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Abstract: -Cloud computing, as a new model of service provision in distributed computing environment, faces 
the great challenge of energy consumption because of its large demand for computing resources. Choosing 
improper scheduling method to execute cloud workflow tends to result in the waste of power consumption. In 
order to lower the higher power consumption for cloud workflow executing, we propose a power consumption 
optimization algorithm for cloud workflow scheduling based on SLA (Service Level Agreement), which can 
reduce power consumption while meeting the performance-based constraints of time and cost. The algorithm 
first searches for all feasible scheduling solutions of cloud workflow application with critical path, then the 
optimal scheduling solution can be found out through calculating total power consumption for each feasible 
scheduling solution. The experimental results show that compared with traditional workflow scheduling 
algorithms based on QoS, the optimization algorithm proposed in this paper not only meets the constraints of 
time and cost defined in SLA, but also reduces the average power consumption by around 10%. 
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1 Introduction 
Due to integrating a large number of computing 
resources and storage resources in cloud data center, 
cloud computing system needs to solve various 
problems to implement a high effective, low-cost 
and safe distributed computing platform [1]. The 
high power consumption [2, 3] is one of the most 
serious problems for cloud computing system. 
According to statistics, the power consumption of 
cloud data centers [4] has risen by 56 percent from 
2005 to 2010, and in 2010 accounted to be between 
1.1 and 1.5 percent of the global electricity use [5]. 
There exists power consumption waste caused by 
improper scheduling method in addition to the 

necessary power consumption for executing user 
tasks in cloud computing system [6]. Cloud 
computing system usually contains a lot of 
computers with different performance which may 
need different response time and power consumption 
to execute the same tasks. With regard to power 
consumption, the mismatched scheduling solution [7] 
usually spends higher power consumption to finish 
user required task which can be executed with lower 
power consumption. Therefore, how to realize cloud 
computing system with low power consumption 
through scheduling resources appropriately have 
been widely concerned. 

Cloud workflow [8, 9] is a new application 
mode for workflow management system in cloud 
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computing environment, which can provide 
optimization solutions for cloud computing system 
to reduce operation cost and improve the quality of 
cloud services [10]. The scheduling of cloud 
workflow which is the same as that of grid workflow 
[11] is the problem of mapping each task to a 
suitable resource and of ordering the tasks on each 
resource to satisfy some performance criterion 
[12,13]. The scheduling algorithm of workflow can 
be divided into two categories: scheduling 
algorithms based on best-effort service and 
scheduling algorithms based on OoS constraints [14]. 
Yu et al. [15] proposed economy-based methods to 
handle large-scale grid workflow scheduling under 
deadline constraints, budget allocation, and QoS.  
Dogan and Özgüner [16] developed a matching and 
scheduling algorithm for both the execution time and 
the failure probability that can trade off them to get 
an optimal selection. Moretti et al. [17] suggested all 
of the pairs to improve usability, performance, and 
efficiency of a campus grid. 

At present, there are a few works addressing 
cloud workflow scheduling. Juve in literature [18] 
compared the performance of running some 
scientific workflows on the NCSA’s Abe cluster, 
against the Amazon EC2. Both use Pegasus [19] as 
the workflow management system to execute the 
workflows. Prodan et al. [20] proposed a bi-criteria 
scheduling algorithm that follows a different 
approach to the optimization problem of two 
arbitrary independent criteria, e.g. execution time 
and cost. “RC2” algorithm [21] for scheduling tasks 
in hybrid cloud was proposed by Lee and Zomaya to 
achieve reliable completion. An initial schedule is 
first calculated based on private cloud (or locally 
owned resources) to minimize cloud resource usage. 
In 2011, Bittencourt and Madeira proposed the 
“HCOC” algorithm [22] to schedule cloud 
workflows within deadline while minimizing 
compute cost. In addition to task execution time and 
compute cost that are used in the techniques 
described so far, the “PBTS” algorithm proposed by 
Byun et al. [23] begins to consider other aspects in 
the cloud.  

