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Abstract: This paper is concerned with a cyclic predator-prey system with Sigmoidal type functional response. By

using the differential inequality theory, some sufficient

conditions are derived for the permanence of the system.

By constructing a suitable Liapunov function, we obtain that the system has a unique asymptotically periodic solu-
tion which is globally asymptotically stable. Some numerical simulations that illustrate our analytical predictions

are carried out. The paper ends with a brief conclusion
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1

In recent years, the interest in study of the dynami-
cal properties occurring in the predator-prey system
with delay has been growing rapidly. For example,
Li and Ye [1] had made discussion about the multi-
ple positive almost periodic solutions to an impulsive
non-autonomous Lotka-Volterra predator-prey system
with harvesting terms. Zhang and Luo [2] analyzed
the multiple periodic solutions of a delayed predator-
prey system with stage structure for the predator. Dai
et al. [3] focused on the multiple periodic solutions for
impulsive Gause-type ratio-dependent predator-prey
systems with non-monotonic numerical responses.
Wang and Fan [4] studied the multiple periodic so-
lutions for a non-autonomous delayed predator-prey
model with harvesting terms. Zhang et al. [5] studied
the multiplicity of positive periodic solutions to a gen-
eralized delayed predator-prey system with stocking.
For more investigation about predator-prey models or
related topic, one can see [6-67]. It shall be pointed
out that all the papers mentioned above are concerned
with periodic coefficients. However, the asymptot-
ically periodic system describe our real word more
realistic and more accurate than the periodic ones,
but the research work about asymptotically periodic
predator-prey is scare at present. Recently, Wei and
Wang [68] investigated a asymptotically periodic so-
lution multispecies competition predator-prey model
with Hilling Ill functional response. Yang and Chen
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[69] studied the uniformly strong persistence of a non-
linear asymptotically periodic multispecies competi-
tion predator-prey system with general functional re-
sponse.

In this paper, we will deal with the following
cyclic predator-prey system with Sigmoidal type func-
tional response

oy (t)

wl(t) [7“1 (t) — al(t)xl(t)

dl (t)xl(t)wg(t)
c1(t) + by (t)zy (t) + 23(¢)
ka(t)ds (t)z3(t)
c3(t) + ba(t)zs(t) + 23(t)

.Z'Q(t) T’Q(t) - ag(t)l‘g(t)
da(t)za(t)z3(t)
co(t) + ba(t)ma(t) + 23
k1 (t)da ()23 (t) ]
ci(t) + btz (t) + 23 (t) |’
@3(t) = w3(t) |r3(t) — as(t)zs(t)
d3(t)w1(t)w3(t)
c3(t) + ba(t)zs(t) + 23(t)
ko (t)da(t)23(t) ]
ca(t) + ba(t)za(t) +23(t) |

where z, is the predator ofz,, x3 is the predator

_l’_

|

oo (t)

1)
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of x5 and z; is the predator ofcs, they have de-
pendent density and Sigmoidal functional response.
a,-(t), bi(t), Ci(t), di(t), ki(t), Tz(t)(l 1,2, 3) are
continuous nonnegative and bounded function within
[0, 4+00). Moreover,a;(t),c;(t)(i = 1,2,3) > 0.

Now we defineR . = [0, +o0) ard introduce the
concept of the asymptotically function.

Definiton 1 If f € C(R+,R), where f(t)

g(t) + a(t), g(t) is continuousT-periodic function
andlim;_. a(t) = 0, then f(¢) is called asymptot-
ically T-periodic function.

Throughout this paper, we always assume that

(H1) ai(t),bi(t), ci(t), di(t), ki(t), ra(t) (i = 1,2,3)
are all continuous positive, bounded asymptotically
periodic functions.

This paper is organized as follows. In Section 2,
the permanence of system (1) are studied by using the
differential inequality theory. In Section 3, the exis-
tence and uniqueness of asymptotically periodic so-
lution are investigated by constructing a suitable Lia-
punov function. Some numerical simulations that il-
lustrate our analytical predictions are carried out in
Section 4. A brief conclusion is drawn in Section 5.

