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Abstract:This paper is concerned with a cyclic predator-prey system with Sigmoidal type functional response. By
using the differential inequality theory, some sufficient conditions are derived for the permanence of the system.
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tion which is globally asymptotically stable. Some numerical simulations that illustrate our analytical predictions
are carried out. The paper ends with a brief conclusion.
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1 Introduction

In recent years, the interest in study of the dynami-
cal properties occurring in the predator-prey system
with delay has been growing rapidly. For example,
Li and Ye [1] had made discussion about the multi-
ple positive almost periodic solutions to an impulsive
non-autonomous Lotka-Volterra predator-prey system
with harvesting terms. Zhang and Luo [2] analyzed
the multiple periodic solutions of a delayed predator-
prey system with stage structure for the predator. Dai
et al. [3] focused on the multiple periodic solutions for
impulsive Gause-type ratio-dependent predator-prey
systems with non-monotonic numerical responses.
Wang and Fan [4] studied the multiple periodic so-
lutions for a non-autonomous delayed predator-prey
model with harvesting terms. Zhang et al. [5] studied
the multiplicity of positive periodic solutions to a gen-
eralized delayed predator-prey system with stocking.
For more investigation about predator-prey models or
related topic, one can see [6-67]. It shall be pointed
out that all the papers mentioned above are concerned
with periodic coefficients. However, the asymptot-
ically periodic system describe our real word more
realistic and more accurate than the periodic ones,
but the research work about asymptotically periodic
predator-prey is scare at present. Recently, Wei and
Wang [68] investigated a asymptotically periodic so-
lution multispecies competition predator-prey model
with Hilling III functional response. Yang and Chen

[69] studied the uniformly strong persistence of a non-
linear asymptotically periodic multispecies competi-
tion predator-prey system with general functional re-
sponse.

In this paper, we will deal with the following
cyclic predator-prey system with Sigmoidal type func-
tional response
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ẋ1(t) = x1(t)

[

r1(t) − a1(t)x1(t)

−
d1(t)x1(t)x2(t)

c1(t) + b1(t)x1(t) + x2
1(t)

+
k3(t)d3(t)x

2
3(t)

c3(t) + b3(t)x3(t) + x2
3(t)

]

,

ẋ2(t) = x2(t)

[

r2(t) − a2(t)x2(t)

−
d2(t)x2(t)x3(t)

c2(t) + b2(t)x2(t) + x2
2

+
k1(t)d1(t)x

2
1(t)

c1(t) + b1(t)x1(t) + x2
1(t)

]

,

ẋ3(t) = x3(t)

[

r3(t) − a3(t)x3(t)

−
d3(t)x1(t)x3(t)

c3(t) + b3(t)x3(t) + x2
3(t)

+
k2(t)d2(t)x

2
2(t)

c2(t) + b2(t)x2(t) + x2
2(t)

]

,

(1)

where x2 is the predator ofx1, x3 is the predator
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of x2 and x1 is the predator ofx3, they have de-
pendent density and Sigmoidal functional response.
ai(t), bi(t), ci(t), di(t), ki(t), ri(t)(i = 1, 2, 3) are
continuous nonnegative and bounded function within
[0,+∞). Moreover,ai(t), ci(t)(i = 1, 2, 3) > 0.

Now we defineR+ = [0,+∞) and introduce the
concept of the asymptotically function.

Definition 1 If f ∈ C(R+, R), where f(t) =
g(t) + α(t), g(t) is continuousT -periodic function
and limt→+∞ α(t) = 0, thenf(t) is called asymptot-
ically T -periodic function.

Throughout this paper, we always assume that
(H1) ai(t), bi(t), ci(t), di(t), ki(t), ri(t)(i = 1, 2, 3)
are all continuous positive, bounded asymptotically
periodic functions.

This paper is organized as follows. In Section 2,
the permanence of system (1) are studied by using the
differential inequality theory. In Section 3, the exis-
tence and uniqueness of asymptotically periodic so-
lution are investigated by constructing a suitable Lia-
punov function. Some numerical simulations that il-
lustrate our analytical predictions are carried out in
Section 4. A brief conclusion is drawn in Section 5.

