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Abstract: - State estimation is a prerequisite for monitoring, control and fault diagnosis of many processes. 

Dynamic model based state estimation techniques are used for monitoring the state variables. Particle filter 

have been widely used to estimate the state of nonlinear and non-Gaussian system. Particle filters require a 

proposal distribution but the choice of proposal distribution is the key design issue. In this paper, the extended 

Kalman filter (EKF) which is based on analytic local linearization is used to generate a proposal distribution for 

the particle filter. The efficacy of this local linearization particle filter (LLPF) is demonstrated via application 

to a simulated nonlinear continuous stirred tank reactor (CSTR) and the results are compared with the sampling 

importance resampling (SIR) particle filter. 
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1 Introduction 
The estimation of states of the system using a 

sequence of measurements made on the system is an 

important problem in the process engineering 

because knowledge of such states can enhance the 

control performance. State estimation can be 

considered as an optimal filtering problem within a 

Bayesian framework [1]. The state vector contains 

all relevant information required to describe the 

system under investigation. The system considered 

in this paper is described by a set of differential 

equations that are usually discretized to a set of 

difference equations. These difference equations can 

be regarded as a general state space model, with the 

difference variables defining the states.  

 The Kalman filter (KF) is generally used to 

estimate the state of the linear system. It is an 

optimal solution to the state estimation problem. 

The KF assumes that the posterior density function 

at every time step is Gaussian [2,3,21]. In many 

situations of interest, these assumptions do not hold 

and therefore approximations are necessary. The 

extended Kalman filter (EKF) is one of the 

approximate nonlinear Bayesian filter which can be 

used to deal with the nonlinear state estimation 

problem [4,5]. The EKF always approximates the 

posterior density to be Gaussian and adopts Taylor 

approximation. If the state equation is highly 

nonlinear and the posterior density is also non-

Gaussian (e.g., multimodal distribution), then EKF 

directly cannot be used for the state estimation 

problem because it may give a high estimation error 

and thereby leading to convergence problems [6]. 

 Sequential Monte Carlo (SMC) is an algorithm 

that makes it possible to recursively construct the 

posterior probability density of the state variables, 

with respect to all available measurements, through 

a random exploration of the states by entities called 

‘particle’. The particle filter based on the SMC 

method can deal with both the nonlinear and non-

Gaussian sate estimation problem [7]. The basic 

idea of particle filter is that a large number of 

particles are generated using SMC methods to 

approximate the posterior probability of the states 

[8,22]. A brief review of applications of particle 

filtering in computer vision, target tracking, 

robotics, digital communication, machine learning 

and speech recognition are presented in [9]. The 

sequential importance sampling (SIS) algorithm is a 

Monte Carlo method  that forms the basis for most 

SMC filters but a common difficulty associated here 

is the occurrence of degeneracy [10,11]. The     

drawback in SIS filter is overcome through 

implementation of resampling technique [12]. The 

sampling importance resampling (SIR) particle filter 

can be applied to deal with most of the recursive 

Bayesian filtering problems because it outperforms 

the nonlinear sate estimation algorithms like EKF 
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and unscented Kalman filter (UKF) [19]. 

Sometimes, the performance of the SIR filter may 

diverge since the assumptions required to design 

this filter are very weak [13]. The local linearization 

algorithm such as EKF is used to construct the 

suboptimal approximations to the importance 

density in the particle filter [10,15]. Such a 

nonlinear Bayesian filter combines the advantage of 

both EKF and particle filter. Successful 

implementation of particle filters to chemical batch 

reactors have been reported in [6,14]. 

 In this paper, the particle filter based on analytic 

local linearization technique is demonstrated by 

application to a simulated CSTR and are observed to 

exhibit improved performance over the SIR particle 

filter for the estimation of the product concentration 

and reactor temperature. 