2 Permanence

For convenience in the following discussing, we al-
ways use the notations:
l . u
= inf f(t = t
fr=mfft), f ?gfﬁ7
where f(t) is a continuous function. The initial value
condition of system (1) ig;(0) = ¢;(0) > 0(
1,2, 3). In order to obtain the main result of this pa-
per, we shall first state some definitions and several

lemmas which will be useful in the proving the main
result.

Definition 2 We say that system (1) is permanence if
there are positive constants and M such that for
each positive solutioriz; (¢), z2(t), z3(t)) of system
(1) satisfies

m < lim infz;(t) < tliin sup z;(t) < M,

t——+o0
wherei = 1,2, 3.

Definition 3 The solutionX (¢, ¢y, ¢) is called ulti-
mately bounded. If there exist8 > 0 such that for
anyty > 0,¢ € C, there existsl' = T'(tp,¢) > 0
whent > to + T, | X (t,t0, ¢)| < B.

Lemma 4 [70]If « > 0,b > 0 and i > z(b — ax),
whent > 0 andz(0) > 0, we have

lim infx(t) > é
t——+oo

Q

E-ISSN: 2224-2678 669

Changjin Xu, Qiming Zhang

Ifa>0,b>0ands < z(b— ax), whent > 0 and
z(0) > 0, we have

hI_El supz(t) <

@I@

Now we state our permanence result for system (1).

Lemma5 The setR?} = {(x1,x2,x3)|z; > 0,7 =
1,2,3.} is the positively invariant set of system (1).

It follows from the initial value condition
= ¢;(0 > 0(i = 1,2, 3) that

Proof:

:L'Z(O)

z1(1)

x1(0) exp { /Ot lrl(s) —ai(s)z1(s)

di(s)z1

()+b1()
k3 (s)ds

cs(s )+b3()

23(0) exp { /O

da(s)x

02( )—i—bg(
ki(s)d
1(s)z

) (t)

ds(s)x1(s)z3(s)
cs(s) + bg(s)xs(s) + 23(s)

k2 (s)da(s)3(s)
c2(8) + ba(s)xa(s) + x3(s)

ds ;.
(2

+

The proof of Lemma 5 is complete.

Theorem 6 Let My, My, M3 are defined by (3),(5)
and (7), respectively. In addition to the condition
(H1), suppose that the following condition

(H2) b\rt > d¥ Moy, bhrl > dyMs, bhrh > di M,
hold, then system (1) is permanent, that is, there ex-
ist positive constantsn;, M;(: = 1,2,3) which are
independent of the solution of system (1), such that
for any positive solution(z;(t), z2(t), z3(t)) of sys-
tem (1) with the initial condition
one has

m; < lim infz;(t) < lim supu(t) < M;.

t——+o0 t——+o0

Volume 13, 2014



WSEAS TRANSACTIONS on SYSTEMS

Proof: It is easy to see that system (1) with
the initial value condition(z1(0),z2(0),23(0)) has
positive solution(x1(t), x2(t), 23(t)) passing through
(ml(O),xQ(O),xg(O)). Let(ml(t),wg(t),xg(t)) be any
positive solution of system (1) with the initial con-
dition (z1(0), z2(0),z3(0)). It follows from the first
equation of system (1) that

dml(t)
dt

= l’l(t) |"I"1 (t) — a1 (t):L'l(t)

dl (t)xl (t)l‘g (t)
c1(t) + by (t)wy (t) + 22(t)

ks (t)ds ()23 () 1

es(t) + by(t)wa(t) + 23(1)
< @[ - a®)
s (t)ds (1)
< @) [l + kY - ala(8)].

