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Abstract: - Floating point arithmetic computation has been widely used today in graphics, digital signal 
processing, image processing and other applications. Multiplication is the most complex calculation that used in 
most digital electronic circuit. The multiplier may have large chip area density, high complexity, and is a time 
consuming computation because the output data size is twice larger than input data size. Complex floating point 
multiplication required more time to process data and is highly recommended to improve the computation 
speed. The performance in terms of computation and processing speed is one of the major factors in today’s 
Very/Ultra Large Scale Integration (VLSI/ULSI) system design. The objective of this research is to design a 
32-bit floating point multiplier for Very high speed integrated circuit Hardware Description Language (VHDL) 
designer’s library that consists of mantissas multiplier, normalizer, exponent adder, and signer for VHDL 
designer’s library that lack of floating point multiplier module. Booth radix-4 algorithm is used in the 
multiplier, mainly due to the simplicity of this algorithm to be modeled using VHDL and at the same time it 
provides good performance. The 32-bit floating point multiplier is tested on Arria II GX chip to determine their 
performance in terms of slack, maximum frequency and minimum clock period by using TimeQuest Timing 
Analyzer. Booth radix-4 multiplier in Arria II GX (EP2AGX45CU17I3) produces a maximum frequency of 
206.14 MHz and minimum allowed clock period of 5 ns. Benchmarking has been carried out between the 
Booth radix-4 and Wallace Tree multipliers, since Wallace Tree multiplier can provide better performance to 
the VLSI system design. The resource consumption of Booth radix-4 multiplier is 88.8% less than the Wallace 
Tree multiplier and the performance of Booth radix-4 multiplier is almost equal to the Wallace Tree multiplier.  
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1 Introduction 
Floating point computation has been widely used 
today in graphics, Digital Signal Processing (DSP), 
image processing and other applications. Floating 
point multiplication is a critical module in many 
applications especially for Graphic Processing Unit 
(GPU), image recognition, and digital signal 
processing applications such as wired and wireless 
communications involving a large dynamic range. 
One of the most demanding example applications 
that use floating point multiplier is Three-
Dimensional (3D) GPU for gaming. Real time 3D 
graphics display is relied on the GPU's floating 
point unit to perform floating point calculations. The 
3D object is rendered by many numbers of polygons 
to form. The floating point multiplier is used to 
calculate the changes of polygons, which involved 
some mathematical approach such as matrix and 
vector calculation. Floating point numbers gives 
high level of precision, produces much better detail 

of the 3D model. Another example that uses floating 
point multiplier is the navigation system in radar for 
identification, tracking and detection. The radar 
system may be scanned within a range between 
starting point to destination point for target 
acquisition. It requires wide dynamic ranges that use 
multiply or divide operation or matrix inversions to 
calculate polar coordinates to detect the exact target 
location precisely. Since the subset of the range 
must be determined in real time during operation, 
this is impossible to design this navigation system 
using fixed point DSP due to its limited range. 
Fortunately, floating point DSP is the perfect choice 
in designing this navigation system because it 
provides wide dynamic range and high precision [1].  

Such complex multiplication required more time 
to process the data. Therefore, the high speed 
multiplication unit for floating point numbers is 
highly recommended to speed up such complex 
floating point multiplication. Some research 
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engineers have already started their research on 
designing a high speed floating point multiplier 
recently [2-6]. The performance in terms of 
processing speed of floating point data calculation is 
the main performance metric in today’s VLSI or 
ULSI system design. The multiplier consumes large 
chip area density, high complexity, and time 
consuming process because the output data size is 
twice larger than input data size. Designing a high 
speed floating point multiplier in Field 
Programmable Grid Array (FPGA) [7] is still 
remains a major challenge. This inspired the idea to 
model a high speed floating point multiplier for 
VHDL designer's library. VHDL is one of the 
suitable languages to be used for complex system 
modelling [8-10].   

There are many types of design models have 
been introduced to perform only for multiplication, 
and every multiplier design models have different 
algorithms which will give the same operation but 
different performance in terms of calculating speed 
and also resource consumption. Different type of 
multiplier algorithms is studied in this research. The 
suitable multiplication algorithm that is suitable for 
high speed 24-bit multiplication is identified. A new 
32-bit single precision high speed floating point 
multiplier will be modelled in VHDL using the 
latest Engineering Design Automation (EDA) 
software, Altera Quartus II.  