 

 

2 Sequential Bayesian State 

Estimation Problem 
Consider the following nonlinear form of state space 

model:  

1 1x g(x ,v )k k k                                                  (1)                                                                                                                                                                 

y h(x ,n )k k k                                                      (2)
 
 

where k is the time step, x is the state vector 

and y is the measurement vector. g and h are 

nonlinear state and measurement functions 

respectively. Process noise, v represents 

disturbances, all unmodelled dynamics and any 

mismatch between the process and model. 

Measurement noise, n captures the inaccuracy in the 

measuring system namely sensor.                      

 The objective of state estimation is to 

sequentially estimate the state vector xk from the 

measurement yk . One of the main advantage of 

state estimation technique is as much as possible 

states can be inferred from the limited 

measurements available. The aim of the sequential 

Bayesian estimation is to compute the conditional 

probability density function (PDF) which in this 

context is known as posterior density 1:(x | y )k kp  

from the posterior density at the previous time 

step 1 1: 1(x | y )k kp   . Generally, the posterior density 

is estimated in two stages namely prediction and 

update. In the prediction step, 1 1: 1(x | y )k kp   is 

propagated to the next time step through the 

transition density as follows: 

1: 1 1 1 1: 1 1(x | y ) (x | x ) (x | y )dxk k k k k k kp p p       
                                                                               (3)

 

1(x | x )k kp  is the transition density defined by the 

system function (1). The Bayes’ rule is applied in 

the update step as follows:  

1: 1
1:

1: 1

(y | x ) (x | y )
(x | y )

(y | y )

k k k k
k k

k k

p p
p

p





                 (4) 

The propagation of the prior density 1: 1(x | y )k kp  to 

the posterior density 1:(x | y )k kp is described by (4). 

The normalizing factor 1: 1(y | y )k kp  depends on the 

likelihood function (y | x )k kp , defined by the 

measurement function (2). The posterior density 

function of the state is the optimal solution from a 

Bayesian perspective to the state estimation 

problem. 

 In general, the posterior probability function 

cannot be determined analytically and hence 

approximations are required. The suboptimal filters 

which are the approximate nonlinear Bayesian 

filters are used to provide the suboptimal solutions. 

Some of the well known suboptimal filters are EKF 

and particle filter [13]. The EKF is commonly used 

to estimate the state of the nonlinear system by 

linearizing about an estimate of the current mean 

and covariance [16, 23]. It may perform poorly for 

highly nonlinear system because of the first-order 

Taylor series approximation of nonlinear function. 

A higher order EKF takes in to account the higher 

order terms in the Taylor series expansion, but the 

calculation of Jacobians provides additional 

complexity which has prohibited its wide spread 

use. An alternative approach is through particle 

filter which will yield an improvement in 

performance in comparison to EKF. 

 

 

3 Particle Filtering Methods 
SMC methods are a set of simulation based methods 

which provide a convenient and attractive approach 

for computing the posterior distributions [17, 18]. 

Particle filters perform SMC estimation based on 

particle representation of probability densities. It 

approximates the multidimensional integration 

involved in prediction and update steps using Monte 

Carlo sampling. It can very well deal with non-

Gaussian conditional density functions for 

estimating the state of the nonlinear system [19]. 

 The following description of particle filter is 

based on the tutorial of Arulampalam et al. [13]. 
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The fundamental idea of particle filter is to 

approximate the posterior density 1:(x | y )k kp using 

a set of random samples also called particles 

{x , 1,..., }i

k i N
 

with associated 

weights{ , 1,..., }i

kw i N . The posterior density is 

given by: 

1:

1

(x | y ) (x x )
N

i i

k k k k k

i

p w 


                             (5)  

where (x)  is an indicator function. The weights 

are normalized such that
1

1
N

i

k

i

w


 . It can be shown 

that as N  the approximation (5) approaches 

the true posterior density. The weights are chosen 

using the principle of importance sampling. The first 

step in importance sampling is to define an 

importance density function 1:(x | y )k k , from 

which samples x i

k can be drawn. Thus the weights 

are defined as 

1:

1:

(x | y )

(x | y )

i
i k k
k i

k k

p
w


                                                  (6) 

If the importance density is only relying on the 

current measurement, yk and the previous 

state, 1xk , the weights can be updated as 

1
1

1

(y | x ) (x | x )

(x | x , y )

i i i
i i k k k k
k k i i

k k k

p p
w w








                       (7)  

Therefore the importance sampling method is used 

to obtain the particles and associated weights from 

which the state vector x̂k  can be estimated. A 

common problem encountered in this method is the 

degeneracy phenomenon. Degeneracy is where, 

after a few iterations, only one particle has 

significant weight. It has been shown that the 

variance of the importance weights increases over 

time, and thus, it is impossible to avoid the 

degeneracy. Such a problem can make the 

contribution of the particles to the approximation 

of 1:(x | y )k kp almost negligible. The effective 

sample size effN is computed to give a measure of 

degeneracy of the algorithm as follows: 

2

1

1

( )
eff N

i

k

i

N

w





                       (8)                    

where 
i

kw is the normalized weight obtained using 

(7).Hence, by proper selection of importance 

density, the effN can be minimized. 

 

 

3.1 Sampling Importance Resampling (SIR) 

Particle Filter 
Resampling method is used whenever a significant 

degeneracy is observed. Resampling eliminates 

those particles with smaller weights and replaces 

particles with large weights [12]. Thus a new 

particle set is generated by sampling with 

replacement from the original set{x , 1,..., }i

k i N .     

 In summary, the SIR particle filter algorithm for 

the time step k is as follows: 

(1)  For 1:i N  

 Draw a sample 1x (x | x )i i

k k kp   

 Compute weight (y | x )i i

k k kw p  

End  

(2)  Normalize 
i

kw such that they sum to 1 

(3)  Resample to get an updated particle set 

1{x }i N

k i  

The output of the algorithm is the mean of the 

particle set that can be computed as follows: 

1

1
x̂ x

N
i

k k

iN 

 
                                                            

(9)  

In the algorithm discussed here, the transitional 

prior 1(x | x )k kp  is chosen to be the importance 

density. As the importance density is independent of 

the current measurement, the state space is explored 

without any knowledge of the measurement data. 

Hence, this filter can be inefficient and is sensitive 

to outliers. 

 

 

3.2 Analytic Local Linearization Particle 

Filter 

The importance density in the particle filter 

algorithm can be approximated by incorporating the 

most recent measurement yk through an EKF [10]. 

When EKF is used to generate a proposal 

distribution for the particle filter, then the resulting 

filter is known as extended Kalman particle filter 

WSEAS TRANSACTIONS on SYSTEMS D. Jayaprasanth, Jovitha Jerome

E-ISSN: 2224-2678 156 Volume 13, 2014



(EKPF). This particle filter is also called as analytic 

local linearization particle filter because the EKF 

considered is based on analytic local linearization. 

In this type of particle filter, each particle is updated 

with EKF to generate and propagate a Gaussian 

importance distribution. The importance density is 

given by: 

1(x | x , y )i i

k k k    Ɲ ˆ(x ;x ,P )i i i

k k k                      
(10) 

where x̂ i

k
and Pi

k
 are the estimate of the mean 

and covariance respectively. The notation Ɲ 
represents the Normal distribution. The EKF 

algorithm used to compute the importance 

density in this type of particle filter for the time 

step k is as follows: 

(1)   Predicted state: | 1 1g(ˆ ˆx x ,0)k k k                                                               

(2)   Predicted estimate covariance:     

  | 1 1P PG G QT

k k k k k k      

       where the state transition matrix, 

1x̂

g
G

x
k

k







and Qk is the process 

noise covariance.            
(3)   Innovation or measurement residual:    

  | 1
ˆy h(x 0)z ,k k k k                  

(4)   Measurement covariance:    

 | 1S H P H RT

k k k k k k                             

       where the observation matrix,      

      

| 1x̂

H
h

x
k k

k







 and R k is the 

measurement noise covariance. 