It follows from Lemma 4 that
ri + kidy

lim supz;(t) < ;

= M;. 3
o o IR )

For any positive constant; > 0, it follows (3) that
there exists 7 > 0 such that for alk > 717,

z1(t) < My +e. (4)
By the second equation of system (1) that

dl’Q (t)
dt

= xg(t) [7’2 (t) — as (t)l‘g(t)

 da(t)za(H)as(t)
ca(t) + ba(t)wa(t) + 23
ka(t)da ()23 (t) ]
ci(t) + b1 (t)z1(t) + 23 (t)
< 2(b) [rg(t) — as(t)za(t
() (1)
< @o(t) [y + kYt — abaa(t)] -

It follows from Lemma 4 that

ry +kidi
lim supwr(t) < ——F—:

= M. 5
i p 2 ()

For any positive constard > 0, it follows (5) that
there exists &5 > 0 such that for allt > T,

zo(t) < My +e. (6)
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By the third equation of system (1) that

dxg(t)
dt

= x3(t) [7”3(75) — az(t)w3(t)
dg(t)xl(t)wg(t)
c3(t) + bs(t)z3(t) + 23(t)

ka(t)da(t)25(t) 1
(t) + 23(t)

IN
8
[\

—~
~

< @o(t) [y + kydy — abaa(t)]-

It follows from Lemma 4 that

. ry + kydy
lim supw3(t) < =—F—=:

= Ms. 7
i p ()

For any positive constard > 0, it follows (7) that
there exists d5 > Ty > 0 such that for alt > T3,

r3(t) < M3 +e. (8)

Fort > T3, from (6) and the first equation of system
(1), we have

d(L’dlt(t) — ﬂj‘l(t) |"I"1 (t) —ay (t)l'l(t)
dy(t)z1(t)wa(t)
c1(t) + ba(t)wy (t) + 23(t)
s()ds()3(0) 1

cs(t) + bs(t)x <>+w§<t>
> 2i()]ri(t) — ax (D) (t)
di(t)s LIGEG]
bi(t)
> zi(t)[r} - e (t)

_dqf(MQ + 6)}
b4 '

Thus, as a direct corollary of Lemma 4, one has

b17“1 d%(MQ + 5)
tl}+moo infz(t) > il .9
Settinge — 0, it follows that
tl}inoo inf 2 (t) > bll =mp. (10)
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Fort > T3, from (8) and the second equation of sys-
tem (1), we have
dxg(t)
dt

v

2o(t)[rh — ajas(t)

Y (M.
~dy( :l’>+€)}. (11)
b
It follows Lemma 2.1 and (11) that
bhrh — dy (M:
lim infzo(t) > 2"2 2(1 3% E). (12)
oo aybh
Settinge — 0in (12) leads to
L.l (Ve
lim infxo(t) > bary — d3 Ms =my. (13)
S a3t}

Fort > T3 > T1 > 0, from (4) and the second equa-
tion of system (1), we have

) _ [r?,(t) ~ as()as ()
- ds(t)zy1(t)ws(t)
c3(t) + bs(t)z3(t) + 23(t)

ko (t)da (1) x3(t) ]
ca(t) + ba(t)ma(t) + z3(¢)

z3(t) [7”3@) —az(t)zs(t)

B dg(t)xl(t)wg(t)]
bs(t)

v

v

z3(t) lré —azws(t)

_dg(M; +¢)
vl '

It follows Lemma 4 that

bhrh — d4(My +¢)

lim infzs(t) > ;
azby

t——+o00

(14)
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Settinge — 0in (2.13) leads to

bhrl — d4M
lim infa3(t) > 23T — A5 7

t——+00

=ms3. (15)

upl
asbs

In view of (3),(5),(7),(10), (13) and (15), we can con-
clude that system (1) is permanent. The proof of The-
orem 6 is complete.

Denote

Q = {(z1,72,23)" € Ry|m; < a; < M;,i=1,2,3}.

Corollary 7 The sef is the ultimately bounded set
of system (1).

3 Existence and uniqueness of

asymptotically periodic solution

Let us consider the asymptotically periodic system as

follows
dx

dt - f(t7 ‘Tt)a
where f € C([-r,0], R") and for anyz; € C. De-
fine z,(0) = x(t +0),6 € [-r0]. For anyz =
(x1,22, -, 2y) € R", we define|z| = Y1 |xi],
from the above proof, we can see that there exists
H > 0 such thatz| < nM; < H. Forany¢ € C,
define||¢l| = sup_,<g<o|@(0)]. Let Cy = {o €
C, 4|l < H} andSy = {& € R",|z| < H}.
In order to focus on the existence and unigueness of
asymptotically periodic solution of system (16), we
consider the adjoint system

(16)

de

t
Y

dt

= f(t,l‘t),
f(t>yt)'

an

Then we begin with our analysis with Lemma 3.1.