2 Permanence
For convenience in the following discussing, we al-
ways use the notations:

f l = inf
t∈R

f(t), fu = sup
t∈R

f(t),

wheref(t) is a continuous function. The initial value
condition of system (1) isxi(0) = φi(0) > 0(i =
1, 2, 3). In order to obtain the main result of this pa-
per, we shall first state some definitions and several
lemmas which will be useful in the proving the main
result.

Definition 2 We say that system (1) is permanence if
there are positive constantsm and M such that for
each positive solution(x1(t), x2(t), x3(t)) of system
(1) satisfies

m ≤ lim
t→+∞

inf xi(t) ≤ lim
t→+∞

supxi(t) ≤ M,

wherei = 1, 2, 3.

Definition 3 The solutionX(t, t0, φ) is called ulti-
mately bounded. If there existsB > 0 such that for
any t0 ≥ 0, φ ∈ C, there existsT = T (t0, φ) > 0
whent ≥ t0 + T, |X(t, t0, φ)| ≤ B.

Lemma 4 [70] If a > 0, b > 0 and ẋ ≥ x(b − ax),
whent ≥ 0 andx(0) > 0, we have

lim
t→+∞

inf x(t) ≥
b

a
.

If a > 0, b > 0 and ẋ ≤ x(b − ax), whent ≥ 0 and
x(0) > 0, we have

lim
t→+∞

supx(t) ≤
b

a
.

Now we state our permanence result for system (1).

Lemma 5 The setRn
+ = {(x1, x2, x3)|xi > 0, i =

1, 2, 3.} is the positively invariant set of system (1).

Proof: It follows from the initial value condition
xi(0) = φi(0 > 0(i = 1, 2, 3) that

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

x1(t) = x1(0) exp

{

∫

t

0

[

r1(s) − a1(s)x1(s)

−
d1(s)x1(s)x2(s)

c1(s) + b1(s)x1(s) + x2
1(s)

+
k3(s)d3(s)x

2
3(s)

c3(s) + b3(s)x3(s) + x2
3(s)

]

ds

}

,

x2(t) = x2(0) exp

{

∫

t

0

[

r2(s) − a2(s)x2(s)

−
d2(s)x2(s)x3(s)

c2(s) + b2(s)x2(s) + x2
2(s)

+
k1(s)d1(s)x

2
1(s)

c1(s) + b1(s)x1(s) + x2
1(s)

]

ds

}

,

ẋ3(t) = x3(0) exp

{

∫

t

0

[

r3(s) − a3(s)x3(s)

−
d3(s)x1(s)x3(s)

c3(s) + b3(s)x3(s) + x2
3(s)

+
k2(s)d2(s)x

2
2(s)

c2(s) + b2(s)x2(s) + x2
2(s)

]

ds

}

.

(2)
The proof of Lemma 5 is complete.

Theorem 6 Let M1,M2,M3 are defined by (3),(5)
and (7), respectively. In addition to the condition
(H1), suppose that the following condition

(H2) bl
1r

l
1 > du

1M2, b
l
2r

l
2 > du

2M3, b
l
3r

l
3 > du

3M1

hold, then system (1) is permanent, that is, there ex-
ist positive constantsmi,Mi(i = 1, 2, 3) which are
independent of the solution of system (1), such that
for any positive solution(x1(t), x2(t), x3(t)) of sys-
tem (1) with the initial condition

xi(0) ≥ 0(i = 1, 2, 3),

one has

mi ≤ lim
t→+∞

inf xi(t) ≤ lim
t→+∞

supu(t) ≤ Mi.
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Proof: It is easy to see that system (1) with
the initial value condition(x1(0), x2(0), x3(0)) has
positive solution(x1(t), x2(t), x3(t)) passing through
(x1(0), x2(0), x3(0)). Let(x1(t), x2(t), x3(t)) be any
positive solution of system (1) with the initial con-
dition (x1(0), x2(0), x3(0)). It follows from the first
equation of system (1) that

dx1(t)

dt
= x1(t)

[

r1(t) − a1(t)x1(t)

−
d1(t)x1(t)x2(t)

c1(t) + b1(t)x1(t) + x2
1(t)

+
k3(t)d3(t)x

2
3(t)

c3(t) + b3(t)x3(t) + x2
3(t)

]

≤ x1(t)
[

r1(t) − a1(t)x1(t)

+k3(t)d3(t)
]

≤ x1(t)
[

ru
1 + ku

3du
3 − al

1x1(t)
]

.