(5)   Kalman gain:
1

| 1P HK ST

k k k k k



             

(6)   Updated state estimate: | 1x̂ˆ zKxk k k k k       

(7)   Updated estimate covariance:   

  | 1P (I K H )Pk k k k k   

 In summary, the analytic local linearization 

particle filter for the time step k is as follows: 

(1)  For 1:i N  

 Run EKF   

ˆ[x ,P ]i i

k k  EKF 1 1[x ,P , y ]i i

k k k   

 Draw a sample xi

k   Ɲ ˆ(x ;x ,P )i i i

k k k
 

 Compute weight 

1

1

(y | x ) (x | x )

(x | x , y )

i i i
i k k k k
k i i

k k k

p p
w






  

 End 

(2)  Normalize 
i

kw such that they sum to 1 

(3)  Resample to get an updated particle 

set 1{x , }j j N

k ji  , where j refers to the index 

of the particle after resampling. Here, the 

updated relationship is denoted as 

parent ( )j i . 

(4)  For 1:j N  

 Assign Covariance: P P
jj i

k k  

 End 

The output of the algorithm is the mean of the 

particle set that can be computed as follows: 

1

1
x̂ x

N
i

k k

iN 

 
                                                          

(11)  

The analytic local linearization method for 

approximation of importance density propagates the 

particles towards the likelihood function and thereby 

making such type of particle filter to perform better 

than the SIR filter. 

 

 

4  Simulation Results 
The performance of the extended Kalman particle 

filtering algorithm is illustrated through its 

application to a simulated nonlinear CSTR. The 

results of the SIR particle filter are presented for 

comparison. 
 

 

4.1 Nonlinear CSTR 
The system comprises of two state variables namely 

product concentration and reactor temperature. The 

reactor temperature is maintained by manipulating 

the coolant flow rate. The CSTR process and its 

operating conditions have been taken from [20]. The 

governing equations used to model the process are 

as follows: 

   0

E

RTA
Af A A

dC q
C C K C e

dt V

 
 
   

                   
(12) 

 

 
 

 

0

hA

1 c p

E

A RT

f

p

q Cc pc

c c

p

H K CdT q
T T e

dt V C

C
q e T T

C V









 
 
 

 
 
 
 


  

 
 

   
  

            (13) 
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Table 1 

Steady state operating data 

Process variable  Steady state 

operating condition 

Product concentration ( )AC  0.0795 mol/L 

Reactor temperature ( )T  443.4566 K 

Coolant flow rate ( )cq  97 L/min 

Process flow rate ( )q  100 L/min 

Feed concentration ( )AfC  1 mol/L 

Feed temperature ( )fT  350 K 

 

Inlet coolant 

temperature ( )cT  

 

350 K 

CSTR volume ( )V  100 L 

Heat transfer term (hA)  7 x 10
5 
cal/(min K) 

Reaction rate constant 0( )K  7.2 x 10
10 

min
-1 

 

Activation energy 

term ( / )E R  

 

1 x 10
4
 K 

Heat of reaction ( )H  -2 x 10
5
 cal/mol 

Liquid density ( , )c   1 000 g/L 

Specific heats ( , )p pcC C  1 cal/(g K) 

 

The nominal operating data for the CSTR process is 

given in Table 1. 

     The problem at hand is to generate estimates of 

state variables starting from the given initial 

estimates and with the knowledge of sensor 

measurements available at every sampling instant. 

For the two state benchmark problem presented 

here, the reactor temperature is the only 

measurement made but with that limited information 

both the temperature as well as the product 

concentration can be estimated as states of the 

system. The state estimation algorithm serves this 

purpose. In all the simulation runs of this section, 

the process is simulated using the nonlinear first 

principle model as given in (12) and (13). The true 

state variables are computed by solving the 

nonlinear differential equations using ordinary 

differential equation solver in Matlab. 