So far, there are few works solving 
energy-aware cloud workflow scheduling. Regarding 
the existing energy consumption models [24, 25, 26], 
they all consider only two levels of energy 
consumption in a machine corresponding to its idle 
and full-load states. These models, however, do not 
properly reflect the current energy-aware multi-core 
architectures.  Authors in literature [27] proposed 
an energy-aware heuristic scheduling for 
data-intensive workflows in virtualized datacenters, 
which introduces a novel heuristic called Minimal 
Data-Accessing Energy Path for scheduling 
data-intensive workflows aiming to reduce the 
energy consumption of intensive data accessing. 
Pareto-based multi-objective workflow scheduling 
algorithm was proposed in literature [28, 29], which 
captures the real behavior of energy consumption in 
heterogeneous parallel systems based on empirical 
models. 

We can know from the aforementioned 
scheduling algorithms of workflow applications that 
regardless of time optimization algorithms, cost 
optimization algorithms scheduling or energy-aware 
scheduling algorithms for workflow applications, all 
of them have not effectively solved the power 
consumption optimization problem faced in the 
cloud computing environment, which likely result in 
power waste phenomenon as mismatch scheduling 
of cloud workflows. So, we propose a power 
consumption optimization algorithm of cloud 
workflow scheduling based on service level 
agreement which tries to match each task of 
workflow application to the reasonable service 
provided by server in cloud computing system. The 
key of optimization algorithm proposed in this paper 
is to find out all feasible scheduling solutions for 
candidate cloud workflow applications. 
 
 

2 Cloud workflow model 
2.1 DAG model of cloud workflow 
The DAG (Directed Acyclic Graph) is a well-known 
model for describing workflow applications in 
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different computing environments. So, a cloud 
workflow application also can be represented by the 
DAG G=(T,E) ( as shown in fig.1), where T is a set 
of tasks ti ( i=1,2,…,n), and E is a set of edges 
ei,j(ti≠tj) that describe the dependencies between 
tasks. In given DAG model for a cloud workflow, if 
ta∈T and e i,a∉E for all ti∈ T, then the task ta is called 
an entry task of the cloud workflow; if tz∈T and 
ez,i∉E for all ti∈ T, then the task tz is called a exit 
task of the cloud workflow. In order to better 
understand the DAG model, we always add two 
dummy tasks of tentry and texit to the beginning and 
end of the cloud workflow, respectively. 

t1

t5

t4

t3

t2

t6

t7

t8tentry texit

 
Fig.1 DAG model of a cloud workflow 

 
 The service providers offer several services 
with different QoS for each task of every cloud 
workflow. We assume that each task ti of cloud 
workflow can be executed by k services with 
different QoS attributes, Si = {si,1, si,2,…, si,k }. There 
are many QoS attributes for services in cloud 
computing system, including execution time, cost, 
reliability, power energy efficiency, and so on. In 
this paper, we consider the most important three 
factors: execution time, cost and power energy 
efficiency for our scheduling model. ET(ti, si,j) and 
EC(ti, si,j) are defined as the execution time and the 
execution cost of executing task ti on service si,j, 
respectively. The data transfer time of a dependency 
ei,j only depends on the amount of data to be 
transferred between corresponding tasks, and it is 
independent of the services which execute them [30]. 
Therefore, TT(ei,j) is defined as the data transfer time 
of a dependency ei,j, and independent of the selected 
services for ti and tj. 
 
