]

diag {φ⊗ P, Ξ, M}
[
L1,L0

]
< 0, (19)

where L1, L0 correspond to matrices Ac, Lc, Kc

as defined by (13), (14) and (18). The existence of
M ∈ M+ is also necessary, if the uncertainty is un-
structured, i.e. if s = 1.

Proof. Introduce function F : R2nx+nw+np → R
with the definition

F (z, w, p) =
[
∗
] [
∗
] [
φ⊗ P

] [ I 0 0
A E H

]zw
p


+
[
∗
] [
∗
]

Ξ

[
K 0 0
0 I 0

]zw
p


Then inequality (16) with respect to (11) is equivalent
to

sup[
pT , qT

]T
∈Ω

F (z, w, p) < 0 (20)

for all z and w,
[
zT , wT

]
6=
[
0T , 0T

]
.

Set Ψ = diag{φ ⊗ P, Ξ, 0} and B0 = imL0,
B1 = imL1, B = im (L1,L0) . Then B = B1 ⊕ B0

and B1 ∩ B0 = {0}. A straightforward calculation
shows that F (z, w, p) = yTΨy, if y ∈ B , i.e. if
y = L1

[
zT wT

]T
+ L0 p. Set

V =

[
0 0 0 0 I 0
0 0 0 0 0 I

]
∈ R(lp+lq)×N ,
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and

BΩ =
{
y ∈ B ⊂ RN : V y ∈ Ω

}
.

Thus inequality (20) is equivalent to

yTΨy < 0 for all y ∈ BΩ, y 6= 0. (21)

It was proven in ([16]) that inequality (21) holds true
if there exists an M ∈M+ such that

Ψ + V TMV < 0 for all y ∈ B,

which is identical to (19). The necessity of the exis-
tence ofM ∈M+ with this property has been proven
in ([16]), as well. �

Remark 6 Since x̂(0) is fixed, the guaranteed cost
depends on x(0) only. Moreover, since any matrix in
M+ is determined by two scalar parameters τ and ε,
the existence of an appropriate M ∈ M+ is equiva-
lent to the existence of these two scalar parameters.

In what follows, we shall show that a guarantee-
ing cost controller in the sense of Definition 1 yields
an upper bound of the cost function and a closed-loop
system for which the origin is asymptotically stable.
This gives the rationality of Definition 1.

Denote the ellipsoid in R2nx as

Γ(P, α) =
{
ξ ∈ R2nx : ξTPξ ≤ α

}
.

Theorem 7 Consider the augmented closed-loop sys-
tem (11)-(12) with Ω satisfying Assumption 1, and
suppose that for a given P = P T > 0, inequal-
ity (19) holds true. Then α = λM (P )ρ is an upper
bound of the cost function for any admissible initial
state, disturbance and uncertainty. Moreover, the el-
lipsoid Γ(P, α) is positively invariant and the origin
is asymptotically stable for the closed-loop uncertain
system.

Proof. If inequality (19) holds true then there exists
a δ > 0 such that[
∗
]

diag {φ⊗ P, Ξ, M}
[
L1,L0

]
+ δ diag

{
I2nx , 0, 0

}
< 0,

This means in compliance with Lemma 5 that for
k(z) = κz

V∗(11)(z, k(z), w, p)

+ L(z, k(z), w) + δ‖z‖2 < 0 (22)

holds true for any (z, w) 6= (0, 0) and for any uncer-
tainty/nonlinearity satisfying

[
pT , qT

]T ∈ Ω.

For the sake of definiteness, suppose that we are
facing the continuous-time case. (The discrete-time
case is completely analogous.) Integrating inequality
(22) from 0 to T > 0, we obtain that

V(z(T ))− V(z(0)) +

∫ T

0
z(t)TQLz(t)dt

−
∫ T

0
w(t)TSLw(t)dt+ δ

∫ T

0
‖z(t)‖2dt < 0. (23)

Omitting the first and the last (nonnegative) terms on
the left hand side, we obtain that for all T > 0∫ T

0
L(z(t), w(t))dt < V(z(0)). (24)

For the considered w(.), L(z(t), w(t)) ≥ 0 for all t,
therefore the integral on the left hand side of (24) is
convergent as T → ∞, and it tends to the value of
the cost function. Since x̂(0) = 0, for any x0 with
‖x0‖2 ≤ ρ, we have that

V(z(0)) ≤ λM (P )ρ = α.

