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Abstract: The Magnetic Levitation System is one of the important benchmark laboratory models for the design
and analysis of feedback control systems. Robust feedback control for magnetic levitation systems is considered
problematic due to the parametric uncertainties in mass, strong disturbance forces between the magnets and noise
effects inflowing from sensor and input channels. Therefore robustness is a key issue in designing a control system
for a magnetic levitation as the models are never 100 percent accurate and the uncertainties in the model must
be accounted. In this paper, H∞ robust control is investigated to bring the magnetic levitation system in a stable
region by keeping a magnetic ball suspended in the air in the presence of uncertainties. The paper first presents
the complete non-linear and linear mathematical models and then it adopts the mixed sensitivity design method for
H∞ controller synthesis. The simulation results show that the designed controller meets robustness against model
uncertainties and permits very precise positioning of the levitated object.
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1 Introduction

The Magnetic Levitation System is a benchmark labo-
ratory model for the understanding of control systems.
It is highly nonlinear and open loop unstable system.
This unstable aspect of Maglev and its inherent non-
linearity make the modeling and control problems
very challenging. Over the past few decades, the sev-
eral control strategies using both classical and modern
design methods have been used and implemented in
Maglev [6, 8, 11–13]. Magnetic levitation system not
only presents challenging problems for control engi-
neering research, but also have many relevant applica-
tions, such as high-speed transportation systems (Ma-
glev trains) and magnetic bearings [13–15]. From an
educational viewpoint, this process is highly motivat-
ing and suitable’ for laboratory experiments and class-
room demonstrations, as reported in the engineering
education literature [6, 12].

Robustness is an important objective in control
system design as plants are vulnerable to unpredicted
external disturbance and noise and there is always dif-
ference between mathematical model used for design
and the actual plant. Therefore it is required to design
a robust controller to guarantee the internal stability
and performance of the system in presence of such
uncertainties. The PID controller is generally used as
a controller of magnetic levitation which is easily re-
alized [6], but it can hardly meet the demands of good

robustness because it is difficult to adjust three param-
eters of Kp, Ki and Kd, so there has been consider-
able interest in robust controller for magnetic levita-
tion system. Control methods based on robust H∞
control theory [1, 2, 8, 10] deal with robustness much
more directly than other approaches

The main objective of this paper is to analyze ro-
bust feedback control for maglev. The emphasis is
on explaining the H∞ robust control design method
and its relevance for maglev system. In this paper,
weighting functions selection for controller synthesis
is done with the help of the articles [8, 10]. Mathe-
matical models for the Maglev system is established
using articles [6, 12]. Some MATLAB functions are
frequently used in this work for controller synthesis
and system simulation using reference [5, 7, 9]. The
paper presents few results and does not at all do jus-
tice to extensive real time simulation results. We also
like to remind a number of approaches that could ben-
efit under several forms of our current work [16–24].

We preview some of the contents of paper. In
section (2), we established the non-linear and linear
mathematical model of maglev system. Section (3) is
devoted to the theory of robust control design method.
It leads to the discussion of mixed sensitivity H∞
control method. Minimization of the mixed sensitiv-
ity criterion results in optimal robustness of feedback
control system. In section (4), we shown the robust
controller synthesis for maglev system. The simula-
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tion are obtained to verify robust stability and perfor-
mance for the system. Section (5) concludes this pa-
per by some remarks and conclusion.

2 Mathematical Modeling of Mag-
netic Levitation System

Magnetic levitation system consists of magnetic, elec-
trical and mechanical systems. The dynamic behavi-
uor maglev system can be modeled by the study of
electromagnetic and mechanical sub systems.

2.1 Mathematical Model for Electromag-
netic Sub-System

Consider a schematic of maglev plant and its electro-
magnetic network model as shown in Fig.(1). Apply

Figure 1: Maglev model [6]

kirchoffs voltage law in electrical system network (see
Fig.1).

V = VR + VL ⇒ u(t) = iR+ L(x)
di

dt
(1)

where u, i, R and L are applied voltage input, current
in the electromagnet coil, coil’s resistance and coil’s
inductance respectively.

2.2 Mathematical Model for Mechanical
Sub-System

Energy stored in the inductor can be written as

We =
1

2
L(x)i2 (2)

Since power in electrical system (Pe) = Power in the
mechanical system (Pm), where Pe =

dWe
dt and Pm =

−fm
dx
dt , Therefore

−fm
dx

dt
=

dWe

dt

⇒ fm = −dWe

dt

dt

dx
= −dWe

dx
(3)

where fm is known as electromagnet force. Now sub-
stituting (2) in the equation (3),

fm = − d

dx

(
1

2
L(x)i2

)
= −1

2
i2

d

dx
(L(X)) (4)

Since L(x) = k
x , therefore, we have

fm = −1

2
i2

d

dx

(
k

x

)
= −1

2
i2
(
−k

x2

)
⇒ fm =

k

2

(
i2

x2

)
(5)

where k=electromagnet force constant, x=actual air
gap between core face and ball surface.

