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Abstract: - Learning relations of objects has recently emerged as a new promising trend for supervised machine 

learning. Case-based reasoning (CBR) is a subfield of machine learning, which attempts to solve new problems 

by reusing previous experiences. There is a close link between learning of relations and case-based reasoning in 

the sense that relation analysis between cases is a core task in a CBR procedure. Traditional CBR systems built 

upon similar relations can only use local information, and they are restricted by the similarity requirement, i.e., 

the availability of similar cases to new problems. This paper proposes a new CBR approach that exploits the 

information about dissimilar relations for solving new problems. A fuzzy dissimilarity model consisting of 

fuzzy rules has been developed for assessing dissimilarity between cases. Identifying dissimilar cases enables 

global utilization of more information from the case library and thereby contributes to the avoidance of the 

similarity constraint with a conventional CBR method. Empirical studies have demonstrated that fuzzy 

dissimilarity models can be built upon a small case library while still yielding competent performance of the 

CBR system.  
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1 Introduction 
 

Supervised learning presents an important class of 

machine learning problems [1]. It refers to creating 

hypotheses or concise knowledge models from 

training examples to predict the classes or outcomes 

for future unknown problems. Various learning 

techniques have been developed to induce 

knowledge in different representations such as 

artificial neural networks [2] [3], association rules 

[4], fuzzy models [5] [6] and support vector 

machines [7] [8]. So far most works in this area 

have been devoted to building models to 

approximate the behavior of single instances 

residing in the training data set. 

Learning relations between objects has recently 

emerged as a new promising trend for the machine 

learning research. Rather than focusing on single 

objects, relation-oriented learning aims to infer 

predictive models that take into account a pair of 

objects as input and predict whether the relation of 

interest exists between both objects [9]. Analysis 

and modeling of relational data has found wide 

applications in a number of fields including: 

computer games [10], bioinformatics [11], social 

networks [12], financial time series modeling [13], 

as well information retrieval and text mining [14], to 

mention a few. 

Identifying pairwise relations of objects is also 

important for solving problems with case-based 

reasoning (CBR). CBR is a cognitive methodology 

that aims to solve new problems by reusing previous 

experiences [15]. A fundamental principle for 

conventional CBR methods is the heuristic rule that 

similar problems have similar solutions. Hence a 

CBR system usually first retrieves cases in the case 

base that are similar to a query problem and then 

refines the solutions of the retrieved cases to tackle 

the new situation at hand.  

It bears noting that the concept of similarity is 

closely related to proximity or adjacency. 

Conventional CBR systems rely on local 

information residing in similar cases to solve new 

problems. However there are two drawbacks with 

such similarity-based methods. First, the retrieved 

similar neighboring cases sometimes may not 

contain truly useful solutions for a query problem. 

Tackling the situations when similar problems don‟t 

have similar solutions is a significant challenge for 

CBR research. Second, the availability of similar 

cases is not always warranted in reality due to 

practical limitations, e.g. when the cases in the case 
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base are sparsely distributed or not representative of 

the entire problem space [16]. 

This paper investigates a new CBR approach that 

attempts to identify dissimilar cases for reasoning 

and problem solving. We consider two cases to be 

dissimilar as long as they have distinct or “remote” 

solutions. Analyzing the information about 

dissimilar relations would foster utilization of more 

cases in a global perspective, and thereby avoiding 

the similarity restriction in a traditional CBR 

system.     

The dissimilarity model will be established to 

identify cases from the case library that are 

dissimilar to a query problem. A dissimilar case 

provides counter-evidence to some extent, 

suggesting the inappropriateness of using its 

solution for solving the query problem. It follows 

that the final decision from CBR system will be the 

candidate solution that has accumulated the least 

amount of counter-evidence. 