It follows from Lemma 4 that

lim
t→+∞

supx1(t) ≤
ru
1 + ku

3du
3

al
1

:= M1. (3)

For any positive constantε1 > 0, it follows (3) that
there exists aT1 > 0 such that for allt > T1,

x1(t) ≤ M1 + ε. (4)

By the second equation of system (1) that

dx2(t)

dt
= x2(t)

[

r2(t) − a2(t)x2(t)

−
d2(t)x2(t)x3(t)

c2(t) + b2(t)x2(t) + x2
2

+
k1(t)d1(t)x

2
1(t)

c1(t) + b1(t)x1(t) + x2
1(t)

]

≤ x2(t)
[

r2(t) − a2(t)x2(t)

+k1(t)d1(t)
]

≤ x2(t)
[

ru

2 + ku

1du

1 − al

2x2(t)
]

.

It follows from Lemma 4 that

lim
t→+∞

supx2(t) ≤
ru
2 + ku

1du
1

al
2

:= M2. (5)

For any positive constantε > 0, it follows (5) that
there exists aT2 > 0 such that for allt > T2,

x2(t) ≤ M2 + ε. (6)

By the third equation of system (1) that

dx3(t)

dt
= x3(t)

[

r3(t) − a3(t)x3(t)

−
d3(t)x1(t)x3(t)

c3(t) + b3(t)x3(t) + x2
3(t)

+
k2(t)d2(t)x

2
2(t)

c2(t) + b2(t)x2(t) + x2
2(t)

]

≤ x2(t)
[

r3(t) − a3(t)x3(t)

+k2(t)d2(t)
]

≤ x2(t)
[

ru
3 + ku

2du
2 − al

3x3(t)
]

.

It follows from Lemma 4 that

lim
t→+∞

supx3(t) ≤
ru
3 + ku

2du
2

al
3

:= M3. (7)

For any positive constantε > 0, it follows (7) that
there exists aT3 > T2 > 0 such that for allt > T3,

x3(t) ≤ M3 + ε. (8)

For t ≥ T3, from (6) and the first equation of system
(1), we have

dx1(t)

dt
= x1(t)

[

r1(t) − a1(t)x1(t)

−
d1(t)x1(t)x2(t)

c1(t) + b1(t)x1(t) + x2
1(t)

+
k3(t)d3(t)x

2
3(t)

c3(t) + b3(t)x3(t) + x2
3(t)

]

≥ x1(t)
[

r1(t) − a1(t)x1(t)

−
d1(t)x2(t)

b1(t)

]

≥ x1(t)
[

rl
1 − au

1x1(t)

−
du
1(M2 + ε)

bl
1

]

.

Thus, as a direct corollary of Lemma 4, one has

lim
t→+∞

inf x1(t) ≥
bl
1r

l
1 − du

1(M2 + ε)

au
1bl

1

. (9)

Settingε → 0, it follows that

lim
t→+∞

inf x1(t) ≥
bl
1r

l
1 − du

1M2

au
1bl

1

:= m1. (10)
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For t ≥ T3, from (8) and the second equation of sys-
tem (1), we have

dx2(t)

dt
= x2(t)

[

r2(t) − a2(t)x2(t)

−
d2(t)x2(t)x3(t)

c2(t) + b2(t)x2(t) + x2
2

+
k1(t)d1(t)x

2
1(t)

c1(t) + b1(t)x1(t) + x2
1(t)

]

≥ x2(t)

[

r2(t) − a2(t)x2(t)

−
d2(t)x3(t)

b2(t)

]

≥ x2(t)
[

rl
2 − au

2x2(t)

−
du
2(M3 + ε)

bl
2

]

. (11)

It follows Lemma 2.1 and (11) that

lim
t→+∞

inf x2(t) ≥
bl
2r

l
2 − du

2(M3 + ε)

au
2bl

2

. (12)

Settingε → 0 in (12) leads to

lim
t→+∞

inf x2(t) ≥
bl
2r

l
2 − du

2M3

au
2bl

2

:= m2. (13)

For t ≥ T3 > T1 > 0, from (4) and the second equa-
tion of system (1), we have

dx3(t)

dt
= x3(t)

[

r3(t) − a3(t)x3(t)

−
d3(t)x1(t)x3(t)

c3(t) + b3(t)x3(t) + x2
3(t)

+
k2(t)d2(t)x

2
2(t)

c2(t) + b2(t)x2(t) + x2
2(t)

]

≥ x3(t)

[

r3(t) − a3(t)x3(t)

−
d3(t)x1(t)x3(t)

b3(t)

]

≥ x3(t)

[

rl
3 − au

3x3(t)

−
du
3(M1 + ε)

bl
3

]

.