From (23) it follows that V(z(T )) < α for any T > 0,
thus the ellipsoid Γ(P, α) is invariant. Furthermore
P is assumed to be positive definite, thus it follows
from (22) that function V is an appropriate Lyapunov-
function having a derivative along the solutions of the
closed-loop system (11) strictly smaller than −δ‖z‖2.
Therefore the origin is asymptotically stable with a
basin of attraction containing Γ(P, α).

Corollary 8 If zT0 Pz0 ≤ 1 for any z0 = (xT0 , 0T )T

with ‖x0‖2 ≤ ρ, then Γ(P, 1) is invariant for the
closed-loop uncertain system. Moreover, if[

P ∗
κ Q−1

u

]
≥ 0, (25)

then for any z ∈ Γ(P, 1), the control u = κz satisfies
the control constraint (7).

Proof. The first part of the statement immediately
follows from Theorem 7. The second part follows
from (25) using Schur complements. �

We remark that other types of exogenous distur-
bances can be treated too. For example, disturbances
of finite ’energy’ are formulated as

∞∫
0

w(t)2dt ≤ η, if t ∈ R,

∞∑
t=1

w(t)2 ≤ η, if t ∈ Z,
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where η is a given positive constant. A similar state-
ment can be proven in this case, but the invariant el-
lipsoid is slightly different.

In what follows we propose methods to deter-
mine matrices P, Ac, Lc, Kc, and scalars εi, τi,
(i = 1, ..., s) in the discrete and in the continuous-
time case. In order to obtain the matrix inequalities
on the basis of which these parameters can be deter-
mined, we apply an approach similar to that of [12].
Represent matrix P and its inverse as

P =

[
X N1

NT
1 Z

]
, P−1 =

[
Y N2

NT
2 W

]
(26)

with X = XT > 0, Y = Y T > 0, and consider
matrices

F1 =

[
X I
NT

1 0

]
, F2 =

[
I Y
0 NT

2

]
, (27)

where each block is of dimension nx × nx. Clearly,

F T1 P
−1F1 =

[
X I
I Y

]
, P−1F1 = F2. (28)

Introduce furthermore the notations

K̃ = KcN
T
2 , L̃ = N1Lc, (29)

Ã = XAY +XBK̃ + L̃CY +N1AcN
T
2 . (30)

Now we derive a matrix inequality equivalent to (19),
which is linear in all of the unknown matrices except
for parameters τi.

3.1 The continuous-time case

In this subsection φ is fixed as φ = φc.

Theorem 9 Inequality (19) holds true for the sym-
metric and positive definite matrix P partitioned as
in (26) and for the coefficient matrices Ac, Lc, Kc of
the controller and for the positive scalars τi and εi if
and only if X , Y , Ã, L̃, K̃, εi and τi (i = 1, . . . , s)
satisfy the following matrix inequalities:

[
Φ11 ∗
Φ21 Φ22

]
< 0,

[
X I
I Y

]
> 0, (31)