 

2.2 Critical path for cloud workflow 
A schedule of cloud workflow application is 

defined as an assignment of services to the cloud 
workflow tasks. If SS(ti) denotes the selected service 
for task ti, then a schedule of cloud workflow w(T , 
E) can be defined as: 

( ) ( ) ( )i i i i, j iSched w {SS t | t T SS t s S }= ∀ ∈ = ∈  

          (1) 
Definition 1.Service Graph: SG=(S,D), where 

S={si| mapping(si,ti)} is a set of services which 
include all selected services for each task in cloud 

workflow application, D={ei,j|(si,sj)⇔(ti,tj)} is a set of 

edges between services ( each edge describes a 
dependency between services in Service Graph). In 
this paper, a feasible scheduling solution for cloud 
workflow application is represented as the 
corresponding service graph. For example, cloud 
workflow application in figure 1 is scheduled to 
form mappings between tasks and services as 
follows: t1→s1,3, t2→s2,2 ,t3→s3,4, t4→s4,6 ,t5→s5,6, 
t6→s6,8, t7→s7,8, t8→s8,1, and its corresponding 
service graph can be obtained(as shown in fig.2). 

S1,3

S5,6

S4,6

S3,4

S2,2

S6,8

S7,8

S8,1

Fig.2 Service graph of a cloud workflow application 
 

Definition 2.Critical path: For any cloud 
workflow application established workflow model 
with directed acyclic graph w(T, E), each task is 
matched to a suitable service during the scheduling. 
All of mappings between services and tasks can 
generate a service graph in accordance with w(T,E) 
of the cloud workflow application, which includes a 
corresponding critical path denoted as WCP in this 
paper. 
 With the WCP of cloud workflow application, 
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the executive time of cloud workflow application 
can be defined as: 

( ( ( )) ( ( )))
i

i it WCP
T ET SS t TT SS t

∈
= +∑   (2) 

As for the total cost of cloud workflow application 
execution, it can be calculated as follows: 

 
1

( ( ))
n

i
i

C Cost SS t
=

=∑      (3) 

In order to meet the time constraint of cloud 
workflow scheduling, we need to define its earliest 
start time EST, earliest finish time EFT and latest 
finish time LFT for each task of cloud workflow 
application. Due to the earliest start time of task ti at 
which ti can start its computation, EST of ti can be 
computed as follows: 

( )entryEST t 0=       (4) 

( )i ,( )
EST t max { ( ) ( , ( )) ( )

p i
p p p p it predecessors t

EST t ET t SS t TT e
∈

= + +

           (5) 
Accordingly, the earliest finish time of each task ti is 
the earliest time at which ti can finish its 
computation, the EFT of ti is computed as follows: 

( ) ( ) ( )( )i i i iEFT t EST t ET t ,SS t= +   (6) 

The latest finish time of task ti is the latest time at 
which ti can finish its computation, such that the 
whole cloud workflow can finish before the user 
defined deadline, D. LFT of ti can be computed as 
follows: 

( )exitLFT t D=       (7) 

 

( )i ,( )
LFT t min { ( ) ( , ( )) ( )}

c i
c c c i ct successors t

LFT t ET t SS t TT e
∈

= − −

          (8) 
Definition 3.Critical parent: the critical parent 

of node ti is the unscheduled parent of ti that has the 
latest data arrival time at ti, that means it is the 
parent tp of ti, for which EST (tp) + ET (tp, SS(tp)) + 
TT (ep,i) is maximal. 
 The algorithm obtaining critical path for cloud 
workflow scheduling is as follows: 

Input: w(T,E) 
Output: WCP 
Begin 

Step1: add tentry, texit and their corresponding 
dependencies to w; 
Step2: for (i=1;i<=n;i++) do 
Step3: Select the fastest idle service for each 
task ti: SS(ti); 
Step4: end for 
Step5: for (i=1;i<=n;i++) 
Step6:  compute EST(ti) according to Eq. (5); 
Step7: end for 
Step8: for (i=n;i<=1;i--) 
Step9:  compute LFT(ti) according to Eq. (8); 
Step10: end for 
Step11: mark tentry and texit as scheduled nodes; 
Step11: t=texit, WCP=null; 
Step12: while (there exists an unscheduled  

parent of t) do 
Step15:  add CriticalParent(t) to the  
  beginning of WCP; 
Step16:  t=CriticalParent(t); 
Step17: end while 

End. 
 