Lemma 8 (Yuan [71]) Let V € C(Ry x Sy X
Sw, Ry) satisfy

() a(le —y| < V(t,2,) < b(jz — y|), wherea(r)
andb(r) are continuously positively increasing func-
tions;

(i) [V (t, 21, 91) = V(t 22, y2)| < (|21 — 22
y2|), wherel is a constant and satisfiés> 0;

(i) there exists continuous non-increasing function
P(s), such that fors > 0,P(s) > s. And as
PV (t,6(0),6(0))) > V(t + 6,0(0),0(0)),0 <
[-r,0], it follows that Van (¢, #(0),4(0)) <
=0V (t,9(0),#(0)), whered is a constant and satis-
fiesd > 0. Furthermore, system (16) has a solution

+ly1 —
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&(t) for t > to and satisfieg|é,|| < H. Then sys-
tem (16) has a unique asymptotically periodic solu-
tion, which is uniformly asymptotically stable.

Theorem 9 Let 6., 65,03 and § are defined by (24),
(25), (26) and (27), respectively. In addition to the
conditions (H1) and (H2), assume further that>

0 is satisfied, then there exists a unique asymptoti-

cally periodic solution of system (1) wich is uniformly
asymptotically stable.

Proof: By Theorem 6 (or Corollary 7), we know that
the solution of system (1) is ultimately boundef}.

is the region of ultimately bounded. We consider the
adjoint system of system (1) as follows

t1(t) = 21(t) [7’1 (t) — a1 (t)z1(t)
_ di (H)z1 (H)z2 (1)
OFNOPOET0

k3 (t)ds ()3 (t)
c3 (t)-i—b:; (t)x:; (t)-l—l‘g (t) ’

_|_

g (t) = w(t) [Tz(t) — az(t)x2(t)
do (t).’EQ (t)rg(t)
Cz(t)—i-bz (t).’EQ (t)—i—x%

k1 (8)da (D2 ()
c1 () b1 (D)1 () +a2(D) |’

_|_

(tg(t) = xg(t) [Tg(t) — ag(t)wg(t)
- dg(t)rl(t).’ﬂg(t)
Cg(t)—i—bg (t)mg(t)—i-xg (t)

o (£)da ()3 (£)
c2(0)+b2 V2 (D 23D |’

(18)
?ll(t) = ul(t) [7’1 (t) — al (t)u1 (t)

- d1 (t)ul(t)ug(t)

c1 (t)—‘rbl( )ul(t)—i-u% (t)

k3 (t)ds (t)u3(t)
c3(t)+bs(t )ug(t)+u3(t) ’

_|_

ta(t) = ua(t) [Tz(t) — ag(t)ux(t)
do (t)ug(t)ug(t)
c2 (t)—i—bz (t)u2 (t) +u§

k1 (t)d (t)uf (t)
c1(®)+b1 (ur () +ui(t) |

_|_

u3(t) = us(t) [7’3@) — az(t)us(t)
L duBus®)
Cg(t)—i—bg( )ug(t)+u§ (t)

ka (t)da (t)u3 ()
ca(t)+b2(t )u2(t)+u2(t) '

_|_

For X(t) =
(u(t), uz(t),

(z1(t), w2(t), 23(t)) and U(t) =
us(t)) are the solutions of system (18)
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inQ x Q. Letzf(t) = Inwz;(t),u;(t) = Inw,;(t),i =
1,2,3. Now we construct a Lyapunov functional as

follows
3
= |aj(t) -
=1

Takinga(r) = b(r) = 3_ |z¥(t) —u} (t)| and using
the inequality||a| — |b|| < |a — b|, we can easily prove
that (i) and (ii) in Lemma 8 hold true. In the sequel,
we will investigate (iii) of Lemma 8. It follows from