The main objective of this research is to model a 
32-bit single precision floating point multiplier 
using VHDL. Since the floating point multiplier is 
not available in the VHDL designer’s library, a new 
multiplication algorithm will also be created as a 
new module in the library. The Booth multiplication 
algorithm is proposed as a model for designing 24-
bit multiplier. Other components including signer, 
exponent adder, and normalizer will also be 
modelled in VHDL to build a complete 32-bit 
floating point multiplier. Extensive simulation will 
be carried out on the multiplier modelled for 
functional verification. A high speed floating point 
multiplier is sampled by selecting the valid input 
data to produce the valid output results. 
Assumptions have been made to ignore the invalid 
data like overflow or underflow results produced by 
multiplying with infinite value or multiplying by 
zero respectively in this performance verification.  

The timing performance, maximum operation 
frequency and resource consumption of 32-bit 
floating point multiplier are determined. Three 
Altera FPGA Arria II GX chip is used to evaluate 
the performance of the 32-bit floating point 
multiplier. The performance and resource usage 
comparison between newly proposed Booth 

multiplier and Wallace Tree multiplier are carried 
out. 

 
 

2 Floating Point Multiplication 
Algorithms 
The reason to have real numbers or fractional 
numbers is to obtain the result with better accuracy 
and precision. The binary representation is used to 
convert the real number into binary form that mostly 
supported by the machine. Such complex 
calculation required a huge amount of data and 
complex hardware to process desired output. 

In the early stage, fixed point representation was 
the easiest method to convert the real number to 
binary because fixed-point adheres to the same basic 
arithmetic principles as integers. However, fixed 
point representation has limited range of values and 
once exceeding the range limit can cause data 
overflow. The floating point representation has 
better precision and support a much wider range of 
values compared to the fixed point representation. 
The size of the floating point representation that can 
be stored is either 32-bit (single-precision) or 64-bit 
(double-precision) defined by IEEE 754 Standard 
[11]. The IEEE Standard 754 single precision 
floating point format is widely implemented in 
digital systems uses 32 bits and 64 bits floating 
point number representation. In general, numbers 
are represented approximately to a fixed number of 
significant digits and scaled using an exponent. The 
base for the scaling is 2 for binary. For 32-bit 
floating point number representation, a floating 
point number in scientific notation as well as the 
IEEE 754 format are presented in Fig.1. 
 

-1Sign × 1.Mantissa × 2Exponent-127            (1) 
 

Sign 
(1 bit) 

Biased 
Exponent 
(8 bits) 

Mantissa 
(23-bits) 

Fig.1: IEEE 754 single precision (32-bit) floating 
point format 
 

A decimal number needs to convert to binary 
number first follow by converting it to IEEE 754 
single precision (32-bit) floating point format. The 
decimal point of the binary fractional number is 
moved to either left or right, so that only a single 
binary digit "1" is placed to the left of the binary 
decimal point. The exponent is used to record the 
adjustment of the decimal point. Next, the bias 
value, which is 127 is added to the exponent and 
then convert it into 8-bit binary. The "1." is omitted 
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from the mantissa. Once sign, biased exponent and 
mantissa are determined, 32-bit floating point 
representation is finally formed. The following 
example shows the conversion from decimal 
number to IEEE 754 32-bit floating point 
representation (Convert 12.062510 to 32-bit 
floating point). 

1210 = 0000 11002 
0.0625 x 2 = 0.125 
0.125 x 2 = 0.25 
0.25 x 2 = 0.5 

0.5 x 2 = 1 
12.062510 = 000001100.00012 = 1.1000001 x 2 3               

�

��� 
3+127=13010 �

�=100000102 
 

1.1000001 
0 10000010 10000010000000000000000 

 
Multiplication is the mathematical operation of 

scaling one number by another. The common 
method to calculate the multiplication is using 
manual multiplication (Fig.2), which is multiply the 
multiplicand by each digit of the multiplier and then 
adds up all the properly shifted partial products. 
This method also applies in binary multiplication, a 
simple shift and add algorithm in base 2. 