It follows Lemma 4 that

lim
t→+∞

inf x3(t) ≥
bl
3r

l
3 − du

3(M1 + ε)

au
3bl

3

. (14)

Settingε → 0 in (2.13) leads to

lim
t→+∞

inf x3(t) ≥
bl
3r

l
3 − du

3M1

au
3bl

3

:= m3. (15)

In view of (3),(5),(7),(10), (13) and (15), we can con-
clude that system (1) is permanent. The proof of The-
orem 6 is complete.

Denote

Ω = {(x1, x2, x3)
T ∈ R+|mi ≤ xi ≤ Mi, i = 1, 2, 3}.

Corollary 7 The setΩ is the ultimately bounded set
of system (1).

3 Existence and uniqueness of
asymptotically periodic solution

Let us consider the asymptotically periodic system as
follows

dx

dt
= f(t, xt), (16)

wheref ∈ C([−r, 0], Rn) and for anyxt ∈ C. De-
fine xt(θ) = x(t + θ), θ ∈ [−r, 0]. For anyx =
(x1, x2, · · · , xn) ∈ Rn, we define|x| =

∑

n

i=1 |xi|,
from the above proof, we can see that there exists
H > 0 such that|x| ≤ nMi < H. For anyφ ∈ C,
define ||φ|| = sup−r≤θ≤0 |φ(θ)|. Let CH = {φ ∈
C, ||φ|| < H} and SH = {x ∈ Rn, |x| < H}.
In order to focus on the existence and uniqueness of
asymptotically periodic solution of system (16), we
consider the adjoint system











dx

dt
= f(t, xt),

dy

dt
= f(t, yt).

(17)

Then we begin with our analysis with Lemma 3.1.

Lemma 8 (Yuan [71]) Let V ∈ C(R+ × SH ×
SH , R+) satisfy
(i) a(|x − y| ≤ V (t, x, y) ≤ b(|x − y|), wherea(r)
and b(r) are continuously positively increasing func-
tions;
(ii) |V (t, x1, y1)−V (t, x2, y2)| ≤ l(|x1 −x2|+ |y1−
y2|), wherel is a constant and satisfiesl > 0;
(iii) there exists continuous non-increasing function
P (s), such that fors > 0, P (s) > s. And as
P (V (t, φ(0), φ(0))) > V (t + θ, φ(θ), φ(θ)), θ ∈

[−r, 0], it follows that V
′

(17)(t, φ(0), φ(0)) ≤

−δV (t, φ(0), φ(0)), whereδ is a constant and satis-
fiesδ > 0. Furthermore, system (16) has a solution
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ξ(t) for t ≥ t0 and satisfies||ξt|| ≤ H. Then sys-
tem (16) has a unique asymptotically periodic solu-
tion, which is uniformly asymptotically stable.

Theorem 9 Let θ1, θ2, θ3 and δ are defined by (24),
(25), (26) and (27), respectively. In addition to the
conditions (H1) and (H2), assume further thatδ >
0 is satisfied, then there exists a unique asymptoti-
cally periodic solution of system (1) wich is uniformly
asymptotically stable.