Further the model of dissimilarity is represented 

as a set of fuzzy linguistic rules. We believe that 

fuzzy if-then rules present a powerful and flexible 

means to represent the rich domain knowledge for 

evaluation of case relations. Fuzzy rule-based 

reasoning can be performed to predict whether and 

to which degree a case from the library is dissimilar 

to the problem in query. The construction of fuzzy 

dissimilarity rules can be realized by learning from 

the case library as a valuable resource. Our 

empirical studies have demonstrated that fuzzy 

dissimilarity models can be built upon a small case 

library while still yielding competent performance 

of the CBR system.  

The remaining of the paper is organized as 

follows: Section 2 makes an overview of the related 

works. Section 3 outlines the proposed new CBR 

approach that reason upon dissimilar information. 

The fuzzy dissimilarity model to assess case relation 

is presented in section 4.  We then explain, in 

section 5, how to learn these fuzzy dissimilarity 

rules from the case library. In section 6, we illustrate 

experimental results for evaluation of the proposed 

method. Finally, concluding remarks are given in 

section 7  

 

2 Related Works 
 

Identifying similar relations between cases is a key 

task for conventional CBR systems. So far the main 

stream of the works for construction of similarity 

models has been focused on feature weighting [17]  

[18]. Features are assigned with different weights in 

accordance with their importance, and the global 

similarity metric is defined as a weighted sum of the 

local matching values in single attributes. Different 

approaches of interest have been proposed for 

identifying such weights automatically. Incremental 

learning attempts to modify feature weights 

according to success/failure feedback of retrieval 

results [19]. The probability of ranking principle 

was utilized in [20] for the assignment of weight 

values to features. Case-ranking information was 

utilized in [21] and [22] for weight adaptation 

towards similarity degrees of retrieved cases 

consistent with a desired order. Accuracy 

improvement represents another way for adapting 

the set of weights as discussed in [23] and [24]. 

Nevertheless, no matter how the values of weights 

are derived, the capability of these similarity 

learning methods is inherently constrained by 

weighted combination of the local matching 

degrees. This limitation in the structure of similarity 

makes it hard to represent more general knowledge 

and criteria for case assessment. 

A new similarity model without feature 

weighting was proposed in [25] and [26] as an effort 

to seek more powerful representation of knowledge 

for case retrieval. The idea was to encode the 

information about feature importance into local 

compatibility measures such that feature weighting 

is no longer needed. Later, in [27], it was analyzed 

and demonstrated that the parameters of such 

compatibility measures can be learned from the case 

library in favor of coherent matching, i.e. to 

maximize the supportive evidence while minimize 

the amount of inconsistence derived from pairwise 

matching of cases from the case base. 

The integration of fuzzy theory with CBR 

methodology has been addressed by some 

researchers. Yager [28] explained that there was a 

close connection between fuzzy system modeling 

and case based reasoning. Dubois and Prade [29] 

formalized the fundamental hypothesis of CBR in 

the context of fuzzy rules. They established a formal 

framework in which case-based inference can be 

implemented as a special type of fuzzy set-based 

approximate reasoning.  
Fuzzy set and fuzzy logic have also been used 

for case representation and case matching in a CBR 

process. Fuzzy sets were used to depict imprecise 

case features in a fuzzy case-based reasoning system 

[30].  In [31] similarity was treated as a fuzzy 

relation and fuzzy operations were employed for 

aggregating local similarity values. Moreover, fuzzy 

linguistic rules were adopted in [32], [33] and [34] 

as a flexible means to express the criteria for 

assessing the relation of similarity between cases.  

On the other hand, CBR can be used to support 

fuzzy system modeling as well.  In [35] and [36] it 
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was demonstrated that CBR could be exploited as 

feature selection criterion for building complex 

process models and fuzzy systems. 

 

3 Dissimilarity-Based CBR 
 

In this paper we propose a new CBR approach that 

relies on dissimilarity information, as is depicted in 

Fig. 1. It starts with comparison of the query 

problem with known cases in the case library. A 

properly defined dissimilarity function has to be 

employed at this stage. As the evaluated 

dissimilarity values reflect the strength of 

inappropriateness of solutions of the known cases to 

solve the new problem, they offer important 

information to be utilized in the next step of solution 

filtering to find out the least impossible choice as 

the final decision to solve the new problem.  