If fm is electromagnetic force produced by input
current, fg is the force due to gravity and f is net force
acting on the ball, the equation of force can be written
as

fg = fm + f

= m

(
d2x

dt2

)
+ f

⇒ m
dv

dt
= −fm + fg (6)

where m=steel ball mass and v = dx
dt =velocity of the

ball movement
At equilibrium: fg = −fm and f = 0

2.3 Non-Linear Model

On the basis of electro-mechanical modeling, the non-
linear model of magnetic levitation system can be de-
scribed in terms of following set of differential equa-
tions:

L
di

dt
+ iR = u(t) (7)

dx

dt
= v (8)

m
dv

dt
= −fm(x, i) + fg

=
k

2

(
i2

x2

)
+ fg (9)
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2.4 Linear Model
To carry out controller design and analysis of maglev
system, the obtained non-linear model has to be lin-
earized. Such linearization is done in the equilibrium
point, which can be calculated from:

g = fm(x, i) ⇒ i0, x0. (10)

The states of the system are i, v and x. At equi-
librium, the force due to gravity fg and the magnetic
force fm are equal and opposes each other so that
the ball levitates. Considering nominal input volt-
age produces the corresponding coil current i0 such
that the ball reaches at its equilibrium where position
x = x0. We can linearized the model using Taylor’s
series expansion of fm(x, i) around the equilibrium
point (x0, i0), where x = x0 + δx and i = i0 + δi.

fm(x, i) ∼= fm(x0, i0) +

(
∂fm
∂x

)
(x0,i0)

δx

+

(
∂fm
∂i

)
(x0,i0)

δi (11)

fm ∼= fm0 − ksδx+ kiδi (12)

where ks = k
(

i20
x3
0

)
and ki = k

(
i0
x2
0

)
.

Now governing equations for linear maglev
model can be written as:

L
d

dt
δi+Rδi = u (13)

m
dv

dt
− ksδx+ kiδi = 0 (14)

d

dt
δx = v (15)

Using equations (13), (14) and (15), we can formulate
the state space model of maglev system as:

d

dt

δi
v
δx

 =

−R
L 0 0

−ki
m 0 ks

m
0 1 0

δi
v
δx


+

 1
L
0
0

u (16)

Y =
[
0 0 1

] δi
v
δx

 (17)

The equations (16) and (17) constitute the state space
model Ẋ = AX + BU and Y = CX + DU where

A =

 R
L 0 0

−ki
m 0 ks

m
0 1 0

 ;B =

 1
L
0
0

 ;C =
[
0 0 1

]
and D = 0.

In order to obtain the A,B,C and D matrices for
the linear maglev model, we consider the physical pa-
rameter’s value from the following table (1).

Table 1: Physical parameters of Magnetic Levitation
system

Parameter Unit Value
m Kg 0.068
R ohms (Ω) 10
L Henry (H) 0.4125
k Nm2/A2 6.53× 10−5

i0 Ampere (A) 0.8
x0 meter (m) 0.012

3 Design Philosophy
Consider the feedback system as shown in Fig.(2).
The problem of interest is to synthesize a controller
C(s) for the uncertain plant G̃(s) so that the closed-
loop system achieves specified performance in pres-
ence of disturbance d and noise n. The block diagram
shows a nominal plant G(s) that is disturbed by mul-
tiplicative uncertainty ∆(s), which is an unknown but
stable transfer function.

Figure 2: Feedback system with multiplicative uncer-
tainty model

By convention, the nominal open loop transfer
function, sensitivity and complementary sensitivity
transfer function are defined as [1–5]

L(s) = G(s)K(s)

S(s) = 1
1+L(s)

T (s) = L(s)
1+L(s)

(18)

Since sensitivity transfer function S(s) deter-
mines the steady-state behavior and disturbance atten-
uation of the feedback system. Therefore, by specify-
ing an upper bound on the norm of S(s), the distur-
bance attenuation and steady-state specifications can
be addressed as follows:

|σ (S(jω))| ≤
∣∣W−1

p (jω)
∣∣ , ∀ω (19)
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where σ(S(jω) is the maximum singular value of
S(s) and weighting function Wp is the bound that
reflects the desired disturbance attenuation for each
frequency ω. Good disturbance rejection is required
particularly in the low frequency region where distur-
bance is significant.