Proof: By Theorem 6 (or Corollary 7), we know that
the solution of system (1) is ultimately bounded.Ω
is the region of ultimately bounded. We consider the
adjoint system of system (1) as follows
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

























ẋ1(t) = x1(t)

[

r1(t) − a1(t)x1(t)

− d1(t)x1(t)x2(t)
c1(t)+b1(t)x1(t)+x2

1
(t)

+
k3(t)d3(t)x2

3
(t)

c3(t)+b3(t)x3(t)+x2

3
(t)

]

,

ẋ2(t) = x2(t)

[

r2(t) − a2(t)x2(t)

− d2(t)x2(t)x3(t)
c2(t)+b2(t)x2(t)+x2

2

+
k1(t)d1(t)x2

1
(t)

c1(t)+b1(t)x1(t)+x2

1
(t)

]

,

ẋ3(t) = x3(t)

[

r3(t) − a3(t)x3(t)

− d3(t)x1(t)x3(t)
c3(t)+b3(t)x3(t)+x2

3
(t)

+
k2(t)d2(t)x2

2
(t)

c2(t)+b2(t)x2(t)+x2

2
(t)

]

,

u̇1(t) = u1(t)

[

r1(t) − a1(t)u1(t)

− d1(t)u1(t)u2(t)
c1(t)+b1(t)u1(t)+u2

1
(t)

+
k3(t)d3(t)u2

3
(t)

c3(t)+b3(t)u3(t)+u2

3
(t)

]

,

u̇2(t) = u2(t)

[

r2(t) − a2(t)u2(t)

− d2(t)u2(t)u3(t)
c2(t)+b2(t)u2(t)+u2

2

+
k1(t)d1(t)u2

1
(t)

c1(t)+b1(t)u1(t)+u2

1
(t)

]

,

u̇3(t) = u3(t)

[

r3(t) − a3(t)u3(t)

− d3(t)u1(t)u3(t)
c3(t)+b3(t)u3(t)+u2

3
(t)

+
k2(t)d2(t)u2

2
(t)

c2(t)+b2(t)u2(t)+u2

2
(t)

]

.

(18)

For X(t) = (x1(t), x2(t), x3(t)) and U(t) =
(u1(t), u2(t), u3(t)) are the solutions of system (18)

in Ω × Ω. Let x∗
i (t) = ln xi(t), u

∗
i (t) = ln ui(t), i =

1, 2, 3. Now we construct a Lyapunov functional as
follows

V (t) =
3

∑

i=1

|x∗
i (t) − u∗

i (t)|. (19)

Takinga(r) = b(r) =
∑3

i=1 |x
∗
i
(t)−u∗

i
(t)| and using

the inequality||a|− |b|| ≤ |a−b|, we can easily prove
that (i) and (ii) in Lemma 8 hold true. In the sequel,
we will investigate (iii) of Lemma 8. It follows from
(16) that

D+V (t) =
3

∑

i=1

(

ẋi(t)

xi(t)
−

u̇i(t)

ui(t)

)

×sign(xi(t) − ui(t))

≤ −al
1|x1(t) − u1(t)|

+

[

d1(t)x1(t)x2(t)

c1(t) + b1(t)x1(t) + x2
1(t)

−
d1(t)u1(t)u2(t)

c1(t) + b1(t)u1(t) + u2
1(t)

]

+

[

k3(t)d3(t)x
2
3(t)

c3(t) + b3(t)x3(t) + x2
3(t)

−
k3(t)d3(t)u

2
3(t)

c3(t) + b3(t)u3(t) + u2
3(t)

]

−al

2|x2(t) − u2(t)|

+

[

d2(t)x2(t)x3(t)

c2(t) + b2(t)x2(t) + x2
2

−
d2(t)u2(t)u3(t)

c2(t) + b2(t)u2(t) + u2
2

]

+

[

k1(t)d1(t)x
2
1(t)

c1(t) + b1(t)x1(t) + x2
1(t)

−
k1(t)d1(t)u

2
1(t)

c1(t) + b1(t)u1(t) + u2
1(t)

]

−al
3|x3(t) − u3(t)|

+

[

d3(t)x1(t)x3(t)

c3(t) + b3(t)x3(t) + x2
3(t)

−
d3(t)u1(t)u3(t)

c3(t) + b3(t)u3(t) + u2
3(t)

]

+

[

k2(t)d2(t)x
2
2(t)

c2(t) + b2(t)x2(t) + x2
2(t)

−
k2(t)d2(t)u

2
2(t)

c2(t) + b2(t)u2(t) + u2
2(t)

]

≤

[

− al
1 +

cM
1 dM

1 M2 + dM
1 M2

1 M2

(cl
1 + bl

1m1 + m2
1)

2

]
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×|x1(t) − u1(t)|

+

[

cM
1 dM

1 M1 + dM
1 bM

1 M2
1 + dM

1 M3
1

(cl
1 + bl

1m1 + m2
1)