Φ11 =


ϕ11
11 ∗ ∗ ∗

ϕ11
21 ϕ11

22 ∗ ∗
ϕ11
31 ϕ11

32 −SL ∗
ϕ11
41 ϕ11

42 0 ϕ11
44

 ,

ϕ11
11 = ATX +XA+ CT L̃T + L̃C,

ϕ11
22 = AY +BK̃ + Y TAT + K̃TBT ,

ϕ11
44 = Q0τ

−1 + S0Gτ−1 + τ−1GTST0 ,

ϕ11
21 = A+ ÃT ,

ϕ11
31 = ETxX + ETy L̃

T , ϕ11
32 = ETx ,

ϕ11
41 = τ−1

[
HT
x X

HT
y L̃

T

]
+ S0

[
Aq
Cq

]
,

ϕ11
42 = τ−1

[
HT
x

0

]
+ S0

[
AqY +BqK̃

CqY +DqK̃

]
,

Φ21 =


0 0 0 τ−1

ϕ21
21 ϕ21

22 0 R
1/2
0 Gτ−1

ϕ21
31 ϕ21

32 0 Gτ−1
Cζ CζY 0 0

0 K̃ 0 0

 ,

ϕ21
21 = R

1/2
0

[
Aq
Cq

]
,

ϕ21
22 = R

1/2
0

[
AqY +BqK̃

CqY +DqK̃

]
,

ϕ21
31 =

[
Aq
Cq

]
, ϕ21

32

[
AqY +BqK̃

CqY +DqK̃

]
,

Φ22 = diag
{
−ε−1,−τ−1,−ε−1,−I,R−1L

}
.

Proof. Consider inequality (21) with an arbitrary
M ∈ M+ given in (18), and multiply the middle
block-diagonal matrix from left and right by LTL =
I, where L is an appropriate permutation matrix to
obtain that

[
∗
]


0 ∗ ∗ ∗ ∗ ∗
P 0 ∗ ∗ ∗ ∗
0 0 −SL ∗ ∗ ∗
0 0 0 τQ0 + ε ∗ ∗
0 0 0 0 Υ ∗
0 0 0 ST0 τ 0 τR0 + ε

×

×


I 0 0
A E H
0 I 0
0 0 I
K 0 0
Aq 0 G

 < 0 (32)

with Υ = diag{QL, RL}. Applying the definition
QL = CTζ Cζ and the linearization lemma (see [37])
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one obtains that (32) is equivalent to
ATP + PA ∗ ∗ ∗ ∗
ETP −SL ∗ ∗ ∗

HTP + τS0Aq 0 ϑ+ ε ∗ ∗
CζK 0 0 −R−1

L ∗
Aq 0 G 0 −(τR0 + ε)


< 0,

where the notations ϑ = τQ0 + τS0G + GTST0 τ
and Cζ = diag{Cζ , I} and RL = diag{I,RL} have
been used. Now we can apply the Schur complement
lemma to get rid of the inverse of (τR0 + ε). Then
apply the Schur complement again, the congruence
transformation with diag{P−1, I, τ−1, I, I, I, I} and
notations

θ1 = ATP−1 + P−1AT , θ2 = τ−1HT + S0AqP−1

θ3 = R
1/2
0 AqP−1, θ4 = R

1/2
0 Gτ−1, θ5 = CζKP−1

to derive the equivalent inequality

θ1 ∗ ∗ ∗ ∗ ∗ ∗
ET −SL ∗ ∗ ∗ ∗ ∗
θ2 0 ϕ11

44 ∗ ∗ ∗ ∗
0 0 τ−1 −ε−1 ∗ ∗ ∗
θ3 θ4 0 0 τ−1 ∗ ∗

AqP−1 0 Gτ−1 0 0 ε−1 ∗
θ5 0 Gτ−1 0 0 0 −R−1

L


< 0. (33)

Multiply (33) by diag{F T1 , I, I, I, I, I, I} from the
left and by its transpose from the right, and take into
consideration (27)-(28) to obtain that

FT1 AF2 =

[
ϕ11
11 ∗

ϕ11
21 ϕ11

22

]
, CζKF2 =

[
Cζ CζY

0 K̃

]
,

ETF1 =
[
ϕ11
31, ϕ

11
32

]
,

τ−1HF1 + S0AqF2 =
[
ϕ11
41, ϕ

11
42

]
,

R
1/2
0 AqF2 =

[
ϕ21
21, ϕ

21
22

]
, AqF2 =

[
ϕ21
31, ϕ

21
32

]
. �

We observe that the matrix inequality (31) is non-
linear in the unknown parameters τi. However, if τi’s
are fixed, this inequality becomes linear in variables
X , Y , K̃, L̃, Ã and ε−1

i , i = 1, ..., s. If (31) is feasi-
ble, inequality[

X I
I Y

]
> 0,

is equivalent to I − XY < 0 , hence the left hand
side is factorizable as N1N

T
2 = I −XY , where N1

and N2 are invertible, i.e. matrices Kc, Lc and Ac
can be expressed uniquely from the solution of (31)
employing (29)-(30).