 

 

Case 
Library 

 

Dissimilarity 
Assessment 

 ? 

Solution 
Filtering 
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Solution 
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Fig. 1. CBR based on dissimilarity information 
 

In solution filtering, we are concerned with 

estimating the degrees of impossibility of candidate 

solutions by using the case information from the 

case library. We assume solutions of cases to be 

represented by discrete and mutually exclusive 

labels in the context of this paper. We define the 

degrees of impossibility contributed by a single case 

Ci (from the case library) by  
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where b represents a candidate solution, and 

Dsim(Q, Ci) denotes the degree of dissimilarity 

between query problem Q and case Ci. It bears 

mentioning that the impossibility degrees in (1) 

indeed represent a degree of exclusion, which is 

supported by the observation of the dissimilar case 

Ci having solution b. On the other hand, we will 

have Pi(b)=0 if Ci has a solution different from b, 

whereas it merely means that no evidence against 

solution b is derived from case Ci, rather than the 

support for b as the solution to query problem Q.  

Next we consider the overall impossibility 

degrees in light of the whole case library. For 

calculating the overall degree of impossibility 

Imposs(b) for solution b, we only need to focus on a 

subset of cases which have that solution. This is 

owing to the fact that all other cases in the case 

library contribute no information for the 

impossibility of solution b, as indicated in Eq. (1). 

The ordered weighted averaging (OWA) operators 

provide a class of aggregation operators lying 

between and and or aggregations. Herein we adopt 

the S-OWA-OR (OR-like) aggregating operators as 

the parameterized OWA functions to combine the 

degrees of impossibility given by the individual 

cases in the case subset. Let 

 bCSolutionS ib  )(i  denote the set of indices of 

the cases having solution b, the overall impossibility 

value Imposs(b) is calculated as 
                             

)()(
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10   

Finally we select the solution 
*b  that has the 

lowest overall impossibility value as the final 

solution for query problem Q, i.e., 

 

               )(minarg* bImPossb
b

                             (3) 

 

4 Fuzzy Dissimilarity Model  
 

This section introduces the structure of fuzzy rules 

that are used as representation of the dissimilarity 

model. Suppose there are n relevant features for 

problems in the underlying domain. A case Ci in the 

case library is described by an (n+1) tuple: 

 iiniii scccC ,,,, 21   where 
inii ccc ,,, 21   denote the 

feature values in this case and si is the 

corresponding solution. Likewise we use an n-tuple 

 nyyy ,,, 21   to represent a query problem Q with yj 

referring to the value of the jth feature in the 

problem. For comparing case Ci and query problem 

Q, we first need to calculate the values of 

differences 
ijjj cyx   on every feature j between 

them. Such feature differences are then employed as 

inputs for condition parts of the fuzzy rules, which 

collectively decide the dissimilarity value of case Ci 

with respect to the query problem.  

Assume that the fuzzy sets of feature difference 

xj (j=1 n) are represented by A(j,1), A(j,2), , 

A(j, q[j]) and q[j] is the number of linguistic terms 
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for xj. By h() we denote an integer function 

mapping from {1, 2, ..., m (mn)} to {1, 2, ...., n} 

satisfying  ij,  h(i)h(j). The fuzzy rules 

employed in this paper for assessing case 

dissimilarity are formulated as follows: 

VityDissimilarThen

kmhAxandand
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Dk
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Dk
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  (4) 

where D(i) {1, 2,  ,q[h(i)]} for i=1m, and V 

{1.0,  0}. Note that the conclusion of the rule in (4) 

is a singleton being either unity or zero, it can be 

regarded as a zero-order Sugeno fuzzy rule. 

It also bears noting that the premise structure 

defined above is very general, offering a large 

degree of flexibility in specification. If the premise 

of the above rule in (4) includes all input variables 

in it (e.g. m=n), we say that this rule has a complete 

structure, otherwise its structure is incomplete. 