2

]

×|x2(t) − u2(t)|

+

[

2kM
3 cM

3 dM
3 M3 + 2kM

3 bM
3 dM

3 M2
3

(cl
3 + bl

3m3 + m2
3)

2

]

×|x3(t) − u3(t)|

+

[

− al
2 +

dM
2 cM

2 M3 + dM
2 M2

2 M3

(cl
2 + bl

2m2 + m2
2)

2

]

×|x2(t) − u2(t)|

+

[

dM
2 cM

2 M2 + dM
2 bM

2 M2
2 + dM

2 M3
2

(cl
2 + bl

2m2 + m2
2)

2

]

×|x3(t) − u3(t)|

+

[

− al
3 +

dM
3 cM

3 M1 + 2dM
3 M3M1

(cl
3 + bl

3m3 + m2
3)

2

]

×|x3(t) − u3(t)|

+

[

dM
3 cM

3 M3 + 2dM
3 bM

3 M3 + 2dM
3 M2

3

(cl
3 + bl

3m3 + m2
3)

2

]

×|x1(t) − u1(t)|. (20)

Nothing that

|xi(t) − ui(t)|

= | exp(x∗
i (t)) − exp(u∗

i (t))|

= exp(ξi(t))||x
∗
i (t) − u∗

i (t)|, (21)

whereξi(t) lies betweenxi(t) and ui(t). Then we
have

mi|x
∗
i (t) − u∗

i (t)|

≤ |xi(t) − ui(t)|

≤ Mi|x
∗
i (t) − u∗

i (t)|, i = 1, 2, 3. (22)

It follows from (20)and (22) that

D+V (t) ≤

[

−al
1 +

cM
1 dM

1 M2 + dM
1 M2

1 M2

(cl
1 + bl

1m1 + m2
1)

2

]

×m1|x
∗
1(t) − u∗

1(t)|

+

[

cM
1 dM

1 M1 + dM
1 bM

1 M2
1 + dM

1 M3
1

(cl
1 + bl

1m1 + m2
1)

2

]

×M2|x
∗
2(t) − u∗

2(t)|

+

[

2kM
3 cM

3 dM
3 M3 + 2kM

3 bM
3 dM

3 M2
3

(cl
3 + bl

3m3 + m2
3)

2

]

×M3|x
∗
3(t) − u∗

3(t)|

+

[

−al
2 +

dM
2 cM

2 M3 + dM
2 M2

2 M3

(cl
2 + bl

2m2 + m2
2)

2

]

×m2|x
∗
2(t) − u∗

2(t)|

+

[

dM
2 cM

2 M2 + dM
2 bM

2 M2
2 + dM

2 M3
2

(cl
2 + bl

2m2 + m2
2)

2

]

×M3|x
∗
3(t) − u∗

3(t)|

+

[

−al
3 +

dM
3 cM

3 M1 + 2dM
3 M3M1

(cl
3 + bl

3m3 + m2
3)

2

]

×m3|x
∗
3(t) − u∗

3(t)|

+

[

dM
3 cM

3 M3 + 2dM
3 bM

3 M3 + 2dM
3 M2

3

(cl
3 + bl

3m3 + m2
3)

2

]

×M1|x
∗
1(t) − u∗

1(t)|

= −θ1|x
∗
1(t) − u∗

1(t)|

−θ2|x
∗
2(t) − u∗

2(t)|

−θ3|x
∗
3(t) − u∗

3(t)|, (23)

where

θ1 =

[

al
1 −

cM
1 dM

1 M2 + dM
1 M2

1 M2

(cl
1 + bl

1m1 + m2
1)

2

]

m1

−

[

dM
3 cM

3 M3 + 2dM
3 bM

3 M3 + 2dM
3 M2

3

(cl
3 + bl

3m3 + m2
3)

2

]

×M1, (24)

θ2 =

[

al
2 −

dM
2 cM

2 M3 + dM
2 M2

2 M3

(cl
2 + bl

2m2 + m2
2)

2

]

m2

−

[

cM
1 dM

1 M1 + dM
1 bM

1 M2
1 + dM

1 M3
1

(cl
1 + bl

1m1 + m2
1)