(16) that
Lorat) ()
DTV(t) = Z( )
xsign(z; (t) — u;(t))
< —dh a1 (t) — wa(t)]
l di(t)z1(t)7a(t)
()+bl() 1(t) + z1(1)
B di (t)ur (t ]
()+bl(

(19)

ac t

[ ks(t)d () (t)
c3(t) +bs(t)z ()+w§(t)
ka(t)ds (t)u3(t) 1
cs(t) + bg(t)us(t) + u3(t)
—ablwa(t) — ua(t)]
+[ dg( )xg (t)l‘g(t
co(t) + ba(t)za(t)
da(t)ua(t)us(t)
ca(t) + ba(t)ua(t) + u3
+[ k1 (0)ds (D2 (1)
1(t) + by (t)x1 () + 23 (1)
B k()da (t)ui(t) 1
ci(t) + br(t)ur () + ui(t)
—ab|ws(t) — us(t)
ds(t)z (¢
()+b3() 3(t) + 23(t)
B d3(t)ur (75 ]
()+b3(

)
+w2

|
s Jas(1)

l ko(t)d () (t)
co(t) + bo(t)xa(t )+;U%(t)

L ka(t)da(t)u3(t)
ca(t) + ba(t)ua(t) + us(t)
! d My + di M} My
(cll + bllml + m%)2

< [—alﬁ—

Volume 13, 2014



WSEAS TRANSACTIONS on SYSTEMS
x|z1(t) — u1(t)]
M d My + dY o) ME + ) M
I (¢} + bhmy + m3?)2
x|za(t) — ua(t)]
2kM M ad My + 2k bd ad M2
I (cé + bémg +m3)?
x|z3(t) — us(t)|
I déwcg/[Mg + déwM%Mg
| —a l I 2\2
I (¢y + bymg +m3)
X |22 (t) — uz(t)]
dY e Mo + dYT o3 M2 + d3f M
I (ch + bhmg + m3)2
x|x3(t) — us(t)]
[ dM M My + 2dY Mz M
+_aé+3? 11 32321
I (¢4 + byms +m3)
x|x3(t) — us(t)]
dM M My + 2d3 b M + 2d§/1M32]

+

+

(cg + bémg + m3)?

xfor (t) = w (1) (20)
Nothing that
i (t) — uq(t)]
= | exp(z; (1)) — exp(u; (t))]
= exp(&(t)) |7 (1) —u; (1), (21)
where¢;(t) lies betweenc;(¢) andu;(t). Then we
have
mala () — ui(8)]
< Jwi(t) — ui(t)]
< Milzi(t) —ui(t)],i = 1,2,3. (22)

It follows from (20)and (22) that

M dY My + d}f MEM,

DYV(#) < |-d +
() = ! (cll + bllml + m?)2

x|y (f) — i (t)]

M My + dY oY MR+ ) M
I (¢} + bhmy +m3?)2
X Moz (t) — uz(t)|

2k ATl My + 2k 0 ddT M2
I (¢4 + byms + m3)?
X M|a3(t) — uz(t)]

, o dY M My + ad M2

t|—ax+ Y 272

I (¢4 + bymag + m3)

_l’_

_l’_

E-ISSN: 2224-2678

|

673

Changjin Xu, Qiming Zhang
xmalwy(t) — u3(t)]
M M Ny 4+ dMM M2 4 a3
I (ch + bhmg + m32)2
X Mals(t) — uz(t)|
ngCQJMl + Qdé\/[Mng
I (ch + bhmg + m32)?
xmsla (1) — w3 (1)
déwcéwMg + Qdé\/‘lbg/[Mg + 2d§/[M32
I (ch + bhkmg + m32)?
X My|x(t) — uy(t)]
= =]z () — ui(t)|
—b2|z5(t) — us(t)]
—0O3|3(t) — us(t)],

_l’_

+ |—dh+

+

(23)

where

6 — l - AMa My +d{‘4M12M2] 1
(ch + bym1 +mi)?
dg/lcéwMg + Qdé\/‘lbg/[Mg + 2dé\4M32
B [ (ch + bkmg + m3)2 ]

XMl,

o [ AN+ B
2 (ch + bhmo +m2)?