Another important feature of the rules in form (4) is 

that a union of input fuzzy sets is allowed in their 

premises. Rules containing such OR connections in 

conditions cover a group of related rules using 

complete AND connections of single linguistic 

terms as rule premises. For instance, the rule „„If 

(x1=NZ  PZ) and (x2=NZ  PZ) then 

Dissimilarity=1.0‟‟ has the premise illustrated in 

Fig.2, and it covers the following four related rules:                                      

 1) If  (x1=NZ) and (x2=NZ) Then Dissimilarity=1.0 

 2) If  (x1=NZ) and (x2=PZ) Then Dissimilarity=1.0 

 3) If  (x1=PZ) and (x2=NZ)  Then Dissimilarity=1.0 

 4) If  (x1=PZ) and (x2=PZ)  Then  Dissimilarity=1.0  

 

x1

x2

 N NZ Z PZ P

Z

NZ

PZ

N

P

 

Fig.2. Rule premise with OR-connections  

 

Rules having incomplete structure or containing 

OR connections of input fuzzy sets can achieve 

larger coverage of input domain, leading to 

substantial reduction of the number of rules [37] 

[38].  

Finally, with the availability of a set of fuzzy 

dissimilarity rules in the form of (4), the degree of 

dissimilarity between case Ci and query problem Q 

can be calculated as follows:  
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where Vk is the singleton conclusion for rule Rk, and 

tk denotes the firing strength of rule Rk when 

comparing case Ci and query problem Q. 

 

5 Learning Fuzzy Dissimilarity Rules 
 

We now discuss how to generate fuzzy rules as 

formulated in the preceding section to build a 

dissimilarity model. Our aim is to elicit dissimilarity 

values between cases that can precisely reflect the 

level of distinction between their solutions. 

Supervised learning will be performed in this paper 

to acquire competent fuzzy rules for dissimilarity 

evaluation. In the following we will first explain 

how adequate training examples can be created for 

learning and then we shall outline a genetic 

algorithm (GA) for automatic generation of fuzzy 

rules to mimic the training examples. 

 

5.1 Deriving Training Examples 
  

The training examples for fuzzy dissimilarity 

learning can be created by resorting to the case 

library. Since case solutions there are available, it is 

straight forward to obtain the desired value of 

dissimilarity for a pair of cases by comparing their 

solutions. Hence the desired dissimilarity value 

between case Ci and Cj can be defined as: 

                   ),(),( jiji ssDistCCDsim                         (6) 

where Dist represents distinction level, and si and sj 

are the solutions of cases  Ci and Cj respectively. 

The criterion for judging distinction level 

between case solutions is usually domain dependent, 

thus we cannot further concretize equation (6) 

without considering problem context and specifics. 

Nevertheless, in this paper we assume case solutions 

are represented by discrete labels (e.g. classes), the 

distinction level between solutions can simply be 

expressed as follows:   

1. If the solutions (labels) have no orders, the 

   distinction level is a binary function as 
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2. If the solutions (labels) have ordinal values, 

the distinction level should reflect the relative 

distance in the order. Thus we have     
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where K is the total number of labels and e(si, sj) 

denotes the number of labels between si and sj in the 

order.     
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Fig. 3. Fuzzy learning from training samples 

 

The equations (6-8) enable us to acquire many 

training samples from pairs of cases in the case 

library. Since we can create a training example for 

every pair of cases, a much larger multitude of 

training samples than the number of cases will be 

created. Next, as shown in Fig. 3, the task of the 

learning algorithm is to identify optimal fuzzy rules 

together with associated membership functions such 

that the dissimilarity degrees assessed via fuzzy 

reasoning will comply with the distinction levels 

specified in the training samples. 

 

5.2 Learning Rule Premises by Genetic 

      Algorithms 
 

Learning the fuzzy rules formulated in (4) is solved 

by identifying suitable premises for different 

conclusions. For instance, we need to discover 

under what circumstances two cases in comparison 

should have a dissimilarity degree of unity. The 

issue as such is termed as premise learning. In this 

paper we apply the genetic algorithm (GA) 

introduced by Goldenberg [39] to search for general 

premises of dissimilarity rules. The purpose is to 

take advantage of the strength of genetic search to 

find a set of suitable premise structures together 

with parameters of associated fuzzy set membership 

functions.  