3.2 The discrete-time case

In this subsection φ is fixed as φ = φd.

Theorem 10 Inequality (19) holds true for the sym-
metric and positive definite matrix P partitioned as in
(26) and for the coefficient matricesAc, Lc,Kc, of the
controller and for the positive scalars τi and εi if and
only if X , Y , Ã, L̃, K̃, εi and τi, (i = 1, ..., s), satisfy
the following matrix inequality:

ψ11 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 −SL ∗ ∗ ∗ ∗ ∗ ∗
ψ31 0 ψ33 ∗ ∗ ∗ ∗ ∗
ψ41 ψ42 ψ43 ψ44 ∗ ∗ ∗ ∗
0 0 I 0 −ε−1 ∗ ∗ ∗
ψ61 0 G 0 0 −ε−1 ∗ ∗
ψ71 0 R

1/2
0 G 0 0 0 −τ−1 ∗

ψ81 0 0 0 0 0 0 −R−1L


< 0, (34)

where

ψ11 = −
[
X I
I Y

]
, ψ31 = τS0ψ71,

ψ33 = τQ0 + τS0G + GTST0 τ ,

ψ41 =

[
XA+ L̃C Ã

A AY +BK̃

]
,

ψ42 =

[
XEx + L̃Ey

Ex

]
,

ψ43 =

[
XHx L̃Hy

Hx 0

]
, ψ44 = ψ11,

ψ61 =

[
Aq AqY +BqK̃

Cq CqY +DqK̃

]
,

ψ71 = R
1/2
0 ψ61, ψ81 =

[
Cζ CζY

0 K̃

]
,

Proof. The theorem can be proved completely analo-
gously to the previous one, the details are omitted for
the lack of space. �

Inequality (34) is nonlinear in he unknown pa-
rameters τi, but for any fixed values, it is an LMI in
the remaining unknown matrices. Observations simi-
lar to the continuous-time case can be made concern-
ing the computation of the coefficient matrices of the
controller, as well.

3.3 Control constraint LMIs

For a given value of parameters τi, Theorems 9 and
10 provide LMIs on the basis of which one can ob-
tain the solution of the formulated problem, if no con-
trol constraint is imposed. Next we shall derive ad-
ditional LMIs to assure the satisfaction of the control
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constraint presuming that the initial value x0 is admis-
sible.

Theorem 11 Assume that the condition of Corollary
8 is valid. Suppose that in addition to (31) in the
continuous-time case and to (34) in the discrete-time
case inequalities

X − 1

ρ
I ≤ 0, (35)

 X I
I Y

0

K̃T

0 K̃ Q−1
u

 ≥ 0 (36)

hold true. Then z(t)TPz(t) ≤ 1 for any t ≥ 0, and
u(t) = κz(t) satisfies the control constraint (7) for all
t ≥ 0.

Proof. Suppose that P is partitioned according
to (26) and ‖x0‖2 ≤ ρ, x̂(0) = 0. Then we have
zT0 Pz0 = xT0 Xx0, thus it follows from (35) that
zT0 Pz0 ≤ 1. Therefore, Corollary 8 involves that
z(t)TPz(t) ≤ 1 for any t ≥ 0. On the other hand,
if

z(t)TκTQuκz(t) ≤ z(t)TPz(t), (37)

then (7) holds true for any t ≥ 0. Inequality (37) holds
true, if

P − κTQuκ ≥ 0,

which is equivalent to[
P ∗
κ Q−1

u

]
≥ 0. (38)

If we apply the congruence transformation for (38)
with diag

{
P−1F1, I

}
, we get that the latter inequal-

ity is equivalent to the required one (36). �

Remark 12 Every feasible solution of systems (31),
(35)-(36) or (34), (35)-(36), provides a cost guaran-
teeing controller. Several types of objective functions
can be assigned to the systems of inequalities. For ex-
ample, paper [11] proposes to minimize trP to obtain
the largest set of admissible states of the augmented
system. (Matrix P was kept there as the unknown of
the LIMs.) Similar purpose can be achieved by mini-
mizing µ := 1/%.