 

3 Power consumption model 
For the power consumption of any cloud workflow 
which is composed of n tasks during the execution, 
we can build the following model: 

1
( , ( ) ( , ( ))

n

i i i i
i

PC P t SS t T t SS t
=

= ×∑   (9) 

Where PC denotes the total power consumption of 
cloud workflow execution, SS(ti) represents the 
selected service for task ti, P(ti, SS(ti)) indicates the 
power which is needed to execute task ti on service 
SS(ti), T(ti, SS(ti)) denotes the time that is spent to 
execute task ti on service SS(ti).  
 In this paper, we assume that the task set of 
cloud computing system is 
W={w1,w2,…,wm}(m>=n), and the arrival rate for 
each type of cloud task is denoted as λi(i=1,2,…,m). 

WSEAS TRANSACTIONS on SYSTEMS Yonghong Luo, Shuren Zhou

E-ISSN: 2224-2678 371 Volume 13, 2014



Each service can establish a queuing model of 
M/M/1 to process a kind of user task requirement, si,j 

means that the service selected for task wi is 
deployed on the server hj. So, the arrival rate λi,j of 
task wi allocated to hj can be represented as follows: 

, ,i j i j iPλ λ= ×       (10) 

Where Pi,j represents the probability for si,j deployed 
on server hj to execute task ti. If the service rate for 
service si,j to reply task ti is μi,j, the average response 
time ART of executing ti on si,j can be calculated as 
follows: 

, ,

1

i j i j

ART
µ λ

=
−

     (11) 

If the time constraint of task wi is qti, then μi,j can be 
expressed as follows in the case of ART=qti: 

, , ,
1 1

i j i j i j i
i i

P
qt qt

µ λ λ= + = × +    (12) 

The service intensity for server hj to execute all m 
types of task (w1, w2,…, wm) can be expressed as 
follows: 

, ,

1 1,
,

1

m m
i j i j i

j
i ii j

i j i
i

P

P
qt

λ λ
ρ

µ λ= =

×
= =

× +
∑ ∑   (13) 

The power of any service si,j at the moment of t 
denotes as Poweri,j can be calculated as follows: 

,
, ,( ) ( ) i jbc

i j i j jPower t P a tρ= +    (14) 

Where Pc is constant power consumption of service 
si,j, ai,j and bi,j are power parameters. Generally, 
different service intensity corresponds to different 
power parameters. With Eq. (13), the power of 
server hj for si,j can be computed as follows when the 
workload of service si,j tends to stability: 

,,
, , ,

1
,

,

( ) ,0 max( )1

0, 0

i j
m

bi j ic
i j i j i j

i
i j ij

i

i j

P
P a

PPower qt

λ
λ λ

λ

λ

=

×
+ × < ≤ × += 


 =

∑

          (15) 
Therefore, we assume that the start time and the end 

time for service si,j are represented as time1 and 
time2,respectively. Then, the power consumption 
during the execution of service si,j can be calculated 
as follows: 

2 ,

1

,
, ,

1
,

( ( ) )1
i j

ntime bi j ic
i j i jtime

i
i j i

i

P
PC P a dt

P
qt

λ

λ=

×
= + ×

× +
∑∫

          (16) 
 
 

4 Optimization of power consumption 
4.1 Model of power optimization 
According to the model of power consumption in 
this paper, power consumption optimization of cloud 
workflow scheduling aims to reduce the total power 
consumption of cloud workflow execution based on 
the constraints of time and cost in Service Level 
Agreement, and its optimization model is 
represented as follows: 

1

1

min ( ( ), )

( ( ), )

( ( ), )

i

n

i i
i

i i
t WCP

n

i i
i

P SS t t

Time SS t t makspan

C SS t t Cost

=

∈

=




 ≤


 ≤


∑

∑

∑

   (17) 

Where P(SS(ti),ti) denotes the power consumption 
which is produced by executing task ti on matched 
service SS(ti), Time(SS(ti),ti) denotes the time is 
needed to execute ti on selected service SS(ti), 
makspan represents the total time constraint 
specified in user’s Service Level Agreement, 
C(SS(ti),ti) represents the required cost that is 
necessary to execute task ti with allocated service 
SS(ti), Cost indicates the total cost defined in user’s 
Service Level Agreement. 