    Essentially GAs are global search algorithms that 

emulate the mechanics of natural genetics and 

selection. Based on probabilistic decisions they 

exploit historic information to guide the search for 

new points in the problem space with expected 

improvement of performances. In the genetic search 

a constant population size is always maintained. An 

individual in the population encodes a possible 

solution to the problem into a string, which is 

analogous to a chromosome in nature. At each step 

of iteration, new strings are created by applying 

genetic operators on selected parents for 

recombination. In the sequel we shall briefly discuss 

the coding scheme, genetic operators and fitness 

function which are key points for the genetic 

learning of premises of dissimilarity rules and the 

associated fuzzy membership functions at the same 

time.  

Genetic Coding Scheme. The information 

concerning structure of rule premises can be 

considered as a set of discrete parameters, while the 

information about fuzzy set membership functions is 

described by a set of continuous parameters. Owing 

to the different natures between the information 

about rule structure and about membership 

functions, a hybrid string consisting of two 

substrings is used here as the coding scheme. The 

first substring is a binary code representing premise 

structure of the fuzzy knowledge base, and the 

second substring is an integer code corresponding to 

parameters of fuzzy sets used by the fuzzy rules.  

Usually membership functions of a feature 

difference as input are characterized by a set of 

parameters. Each of these parameters can further be 

mapped into an integer through discretization. The 

resulting integers are then combined to form an 

integer-vector depicting the fuzzy partition of that 

input variable. The integer code as one part of the 

hybrid string is formed by merging together integer-

vectors for all inputs (feature differences)  

Regarding rule premises, it is easy to see from 

(4) that premise structure of general rules is decided 

by integer subsets D(i) (i=1, 2, m). This fact 

suggests that a binary code be a suitable scheme for 

encoding structure of premises, since an integer 

from {1, 2, , q[h(i)]} is either included in the 

subset D(i) or excluded from it. For feature 

difference xj which is included in the premise (i.e.  

h
-1

(j)), q[j] binary bits need to be used to depict 

the subset D(h
-1

(j)){1, 2,...., q[j]}, with bit "1" 

representing the presence of the corresponding 

fuzzy set in the OR-connection and vice versa. If 

feature difference xj does not appear in the premise, 

i.e., h
-1

(j)=, we use q[j] one-bits to describe the 

wildcard of „„don‟t care‟‟. For instance, the 
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condition "if [x1=(small or large)] and [x3=medium] 

and [x4=(medium or large)]" can be coded by the 

binary group (101; 111; 010; 011). Further, the 

whole substring for the premise structure of the rule 

base is a merge of bit groups for all individual rule 

premises.  

Crossover. Owing to the distinct nature between 

the two substrings, it is preferable that the 

information in both substrings be mixed and 

exchanged separately. Here a three-point crossover 

is used. One breakpoint of this operation is fixed to 

be the splitting point between both substrings, and 

the other two breakpoints can be randomly selected 

within the two substrings respectively. At 

breakpoints the parent bits are alternatively passed 

on to the offspring. This means that offspring get 

bits from one of the parents until a breakpoint is 

encountered, at which they switch and take bits 

from the other parent. 

 

Example: Consider two strings in the following: 

X
1
=(0, 0, 1, 1, 1, | 0, 1, 0, 0, 1, 0, 1, | 178, 1678, | 

        987, 1045) 

X
2
=(1, 1, 0, 1, 0, | 1, 0, 0, 1, 0, 1, 0, | 982, 1745, | 

        567, 123) 

    Both X
1
 and X

2
 consist of two substrings 

representing structure of rule premises and 

parameters of input fuzzy sets respectively. The 

12th position of a hybrid string is the splitting point 

between two substrings. Selecting the 5th and 14th 

positions of the hybrid strings to be the other two 

breakpoints for crossover, we obtain two child 

strings as follows: 

X
3
=(0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, | 178, 1678, 567,  

       123) 

X
4
=(1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, | 982, 1745, 987,  

       1045)  

Clearly this three-point crossover used here is 

equivalent to two one-point crossovers operating on 

both substrings separately. 