[l Ay 4 Y MR 4 Y
(ch + bymy +m3)?

(24)

XMQ, (25)
. 1 dé\/[cé\/[Ml + 2d§4M3M1
03 = |a3 — I 7l 2\2 3
(¢ + bsms + m3)
2k e a M + 2837 v} a} M3
(ch + bikmg + m2)?

XMg
[dM M My + d oM M2 + db M3
(ch + bhmg + m3)2

X Ms. (26)
Let
d = min{6y, 6,03} (27)
It follows from (23) and (27) that
DTV (t) < =6V (t). (28)

Then (iii) of Lemma 3.1 is fulfilled. Therefore system
(1) has a unique positive asymptotically periodic solu-
tion in domain, which is uniformly asymptotically
stable. The proof is complete.
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4 Numerical example

To illustrate the theoretical results, we present some 25
numerical simulations. Let us consider the following
cyclic predator-prey system with Sigmoidal type func- 2
tional response: _
=15
&1(t) = z1(t) lrl(t) —ai(t)z1(t) i
_ dl (t)xl (t)ajg (t) 0.5
c1(t) + by (t)xy (t) + 23 (¢)
]{73 (t)dg (t)l'?), (t) % 50 100 150 200
c3(t) + ba(t)zs(t) + 23(t) |

Ta(t) = z2(t) | r2(t) — aa(t)ea(t) Fig.1. The dynamical behavior of the solution
do(t)zo(t)z3(t) (29) (x1(t), z2(t), 23(t)) of system (29).

co(t) + ba(t)wa(t) + 23

k1 (t)da ()27 (t) ]

c1(t) + bi(B)xr(t) + 22(t) |

t3(t) = w3(t) |73(t) — az(t)xs(t)

d3( ) ( )$3(t) 15
c3(t) + ba(t)zs(t) + 23(t)

ko (t)da (t)x3(t) ]
co(t) + ba(t)xa(t) + 23(t) |

X,

where

bi(t) =20+ 0.2sint, ba(t) = 10 + 0.4 cos t, -1 - o o s
b3(t) =15+ 0.3sint,a1(t) = 10 + sint, ¢

as(t) = 11 + cost, az(t) = 12 — cost,
ri(t) =10 +0.3sint, ry(t) = 12 + 0.2 cost, Fig.2. The dynamical behavior of the solutiam (¢),
r3(t) = 13 — 0.2sint, d; (t) = 0.2 4+ 0.2 cos t, (1), 23(t)) of system (29).
da(t) = 0.2+ 0.1sint,ds(t) = 0.1 + 0.1 cost,
ki1(t) =1 +sint, ka(t) = 1 +sint,
(t) =

ks(t 1 4 sint. 1

0.9

Then

by =19.8,b) =9.6,b4 = 14.7,

rt =9.7,rh =11.8,74 =128,

al =9,a, =10,a} = 11,

rt =10.3,r% =12.2,r¥ = 13.2,

d¥ =0.4,d4 =0.3,d% = 0.2,

M = 1.1889, My = 1.3, M3 = 1.2181.

x,(0)

It is easy to check that the coefficients of system (29)

0

satisfy all the conditions in Theorem 9. The phase ° % e 20

diagram of system (29) is illustrated in Figures 1-

3. Numerical simulations show that system (29) has

a unique positive periodic solution which is globally Fig.3. The dynamical behavior of the solution
asymptotically stable. (x1(t), z2(t), z3(t)) of system (29).
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5 Conclusions

In this paper, we have analyzed a cyclic predator-
prey system with Sigmoidal type functional response.
Applying the differential inequality theory, we obtain
some sufficient conditions for the permanence of the
system. By constructing a suitable Liapunov func-
tion, we find that under some suitable conditions, the
system has a unique asymptotically periodic solution
which is globally asymptotically stable. Numerical
simulations show the feasibility of our main results.
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