Definition 4.Feasible Scheduling Solution: if a 
scheduling solution corresponding to a services 
graph can finish the execution of cloud workflow 
w(T,E) successfully while meeting the required time 
attribute and cost attribute in user’s Service Level 
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Agreement, we call it a feasible scheduling solution. 
We assume that Schk is a feasible scheduling 
solution for cloud workflow w(T,E) that can satisfy 
the time attribute and cost attribute in user’s Service 
Level Agreement, Ω(Sch) is the set of all feasible 
scheduling solution for cloud workflow w(T,E). For 
any cloud workflow application, we suppose there 
should be at least one feasible scheduling solution, 
and let |Ω(Sch)|=L where L represents the number of 
feasible scheduling solutions. The power 
consumption which is needed to execute a feasible 
scheduling solution can be estimated as follows: 

,
,( ) , ( , )

i j k
k i j k k ks S

PC FSS PC FSS S D
∈

= =∑  (18) 

 
 
4.2 Algorithm of power consumption 
optimization 
In order to solve the problem of power waste caused 
by the improper scheduling of cloud workflow, the 
algorithm idea of power consumption optimization 
for cloud workflow scheduling is as follows: Firstly, 
algorithm needs to search for all feasible scheduling 
solutions among the corresponding service graphs of 
cloud workflow scheduling. For a scheduling 
solution of cloud workflow application, if its 
execution time and execution cost obtained by 
evaluation are all less than the time constraint and 
cost constraint in SLA, we can mark the solution as 
a feasible scheduling solution. Then, the power 
consumption for each feasible scheduling solution 
can be computed according to Eq.(18). Finally, we 
select the scheduling solution with the minimum 
power consumption as the optimal scheduling 
solution. The detailed algorithm of power 
consumption optimization for cloud workflow 
scheduling (PCOA) is as follows: 
Input: DAG of cloud workflow, SG 
Output: optimal scheduling solution of cloud 
workflow with the minimum power consumption 
Begin 

Step1 :K=0; 
Step2 :for each SGi of cloud workflow do 
Step3 : Find out the critical path for the SGi; 

Step4 : if ( ( ( , ))
i

i i
s WCP

Time mapping s t makspan
∈

≤∑  and 

1
( , )

n

i i
i

C s t Cost
=

≤∑ ) then 

Step5 :  add SGi to FSSk(feasible schedule 
solution set); 

Step6 :  k++; 
Step7 : end if  
Step8 :end for 
Step9 :compute the power consumption of FSS0  
 according to Eq.(16); 
Step10:min_PC=PC(FSS0); 
Step11:for (j=1; j<k; j++) do 
Step12: compute the power consumption of  
 FSSj according to Eq.(18); 
Step13: if (min_PC>PC(FSSi)) do 
Step14:  min_PC= PC(FSSi); 
Step15:  set FSSi as the optimal schedule  
 solution of cloud workflow; 
Step16: end if 
Step17:end for 

End. 
 
 

5 Experimental results and analysis 
To evaluate the effectiveness of power consumption 
optimization strategy for cloud workflow scheduling 
proposed in this paper, we employed three workflow 
scheduling methods including Loss and Gain, 
Deadline-MDP and PCOA to carry out four 
scientific workflow applications , such as Montage, 
Epigenomics, MRI and e-protein in simulated cloud 
computing environment CloudSim, and compared 
the time, cost and power consumption for them after 
Loss and Gain, Deadline-MDP and PCOA finished 
the execution of Montage, Epigenomics, MRI and 
e-protein. In experiment, we assigned a time 
constraint (Montage:400s,  Epigenomics:400s, 
MRI:350s, e-protein:350s) and a cost constraint 
(Montage:35$,  Epigenomics:35$, MRI:30$, 
e-protein:30$) for each cloud workflow application, 
which are represented as makspan and cost, 
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respectively. Moreover, we also provided ten 
services for each type of task, which are deployed on 
different servers. All of ten services need to spend 
different time and cost to process the same task. 
Generally speaking, a faster service costs more 
power than a slower one. Environment parameters 
involved in this experiment and their values are 
shown in table 1. 