 
Fig.2: Manual multiplication method 
 

This manual multiplication method can also be 
applied in circuit design by each part of 
multiplicand and multiplier is connected to AND 
gate to get partial products, and then adds up each 
partial product with adders. However, this design is 
impractical because almost all partial products are 
used and occupied more area density in a chip and 
also cause slow throughput. There are many 
multiplication methods that can reduce the number 
of partial products and speed up the process for 
better throughput in order to design the high speed 
multiplier. Wallace tree and Booth multiplier are 
widely used for implementing fast and efficient 
multiplier. 
 
 
 
 

2.1 Wallace Tree Multiplier 
Australian computer scientist Chris Wallace 
introduced the multiplication algorithm to 
implement the efficient circuit that multiplies two 
numbers, named Wallace tree multiplier in 1964 
[12]. The partial products are arranged to form the 
Wallace Tree shown in Fig.3, and then compress the 
partial products using either a full adder (3:2 
compressor) or half adder (2:2 compressor), 
depending on how many partial products are present 
in the same column. 

 

 
Fig.2: Partial products arrangement in the form of 
Wallace tree structure 
 

If there are three partial products within the same 
column, full adder is used to compress them and the 
output will be a sum output in the same column and 
a carry output that will be carried forward to the 
next higher column. If there are two partial products 
of the same column, half adder is used and the 
outputs are a sum in the same column and the carry 
output that will be carried forward to the next higher 
column. If there is just one partial product left, it 
will take as part of the result. The processes are 
repeated until only remain one partial product left in 
all columns to complete the Wallace Tree 
multiplication. The following example had shown 
the multiplication of 15×13. 

1510 = 11112 
1310 = 11012 
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First stage: 

 
Second stage: 

 
Final stage: 

 
 
Fig.4 described the structure of Wallace tree 

multiplier that works similar to the example 
mentioned in previous part. Wallace tree multiplier 
speeds up the calculation by reducing the number of 
partial products. However, the disadvantage of the 
Wallace Tree multiplication is the digital circuit 
become more complicated as the number of bits 
extends. The consequence is the hardware wiring 
become more difficult to route, and large number of 
adders contribute longer delay to generate the final 
results thus slow down the processing speed. And 
that is the reason why Wallace Tree multiplication is 
not suitable to implement the high speed 24-bit 
multiplier. 

Fig.4: Partial products reduction in Wallace tree 
multiplier 
 
 
2.2 Booth Radix-4 Multiplier 
The Booth multiplication algorithm was developed 
by a British electrical engineer, physicist and 
computer scientist Andrew Booth in 1950 [13]. 
Booth formalized this observation and applied it to 
binary multiplication, where he started the first 
version known as radix-2. At the beginning, the first 

pair is created by appending least significant bit or 
Least Significant Bit (LSB) of the multiplier and a 
new bit ‘0’ is added next to its right before 
examining each pair of bits. Then, Booth devises a 
simple rule for each step to complete multiplication: 
• Add the multiplicand if the pair is 01, 
• Subtract the multiplicand if the pair is 10, 
• Do nothing if the pair is 00 or 11. 

Once done, both partial product and multiplier 
are shifted one place to the right to allow the next 
pair of bits to be examined. Table 1 shows the radix-
2 algorithm scheme, where A is multiplier, B is 
multiplicand and i represents bit position (e.g. i=0 
indicates LSB). This process is repeated many times 
depending on the number of bits in the multiplier to 
complete the multiplication. 

 
Table 1: Booth Algorithm Scheme (Radix-2) 

A(i) A(i-1) B 
0 0 +0 
0 1 +B 
1 0 -B 
1 1 +0 

 
For instance, mantissas multiplication required 

24 bits for both inputs, and thus the examine pairs 
process in booth algorithm is repeated 24 times to 
complete mantissas multiplication. However, the 
radix-2 version takes too long to complete 24-bit 
mantissas multiplication process. Fortunately, the 
performance of Booth multiplier is improved in the 
enhanced version Booth radix-4. Instead of 
examining two least significant bits per step in 
radix-2, Booth radix-4 examines three least 
significant bits at a time in one step and performs 
actions before double right shifting. Initially, the last 
two bits of the multiplier are appended and a new bit 
‘0’ is added on the right of the LSB for Booth radix-
4. The following actions are carried out to complete 
the computation. 
• If 001 or 010, add the multiplicand only once. 
• If 011, add the multiplicand twice. 
• If 100, subtract the multiplicand twice. 
• If 101 or 110, subtract the multiplicand only 

once. 
• If 000 or 111, do nothing. 