The transfer function from input r to control sig-
nal u is given by

u

r
= Q(s) =

K(s)

1 +G(s)K(s)
= K(s)S(s) (20)

To ensure that the control signal is bounded, we need
to introduce a non-zero weighting function Wu on the
control signal. Hence, constraint on the control u can
be considered with a bound Wu as shown by (21)

|σ (K(jω)S(jω))| ≤
∣∣W−1

u (jω)
∣∣ ,∀ω (21)

The relationship between the perturbed system
G̃(s), nominal system G(s) and uncertainty ∆(s) for
the block diagram shown in Fig. (2) is given by [3–5]

G̃(s) = G(s) (1 + ∆(s)) (22)

The frequency structure of the uncertainty ∆(s) is
characterized by a proper, stable and minimum phase
transfer function W∆(s) satisfying∣∣∣∣∣G̃(jω)

G(jω)
− 1

∣∣∣∣∣ = |∆(jω)| ≤ |W∆(jω)| , ∀ω (23)

where the magnitude response of W∆(jω) is an up-
per bound of the magnitude of the model uncertainty
∆(jω). If practical systems operate under perturba-
tion, we need a robustness test to ensure the stabil-
ity under such perturbation. The size of small stable
perturbation ∆(s) for the system becomes unstable is
given by:

|σ(∆(jω))| = 1

σ(T (jω))
(24)

Thus, using equation (24), the upper bound on
∥T (s)∥∞ can be specified as

|σ(T (jω))| ≤
∣∣W−1

∆ (jω)
∣∣ ,∀ω (25)

Weighting function W∆ is used to ensure good ro-
bustness and noise rejection, particularly in the high-
frequency range where the noise and modeling errors
are usually significant.

Now let’s consider the robust performance prob-
lem where we want to find an internally stabilizing
control such that [1–5]

σ (WpS) + σ (W∆T ) < 1 (26)

Figure 3: Block Diagram of Augmented Closed loop
map

We’re going to reframe this as an H∞ control prob-
lem. We first rewrite our system as shown below
in Fig.(3). This figure shows the interconnection of
an augmented plant with the controller K. The aug-
mented plant is denoted by P and we write it as a
block transfer function matrix:-

P (s) =

[
P11(s) P12(s)

P21(s) P22(s)

]
The augmented plant of Fig.(3) has w and u as its in-
puts and z and y as outputs. The output z is the vector
of regulated variables WpS,WuKS and W∆T . The
reference command r and e = r − y of the feedback
block diagram of Fig.(2) corresponds to w and y of
Fig.(3). The input-output relationship of the system
shown in Fig.(3) can be written as[

z
y

]
= P

[
w
u

]
=

[
P11 P12

P21 P22

] [
w
u

]
(27)

u = K(s)y (28)

Putting value of (28) in (27), the closed-loop transfer
function from w to z can be found as

Fl(P,K) = P11 + P12K(I − P22K)−1P21 (29)

The mapping Fl(P,K) is known as linear fractional
transformation (LFT).

Now we have to find a controller K such that the
H∞ norm of Fl(P,K) is bounded by a known con-
stant γ. The constant γ represents the desired per-
formance level of this closed loop system. In other
words, we want to find K such that Fl(P,K) is inter-
nally stable and satisfying [4, 5]

∥Fl(P,K)∥∞ < γ. (30)

This problem is known as classical H∞ controller
synthesis problem. This synthesis problem is also of-
ten referred to as a mixed sensitivity problem. It has
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the name because the closed loop map Fl(P,K) can
be written as

Fl(P,K) =

 WpS
WuKS
W∆T

 (31)

where S and T are the output sensitivities of the nom-
inal closed loop system. Using the properties of the
singular values, it can be shown that

σ

 WpS
WuKS
W∆T

 ≤ σ (WpS) + σ (W∆T )

≤ 2σ

 WpS
WuKS
W∆T

(32)

So if we solve the mixed sensitivity problem with γ =
1/2, then we can guarantee that

∥Fl(P,K)∥∞ < 1/2. (33)

and this is sufficient to ensure robust performance for
all ω. Moreover, the H∞ controller synthesis (if suc-
cessful) always generates an internally stable closed
loop map.