2

]

×M2, (25)

θ3 =

[

al
3 −

dM
3 cM

3 M1 + 2dM
3 M3M1

(cl
3 + bl

3m3 + m2
3)

2

]

m3

−

[

2kM
3 cM

3 dM
3 M3 + 2kM

3 bM
3 dM

3 M2
3

(cl
3 + bl

3m3 + m2
3)

2

]

×M3

−

[

dM
2 cM

2 M2 + dM
2 bM

2 M2
2 + dM

2 M3
2

(cl
2 + bl

2m2 + m2
2)

2

]

×M3. (26)

Let

δ = min{θ1, θ2, θ3}. (27)

It follows from (23) and (27) that

D+V (t) ≤ −δV (t). (28)

Then (iii) of Lemma 3.1 is fulfilled. Therefore system
(1) has a unique positive asymptotically periodic solu-
tion in domainΩ, which is uniformly asymptotically
stable. The proof is complete.
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4 Numerical example

To illustrate the theoretical results, we present some
numerical simulations. Let us consider the following
cyclic predator-prey system with Sigmoidal type func-
tional response:


































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


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


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







































































































ẋ1(t) = x1(t)

[

r1(t) − a1(t)x1(t)

−
d1(t)x1(t)x2(t)

c1(t) + b1(t)x1(t) + x2
1(t)

+
k3(t)d3(t)x

2
3(t)

c3(t) + b3(t)x3(t) + x2
3(t)

]

,

ẋ2(t) = x2(t)

[

r2(t) − a2(t)x2(t)

−
d2(t)x2(t)x3(t)

c2(t) + b2(t)x2(t) + x2
2

+
k1(t)d1(t)x

2
1(t)

c1(t) + b1(t)x1(t) + x2
1(t)

]

,

ẋ3(t) = x3(t)

[

r3(t) − a3(t)x3(t)

−
d3(t)x1(t)x3(t)

c3(t) + b3(t)x3(t) + x2
3(t)

+
k2(t)d2(t)x

2
2(t)

c2(t) + b2(t)x2(t) + x2
2(t)

]

,

(29)

where






















































b1(t) = 20 + 0.2 sin t, b2(t) = 10 + 0.4 cos t,

b3(t) = 15 + 0.3 sin t, a1(t) = 10 + sin t,

a2(t) = 11 + cos t, a3(t) = 12 − cos t,

r1(t) = 10 + 0.3 sin t, r2(t) = 12 + 0.2 cos t,

r3(t) = 13 − 0.2 sin t, d1(t) = 0.2 + 0.2 cos t,

d2(t) = 0.2 + 0.1 sin t, d3(t) = 0.1 + 0.1 cos t,

k1(t) = 1 + sin t, k2(t) = 1 + sin t,

k3(t) = 1 + sin t.

Then


































bl
1 = 19.8, bl

1 = 9.6, bl
3 = 14.7,

rl
1 = 9.7, rl

2 = 11.8, rl
3 = 12.8,

al
1 = 9, al

2 = 10, al
3 = 11,

ru
1 = 10.3, ru

2 = 12.2, ru
3 = 13.2,

du
1 = 0.4, du

2 = 0.3, du
3 = 0.2,

M1 = 1.1889,M2 = 1.3,M3 = 1.2181.

It is easy to check that the coefficients of system (29)
satisfy all the conditions in Theorem 9. The phase
diagram of system (29) is illustrated in Figures 1-
3. Numerical simulations show that system (29) has
a unique positive periodic solution which is globally
asymptotically stable.
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Fig.1. The dynamical behavior of the solution
(x1(t), x2(t), x3(t)) of system (29).
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Fig.2. The dynamical behavior of the solution(x1(t),
x2(t), x3(t)) of system (29).
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Fig.3. The dynamical behavior of the solution
(x1(t), x2(t), x3(t)) of system (29).
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5 Conclusions

In this paper, we have analyzed a cyclic predator-
prey system with Sigmoidal type functional response.
Applying the differential inequality theory, we obtain
some sufficient conditions for the permanence of the
system. By constructing a suitable Liapunov func-
tion, we find that under some suitable conditions, the
system has a unique asymptotically periodic solution
which is globally asymptotically stable. Numerical
simulations show the feasibility of our main results.
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