Both partial product and multiplier are then 
shifted two places to the right, allow the next three 
bits to be examined. This process is repeated 
depending on the number of bits in the multiplier to 
complete the Booth radix-4 multiplication. Table 2 
shows the Booth radix-4 algorithm scheme. Notice 
that Booth radix-4 is able to reduce the number of 
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steps by half compared to radix-2 and higher 
processing speed can be achieved. 
 
Table 2: Booth radix-4 Algorithm Scheme 

A(i+1) A(i) A(i-1) Action 
0 0 0 Do nothing 
0 0 1 A+B 
0 1 0 A+B 
0 1 1 A+2B 
1 0 0 A-2B 
1 0 1 A-B 
1 1 0 A-B 
1 1 1 Do nothing 

 
Table 3 shows the computation that using Booth 

radix-4 multiplication. 
1111 (15) x 1101 (13) = 11000011 (195) 
Assuming 15 is multiplier, and 13 is multiplicand. 
With Booth radix-4 multiplication, the number of 
partial products is greatly reduced, makes this 
hardware simple to implement and performs faster 
in data processing compared to Wallace Tree. In this 
research, a 24-bit Booth radix-4 multiplier is 
proposed in order to achieve high speed mantissas 
multiplication for high speed floating point 
multiplier. Booth radix-4 multiplier takes about 12 
clock cycles to complete the 24-bit mantissas 
multiplication. 
 
Table 3: Multiplication of 15 x 13 = 195 using 
Booth radix-4 algorithm 

 
 
3 32-bit Booth Radix-4 Multiplier 
The single-precision (32-bit) floating-point 
multiplier performs multiplication of two inputs 

which are floating-point numbers. At the beginning, 
both inputs must be converted from decimal number 
into floating point representation based from IEEE 
754 standard before doing the multiplication. Once 
the floating point multiplication is complete, the 
output which is in IEEE 754 floating point 
representation will convert back to decimal number. 
A multiplication of two floating-point numbers is 
done in the following 5 steps: 

Step 1: Multiplication of mantissas 
Step 2: Normalization 
Step 3: Addition of the exponents 
Step 4: Calculation of the sign 
Step 5: Composition of all results  

 

 
Fig.5: 32-bit floating point multiplier data flow 
 

Fig.5 described the 32-bit floating point 
multiplier data process flow. Each input is split into 
three modules (sign, exponent, and mantissa) so that 
can be easily to route into corresponding 
components. Signs from input A and B are 
connected directly to XOR gate to generate the final 
sign result, either ‘0’ indicates positive sign or ‘1’ 
indicates the negative sign. Meanwhile, exponents 
and mantissas from input A and B are connected to 
exponent adder and multiplier respectively. The 48-
bit output from multiplier must pass through to the 
normalizer to perform rounding to nearest 23-bit of 
mantissa. In exponent adder, both exponents from A 
and B are added before subtract to bias value which 
is 127. The carry signal from normalizer is also 
connected to exponent adder to adjust the exponent 
value, which will be the final 8-bit exponent result. 
All the output from signer (1-bit), exponent adder 
(8-bit), and normalizer (23-bit) are then combined to 
form 32-bit floating point multiplication product as 
the final results. 

The last 23 bits of mantissa in 32-bit floating-
point number is given by two operands for 
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multiplication. The explicit ‘1’ added as the leading 
bit of both mantissas to fit into 24-bit multiplier 
unit. The 24-bit data multiply with another 24-bit 
data result twice the size of the operands which is a 
48-bit data. Booth radix-4 multiplier is used as 24-
bit mantissas multiplier. Later, only 23 bits are to be 
extracted in order to follow IEEE 754 standard 
rules. This can be done by normalization. 

The extraction of 23-bit out of 48-bit output after 
multiplication, which is the final result for mantissa 
have come with 2 conditions. It may also involve 
some adjustment of the resultant exponent, 
depending on Most Significant Bit (MSB) of the 48-
bit multiply product. If the MSB is ‘1’, bit-25 to bit-
47 will be selected as final 23-bit mantissa with 
rounding to nearest by adding bit-24, and add ‘1’ to 
exponent. If MSB is ‘0’, then bit-24 to bit-46 will be 
selected with rounding to nearest by adding bit-23 
without adding carry to exponent. 