After completing ten times execution for each 
scientific workflow application, the average time, 
cost and power consumed by three different 
scheduling methods are shown in fig.3, fig.4 and 
fig.5, respectively. Fig.3 shows that under the 
constraints of time and cost in SLA, Loss and Gain 
method performs each workflow application with the 
least time, and Deadline-MDP spends the most time 
to finish the execution of every workflow 
application, while the run time for PCOA is greater 
than that of Loss and Gain, and less than that of 
Deadline-MDP. So, we should adopt Loss and Gain 
method to schedule various workflow applications if 
the target of scheduling cloud workflow is to 
minimize the completion time. 

Table 1.Parameters setting of the simulated 
environment 

Parameter Setting Description 

h 25 

Number of servers in 
simulated cloud 

environment 

λi  [5,20] 
Average arrival rate for 

task ti(i=1,2,…) 

μi,j  [4,15] 
Serving rate for server 

hj to execute task ti 

Pj [50w,80w] Idle power of server hj 

Pi,j [200w,600w] 
Executive power of 

server hj processing task 
ti  

makspan [50s-400s] Time constraint in 
user’s SLA  

cost [10$-50$] Cost constraint in user’s 
SLA 

 

 
Fig.3 Comparison of average time for performing 

cloud workflow 
Fig.4 indicates that with the constraints of time 

and cost in SLA, Loss and Gain method needs to 
spend the highest cost to execute each of workflow 
applications and Deadline-MDP only spends the 
lowest cost to perform every workflow application, 
while the average cost for PCOA to finish the 
execution of all workflow applications is slightly 
lower than that of Loss and Gain method. Therefore, 
we should select Deadline-MDP method if the 
scheduling aims to minimize the cost of cloud 
workflow execution. 

Fig.4 Comparison of average cost for performing 
cloud workflow 

We can know from fig.5 that under the 
constraints of time and cost in SLA, Deadline-MDP, 
Loss and Gain spend almost the same power to 
complete the execution of each workflow application, 
while the average power consumption produced by 
PCOA is the optimal among the three scheduling 
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methods of Loss and Gain, Deadline-MDP and 
PCOA. The reason why PCOA can reduce the power 
consumption of cloud workflow application 
execution is that PCOA can select the optimal 
scheduling solution for each cloud workflow 
application through using critical path. The 
experimental results show that compared with 
traditional workflow scheduling algorithms based on 
QoS, the optimization algorithm proposed in this 
paper not only meets the constraints of time and cost 
defined in SLA, but also reduces the average power 
consumption by around 10%. So, we should employ 
PCOA to dispatch all cloud workflow applications in 
order to reduce the power consumption of cloud 
workflow execution caused by improper scheduling 
algorithm in cloud computing environment. 

 
Fig.5 Comparison of average power consumption for 

performing cloud workflow 
 
 

6 Conclusions 
This paper studied the power consumption 
optimization of cloud workflow scheduling as 
energy waste issues in the cloud computing 
environment have become increasingly prominent. 
Through analyzing the power computing model for 
cloud workflow application execution, we have 
proposed a power consumption algorithm of cloud 
workflow scheduling under the constraints of time 
and cost in SLA. Simulated experiments 
demonstrate that this optimization method is fully 
effective and feasible. But the power optimization 

issue isn’t implemented in the virtual cloud 
environment. So, we will further investigate the 
power consumption optimization of cloud workflow 
scheduling based on the virtual machines allocation 
in the future, and carry out experiments in real 
virtualization cloud platform so as to ensure the 
correctness and effectiveness of research result. 
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