4 Numerical examples

Example 1. ([24], [22]) To illustrate the effectiveness
of our approach we consider the same example as [24]
and [22]. The system is described by the following
parameters:

A =

1 1 1
0 −2 1
1 −2 −5

 , B =

1 0
0 1
0 0

 , Aq =

0 0 α
0 β 0
γ 0 0

 ,
p =

[
px
py

]
∈ R4, q =

[
qx
qy

]
∈ R4, pi = Fi(t)qi,

with |Fi(t)| ≤ 1, i = 1, . . . , 4, (i.e. Q0i = −1,
S0i = 0, R0i = 1,) and Ex = 0, Hx = I3,
C = (1 0 1), Ey = 0, Hy = 1, Cq = (0 δ 0)Gx = 0,
Gy = 0. Similarly to [24] and [22], we assumed that
α = β = γ = δ. The maximum value of α achieved
by [24] was 1.35, while inequality (31) has a feasible
stabilizing solution up to αmax = 3.48. (The results
of the second paper are not comparable, the best result
that we could achieve with the corrected inequality
and with a wide range of parameter combinations was
αmax < 0.98. Figure 1 illustrates that the dynamic

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−4

−3

−2

−1

0

1

2

3

x1(t)

x2(t)

x3(t)

Figure 1: Time evolution of the state variables.

output feedback control obtained with αmax = 3.4
provides a quick convergence and smaller deviations
than in [24], when the initial state and the uncertain-
ties in the simulation are same as there.

Example 2. ([5]) To illustrate the applicability of
our approach to nonlinear systems we consider the
example of a flexible joint robotic arm investigated
e.g. in [5]. The the dynamics of this model con-
tains a sector bounded nonlinearity. [5] constructed a
stabilizing predictive control supposing that the state
was available for feedback. We applied here the dy-
namic output feedback control (9)-(10) supposing that
only x1 and x3 were measured. Moreover, we allowed
the effect of exogenous disturbances with w(t) ∈ R,
ETx =

[
0 1 0 1

]
. In our representation, the prob-
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lem to be solved was characterized by matrices

A =


0 1 0 0

−48.6 −1.25 48.6 0
0 0 0 1

19.5 0 −16.7 0

 , B =


0

21.6
0
0

 ,
C =

[
1 0 0 0
0 0 1 0

]
, HT

x =
[
0 0 0 −3.33

]
,

Aq =
[
0 0 1 0

]
, Q0 = −1, S0 = 1, R0 = 0,

Qu = 1/2.25, Cζ = diag{1,
√

0.1, 1,
√

0.1}, RL =
0.1, and px = sinx3 + x3, qx = x3. The initial state
is x0 =

(
1.2 0 0 0

)T and we set ρ = 1.21
and SL = QL. Figures 2 illustrates that the dynamic

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.5

0

0.5

1

1.5

x1(t)

x3(t)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−15

−10

−5

0

5

10

x2(t)

x4(t)

Figure 2: Time evolution of the state variables.

output feedback control still provides a quick conver-
gence at the presence of exogenous disturbances. The
disturbances were simulated asw(t) = 0.1 sin(t)x(t),
which was admissible with any 0.01 ≤ γ∆ < 1.

The computations were made in both examples
using YALMIP ([25]) and MATLAB.

5 Conclusion

The paper establishes sufficient (and necessary) con-
ditions for dynamic output feedback to be cost guar-
anteeing and stabilizing in the case of systems with
quadratically constrained nonlinearities/uncertainties.
It is shown that this condition was sufficient for the
boundedness of the cost and the trajectories, if the
constructed dynamic feedback is applied. The con-
sidered class of nonlinearities/uncertainties permits to

treat a great number of nonlinearity/uncertainty types
by the appropriate choice of system parameters. Both
the discrete and continuous-time cases are examined.
The conditions are formulated as matrix inequalities.
When one scalar parameter is fixed, the matrix in-
equality system to be solved is linear. The proposed
method extends the results of a recently published pa-
per in several aspects. Numerical examples illustrate
the application of the proposed method.
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