The 8-bit exponent values from two operands are 
added to generate a sum of 9-bit result. The 
incoming values are biased, a constant value of 127 
must be subtracted from the result. In addition, the 
carry signal from the normalizer is added to this 
exponent for adjustment. Only 8-bit exponent values 
forward to the final output, which will be the 8-bit 
exponent in IEEE 754 32-bit floating point. The 
formula for the sum of exponents is as follow. 
 
Sum of Exponent = Exponent A + Exponent B - 127                       
                               + Carry from Normalizer   (2) 
 

For special case reason, the MSB (bit-9) denotes 
that an exponent is either overflow or underflow has 
occurred. The MSB of the exponent is ‘1’ means the 
exponent value is overflowed (infinite value), and 
‘0’ means this is under flowed (nearly zero value). 

The left most significant bit in 32-bit floating-
point format stores the sign of the number after 
multiplication, where ‘0’ indicate positive sign (+) 
or ‘1’ indicate negative sign (-). The result will 
generate a positive signed number when either 
positive signed numbers or both negative signed 
numbers are multiplied. If one input is a positive 
signed number, and other is a negative signed 
number, the result will generate a negative signed 
number after multiplies to two different signed input 
numbers. A simple method to determine the sign is 
using an exclusive-or gate (XOR gate). The XOR 
gate gives output logic ‘0’ if both inputs are the 
same and logic ‘1’ if both inputs are different. 

 
 
 
 

4 Simulation Analyses 
Altera Quartus II is the best EDA software to design 
digital logic circuit behaviour by schematic, or 
coding (VHDL or Verilog) on FPGA devices. 
VHDL is most commonly used to describe a logic 
circuit by writing text model. The text model is then 
compiled and synthesized into the gate level logic 
circuit. VHDL is also being used for writing 
simulation model to test logic circuit functionality, 
called test bench. The simulation model contains a 
number of random input vectors to generate the 
expected output during simulation. 

TimeQuest Timing Analyzer is used as a timing 
analysis tool that validates the timing performance 
for digital logic design using industry standard 
constraint, analysis, and reporting methodology. 
TimeQuest analyses the clock constraint and I/O 
delay setting on the logic circuit design, and then 
generate the timing report once compilation is 
complete. The timing report will show the 
maximum frequency that the logic circuit can be 
supported on both 1200mV 0oC model and 85oC 
model. The slack (the margin which time is required 
to achieve at the longest and most critical path) is 
also determined. Slack is calculated by using the 
equation below. 
 
Slack = Time when data required  
            – Time when data arrived          (3) 
 

The slack must be in positive value or the data 
must arrive before data required time, otherwise the 
clock setting does not meet the timing requirement 
and violates data setup and hold time. To achieve 
positive slack, the clock speed should be reduced to 
increase the time period. Clock cycle or time period 
can be set using Synopsys Design Constraints 
(SDC) file. TimeQuest generated a path summary 
report that shows the longest critical path, data 
arrival time and data required time. 
 
 
4.1 24-bit Booth Radix-4 Mantissa 
Multiplier 
The Booth radix-4 algorithm is modeled using 
VHDL code to perform Booth multiplication. This 
algorithm is triggered by the positive edge triggered 
clock. This multiplication completed in 12 clock 
cycles plus 1 clock cycle for result adjustment. The 
enable signal (EN) is used to activate the normalizer 
once the multiplication is completed. Fig.6 shows 
the module of 24-bit Booth radix-4 mantissa 
multiplier.  
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 A series of input data are shown in Table 4 are 
used for functional verification of the 24-bit 
mantissa multiplier. Table 4 provides all the input 
data and the corresponding output generated by 
multiplier. As shown in Fig.7, the 24-bit Booth 
radix-4 multiplier generated the expected output 
shown in Table 4. This shows that 24-bit Booth 
radix-4 multiplier is modeled successfully. 
 