    The nominal operating condition of the states as 

shown in Table 1 is chosen as the initial states for 

this problem. The random errors are assumed to be 

present in the process as well as in its 

measurements. The covariance matrices of process 

noise and measurement noise are assumed as 
2

2

(0.00079) 0
Q

0 (0.443)

 
  
 

                            

2R (0.443)                                                        

However, the variance should not be increased more 

than one order of magnitude as it gives rise to large 

oscillations in the estimated states of the system. 

 

 

4.2 Estimation Performance of Particle 

Filtering Algorithms for CSTR 

Simulation study had been made on the CSTR 

process to analyze the performance of SIR filter and 

EKPF using the number of particles N=200. Fig. 1 

shows that the process is maintained with the 

constant coolant flow rate, cq  97 L/min. It can be 

noticed that in Fig. 2 and 3, the EKPF estimates 

both the states much closer to the true state than the 

SIR filter when the process is operated with the 

constant coolant flow rate. Fig. 4 shows a step 

change provided in the cq from 97 L/min to         

109 L/min. It can be observed from Fig. 5 and 6, the 

EKPF follows the true process trajectory more 

closely than the SIR filter in spite of step change 

provided in the coolant flow rate.  
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Fig. 1. Constant coolant flow rate for CSTR. 
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Fig. 2. Evolution of true and estimated product concentration of CSTR for fixed flow rate. 
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Fig. 3. Evolution of true and estimated reactor temperature of CSTR for fixed flow rate. 
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Fig. 4. Variation in coolant flow rate for CSTR. 
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Fig. 5. Evolution of true and estimated product concentration of CSTR for a step change in flow rate. 
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Fig. 6. Evolution of true and estimated reactor temperature of CSTR for a step change in flow rate. 

 

  

The performance of these particle filters are 

compared using the root mean squared error 

(RMSE) over a simulation run which is defined by: 

RMSE=  
1/2

2

1

1
ˆx x

T

k k

kT 

 
 

 
                            (16) 

where xk and x̂k  are true and estimated state at the 

instant k respectively and T indicates the total 

number of time steps. 
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Table 2 

Estimation performance  

Coolant 

flow 

rate ( )cq  

Particle 

filtering 

algorithm 

RMSE 

Product 

concentration 

( )AC  

Reactor 

temperature 

( )T  

Constant 

( cq  97 

L/min) 

SIR filter 

 

EKPF 

0.0030 

 

0.0018 

0.8847 

 

0.3654 

 

Step 

change 

( cq  97 

to 109 

L/min) 

 

SIR filter 

 

EKPF 

 

0.0026 

 

0.0022 

 

0.7012 

 

0.4460 

 

The RMSE values of the estimated states of CSTR 

by the SIR filter and EKPF algorithm are reported in 

Table 2. From this table, it is clear that EKPF based 

on analytic local linearization outperforms the SIR 

filter. 

 The computational cost of the EKPF is higher 

than the SIR filter because the EKPF requires 

running an EKF in addition to particle filtering 

algorithm. Simulation study using this CSTR 

process clearly underscores that the computationally 

intensive EKPF performs better than SIR filter in 

order to deal with the nonlinear state estimation 

problem. 

 

 

5 Conclusion                                         
The application of particle filters for state estimation 

in a highly nonlinear CSTR process is presented. 

Particle filtering approximates the probability 

density as a finite number of particles. The 

nonlinear state estimation of CSTR is achieved by 

using SIR particle filter and EKPF. The simulation 

study on the performance of the particle filtering 

algorithms shows that EKPF can provide a 

relatively good tracking performance than SIR filter 

because the importance density in the EKPF 

algorithm is dependent on the current measurement 

but it is not so in the SIR filter. Hence, the choice 

made on the selection of importance density is 

critical, when designing a particle filter for a 

particular application. In addition, the RMSE values 

are also computed to show that the EKPF provides 

better estimation results than the SIR filter. 
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