4 H∞-Controller Synthesis for Mag-
netic levitation System

The robustness of Maglev feedback control system
refers to the ability to keep stability of controlled ob-
ject under the uncertainty. The control objective of
magnetic levitation system is to maintain the stable
levitation of ball without contact in equilibrium po-
sition by adjusting the coil current of electromagnet.
Based on this objective, applying robust control de-
sign method as discussed in section (3), the control of
magnetic levitation can be set as mixed sensitivity H∞
control, whose control system structure is shown in
Fig.(3), where P (s) is augmented object model, K(s)
is controller model, Wp(s) is weighting performance
function introduced to restrain the influence to con-
trol error by noise and interference, Wu(s) is weight-
ing output function of controller introduced to restrain
input extremity, W∆(s) is weighting model perturba-
tions function introduced to meet robust stability.

4.1 Selection of Weighting Functions
The most crucial and difficult task in robust controller
design is a choice of the weighting functions. Even
though in some articles there are attempts to outline

the algorithm for finding appropriate functions, it is
still a very monotonous and laborious process espe-
cially when a given model has complex non-linearities
which obviously are omitted in a linear model.

The basic requirement for the selection of weight-
ing functions are discussed in section (3). It is also
necessary that the weighting functions are stable and
the non minimum phase system, and their order can
not be too high, otherwise the order of the controller
will be increased because the order of H∞ controller
is the sum of controlled object and of weighting func-
tion. So we should select the lowest order weighting
function whichever possible on the premise of ensur-
ing design requirements.

After extensive simulation and fine tuning, the
weighting function Wp(s) for sensitivity S, Wu(s) for
KS and W∆(s) for complementary sensitivity T are
chosen as follows:

Wp(s) =
0.4451s+0.4999

s+1.006

Wu(s) = 1e−8

W∆(s) =
0.1774s+8.717

s+39.03

(34)

The entire procedure of choosing these weights is
done with the help of the article [8, 10].

Remark 1 We consider the case of parameter uncer-
tainty in the system for 10% mass variation. Initially,
changing 10% of mass in MATLAB simulation, the
weighting function W∆(s) is selected.

4.2 Controller Design
The H∞ optimal control problem is to find stabiliz-
ing controller K that satisfy inequality (33). This
controller design framework includes performance
specification, disturbance rejection, control input
limitations and robustness requirements. In the initial
design step, the nominal plant model G is obtained
from equations (16) and (17) developed in section (2).
H∞ controller is generated using nominal plant G
and weighting functions Wp(s),Wu(s) and W∆(s).
The controller K is obtained by the MATLAB function
’mixsyn’ as follows [7, 9]:

[K,CL,GAM]=mixsyn(G,Wp,Wu,W∆)

where K is the controller, CL is the closed loop
for the system and GAM=γ.

Using the above MATLAB code, we obtain the op-
timized parameter γ = 0.4686, which satisfy our de-
sired inequality ∥Fl(P,K)∥∞ < γ = 1/2. The 5th

order controller is obtained and the controller transfer
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can be written as:

K(s) =

−(2.801× 1010)s4 − (2.33× 1012)s3 − (6.234× 1013)s2

− (5.626× 1014)s− (5.235× 1014)
s5 + 4432s4 + (7.989× 106)s3 + (8.105× 109)s2

+ (3.025× 1011)s+ (2.961× 1011)

We now turn to examine this controller solution
K and see if it really solved our problem. We first
plot the robust performance level given by σ (WpS)+
σ (W∆T ) < 1. The plot shown in Fig.(4) is the com-

Figure 4: σ(WpS) + σ(W∆T ) versus ω

bined robust performance level. Since the plot is be-
low the 0 dB line, it shows that the robust performance
condition is clearly satisfied. The next plot shown in
the Fig.(5) illustrates the desired design specifications
bounds as mentioned in (30) and (31). The plots meet
our specification requirements, so the H∞ synthesis
has indeed solved the robustness problem of feedback
control of maglev. Finally, we check our design by
plotting the step responses for our closed loop design.
The plot shown in the Fig.(6) shows the controlled ball
position of linearized magnetic levitation system.This
type of step response is what we want to see in our
robust feedback system.

5 Conclusion
In this paper, robustness analysis for the feedback con-
trol of magnetic levitation system is investigated. The
basic ideas and technical formulations for the analy-
sis of robust feedback control are presented. Firstly,
the mathematical model of magnetic levitation sys-
tem is established and then the control method based
on H∞ mixed sensitivity is analyzed and robust con-
troller is designed. The simulation results show that

Figure 5: Design specification requirements

Figure 6: Stable ball position in Maglev system

the designed controller meets the requirement for the
robust stability and performance. In other words, con-
troller presents robustness against model uncertainties
and permits very precise positioning of the levitated
object.
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