Mutation. Because of the distinct substrings 

used, different mutation schemes are needed. Since 

parameters of input membership functions are 

essentially continuous, a small mutation with high 

probability is more meaningful. Therefore it is so 

designed that each bit in the substring for 

membership functions undergoes a disturbance. The 

magnitude of this disturbance is determined by a 

Gaussian density function. For  the  binary  

substring  representing the structure  of   rule  

premises,  mutation  is  simply  to  inverse a bit, 

replace „1‟ with „0‟ and vice versa. Every bit in this 

substring undergoes a mutation with a quite low 

probability. 

Fitness Function. An individual (hybrid string), 

HS, in the population is evaluated according to its 

modeling accuracy with respect to the training 

examples. As many pairs of cases are included in 

the training data set, we have to consider the total 

sum of modeling errors for measuring the overall 

performance of the hybrid string. The total error 

function is given by 

            



SIji

jiji CCDsimssDistHSError
),(

),(),()(         (9)  

where si and sj are the solutions of cases Ci and Cj 

respectively, and SI  refers to the set of pairs of case 

indexes corresponding to pairs of cases included in 

the training data set. At last, the fitness of individual 

HS is defined with inverse relation to the mean 

modeling error as follows 

         
SI

HSError
HSFitness

)(
1)(                               (10) 

Finally our algorithm for genetic learning of the 

fuzzy dissimilarity model consists of the following 

steps: 

Step 0 (Initialization): Generate an initial population 

containing Npop hybrid strings with Npop being the 

population size.  

Step 1 (Initial evaluation): Apply every fuzzy 

dissimilarity model created initially to the pairs of 

cases included in the training data set to get assessed 

dissimilarity degrees.  Such dissimilarity values are 

then compared with the distinction levels specified 

in the training data to yield an overall fitness score 

according to (10). 

Step 2 (Selection): Select 05. N pop
 pairs of strings 

from the current population. The selection 

probability prob(HS) for a string HS in a population 

 is defined as: 

              

 



ψSr
)Fitness(Sr

)Fitness(HS
prob(HS)                  (11)    

 

Step 3 (Crossover): Apply the three-point crossover 

to every pair of selected parents to obtain a set of 

offspring. 

Step 4 (Mutation): Each binary bit of the child 

strings is reversed with a very low probability, while 

every integer in the child strings is disturbed with a 

magnitude determined by a Gaussian density 

function.  
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Step 5 (Selective breeding): Employ the fitness 

function (10) to evaluate each child string in the 

offspring set. After this, select the best Npop 

individuals from the current population and the 

offspring set to form the next generation.  

Step 6 (Termination test): If a pre-specified 

generation number has not been reached, go to Step 

2, otherwise terminate the search procedure and 

return the best individual in the population as the 

final solution for building the fuzzy dissimilarity 

model. 

 

6 Evaluation Results 
 

We have applied our proposed approach to the 

problems of classification and diagnosis. In this 

section we illustrate a case study made on the well-

known benchmark problem of wine data 

classification. The wine data can be downloaded 

from the address ftp.ics.uci.edu/pub/machine-

learning-databases. It consists of 178 samples with 

13 continuous features from three classes.  

Each feature difference xi (i=1, 2, ..., 13)  was 

assigned with three fuzzy sets A(i, 1), A(i, 2), and 

A(i, 3) to build fuzzy rules for assessing the 

dissimilarity between cases. The membership 

functions of these three fuzzy sets, as illustrated in 

Fig. 4, can be interpreted with linguistic terms such 

as small, medium, and large respectively. The GA 

was set into force to search for the rule premises 

under different consequences (dissimilarity=1.0, 

dissimilarity=0) and to optimize the parameters 

(corresponding to the circle in Fig. 4) of the fuzzy 

set membership functions at the same time. The 

objective of the GA was to discover the fuzzy 

knowledge base to maximize the fitness function in 

(10). The learnt fuzzy rules were employed as 

evaluation criteria to determine the dissimilarities of 

cases, which were then used in solution filtering for 

estimating impossibility degrees of candidate 

solutions. 
 

 

0.0 1.0 

A(i,1) A(i,2) A(i,3) 

  
 

Fig. 4. The three membership functions for the  

               difference on feature xi 

To test the feasibility of learning fuzzy 

dissimilarity rules from a small number of cases, we 

randomly selected 33% of the cases from the wine 

data set as the case base used for learning and the 

remaining cases as test data containing query 

problems. The fuzzy rules learnt from the case base 

were then used for dissimilarity assessment in case-

based classification of the problems in the test data 

set. We performed such tests 10 times. Table 1 

illustrates the classification accuracy on the test data 

in the 10 tests.  It is interesting to observe that, 

despite the small case bases with about 66 instances 

in each, very good classification accuracy was still 

achieved by our CBR system employing the learned 

fuzzy dissimilarity models.  

 

    Table 1: Classification accuracy on test data 
Numbers of tests Classification accuracy 

1 97.48% 

2 90.76% 

3 94.12% 

4 93.22% 

5 92.44% 

6 93.28% 

7 91.53% 

8 90.76% 

9 90.76% 

10 94.96% 

Average 92.93% 

 

In table 2, we compare our work with some other 

machine learning approaches in terms of 

classification accuracy (on test data) and the 

numbers of cases used for learning. The 

classification accuracy we obtained is rather close to 

the best result among the other works. In the other 

aspect, we employed a much lower number of cases 

for learning than any other work as indicated in the 

table. It demonstrates that our system can survive 

with learning from a small amount of examples. 

This is an attractive advantage distinguishing our 

CBR system from other supervised learning systems 

for classification. 

 

Table 2: Comparison with other methods 
Learning 

methods 

Accuracy  Number of cases 

for learning 

This paper 92.93% 59 ~ 60 

C4.5 [40]  90.14% 160 ~ 161 

Ho [41] 93.72% 160 ~ 161 

Hu [42]  91.63% 160 ~ 161 

Elomaa [43] 94.40% 160 ~ 161 

SOP-1 [44] 92.70% 160 ~ 161 

MOP-1 [44]  96.01% 160 ~ 161 
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7 Conclusion 
 

The significance of this paper is of two folds.  First, 

we proposed a new CBR approach that exploits 

dissimilarity information in problem solving. This 

new approach contributes to avoiding the similarity 

constraint with traditional CBR systems and thereby 

facilitating global utilization of more information 

from the case library. Secondly, we developed a 

new fuzzy dissimilarity model consisting of fuzzy 

rules for assessing dissimilarity between cases. We 

have explained and demonstrated how competent 

fuzzy dissimilarity rules can be acquired from the 

case library by supervised learning.  Introducing 

fuzzy rules to evaluate pairwise relations of cases 

would bring the following advantages: 

 

 Fuzzy rules provide a powerful and flexible 

means to express the criteria for evaluation of 

case relations in various situations. Owing to the 

rich information contained in the fuzzy 

dissimilarity model, large amount of dissimilar 

cases will be recognized for usage in the step of 

solution filtering 

 The knowledge base containing fuzzy rules 

makes it possible to acquire and integrate 

knowledge from multiple sources. The fuzzy 

dissimilarity rules generated from the case 

library could be supplemented by extra rules 

defined by domain experts to achieve more 

comprehensive knowledge in real applications.        

 The fuzzy knowledge base is well 

comprehensible by means of interpretation of 

individual linguistic rules. It follows that human 

users can easily understand how cases have 

been assessed as dissimilar by checking 

involved fuzzy rules. This creates opportunity 

for human involvement and interaction with the 

CBR system to dynamically adapt system 

behaviour to any specific demands. 
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