 
Fig.6: 24-bit Booth radix-4 mantissa multiplier 

module 
 

Table 4: Test data used for 24-bit Booth radix-4 
mantissa multiplier 

Inputs (A x B) Expected output 
1 x 2 2 
3 x 4 12 
5 x 6 30 
7 x 8 56 
9 x 10 90 

8785920 x 9437184 82914343649280 
7991296 x 7340032 58656368361472 

 
Fig.7: Output waveform of 24-bit Booth radix-4 
mantissa multiplier 
 

4.2  Normalizer 
The function of normalizer is to extract 48-bit 
mantissa that has been generated by 24-bit Booth 
radix-4 mantissa multiplier into 23-bit mantissa as 
part of the final result. If the MSB (bit-48) is ‘1’, 
bit-25 to bit-47 will be selected as final 23-bit 
mantissa with rounding to nearest by adding bit-24, 
and add carry ‘1’ to exponent. If MSB is ‘0’, then 
bit-24 to bit-46 will be selected with rounding to 
nearest by adding bit-23 without adding carry to 
exponent. All those conditions are written in VHDL 
using if-else condition. Fig.8 and Fig.9 show the 
RTL view and module of the normalizer. 
 Four tests below have been carried out to check 
the functionality of normalizer to extract 23-bit out 
from 48-bit, and also perform rounding to nearest 
algorithm. As a result, the output waveform in 
Fig.10 proved normalizer generates all the correct 
answers. 

 
Fig.8: RTL view of the Normalizer 
 

 
Fig.9: Normalizer module 
 
Test 1: 

 
 
Test 2: 
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Test 3: 

 
Test 4: 

 
 

 
Fig.10: Output waveform of Normalizer 
 
 
4.3  Exponent Adder 
The operation of exponent adder is quite similar to 
the full adder except the constant biased value of 
127 is included to be subtracted with the sum of 
input exponent A, B and the carry bit from 
normalizer. The 8-bit output SUM is the final result 
for the exponent part of 32-bit floating point 
multiplication result.  
Fig.11 and Fig.12 show the RTL view and module 
of the exponent adder respectively. A set of input 
vectors is used in the VHDL test bench shown in 
Fig.13 to test the functionality of the exponent 
adder. Fig.14 shows the output waveform and the 
simulation result indicates that the exponent adder is 
working successfully. 
 

 
Fig.11: RTL view of Exponent Adder 
 

 
Fig.12: Exponent Adder Module 

 
A <= “00001100”; B <= “00001010”; CARRY <= ‘0’; 
wait for 5 ns; 
CARRY <= ‘1’; wait for 5 ns; 
A <= “01111100”; B <= “01100000”; CARRY <= ‘0’; 
wait for 5 ns; 
CARRY <= ‘1’; wait for 5 ns; 
A <= “10000001”; B <= “10000010”; CARRY <= ‘0’; 
wait for 5 ns; 
CARRY <= ‘1’; wait for 5 ns; 
A <= “10000110”; B <= “10000000”; CARRY <= ‘0’; 
wait for 5 ns; 
CARRY <= ‘1’; wait for 5 ns; 
A <= “10000010”; B <= “01111101”; CARRY <= ‘0’; 
wait for 5 ns; 
CARRY <= ‘1’; wait for 5 ns; 
Fig.13: VHDL test bench of Exponent Adder 
 

 
Fig.14: Output waveform of Exponent Adder 
 
 
4.4  Signer 
Signer determines the floating point multiplication 
results either positive number or negative number. 
Same signed numbers are multiplied will lead to a 
positive number, different signed numbers lead to a 
negative number. The solution is to use a simple 
logical operator XOR gate. The XOR gate output 
waveform is shown in Fig.15. 
 

 
Fig.15: Output waveform of Signer or XOR gate 
 
 
4.5  32-bit Both Radix-4 Multiplier 
All four components are combined together to build 
32-bit floating point multiplier. Fig.16 showed the 
RTL view of 32-bit floating point multiplier. 
 The following tests with desired inputs (A and B) 
and expected output R have been carried out to 
check the functionality of the 32-bit floating point 
multiplier. Special cases such as invalid data like 
overflow or underflow results produced by 
multiplying with infinite value or zero are ignored in 
this test. 
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Fig.16: RTL view – Complete 32-bit floating point 
multiplier 
 
Test 1: 
134.0625 x -2.25 = -301.640625 
A = 134.0625 = 1.00001100001 x 2 7  
A = 0 10000110 00001100001000000000000  
    = 0x43061000 
B = -2.25 = -1.001 x 2 1 
B = 1 10000000 00100000000000000000000  
   = 0xC0100000 
R = A x B = -301.640625  
    = -1.00101101101001 x 2 8 
R = A x B  
   = 1 10000111 00101101101001000000000  
   = 0xC396D200 
 
Test 2: 
-14.5 x -0.375 = 5.4375 
A = -14.5 = -1.1101 x 2 3 
A = 1 10000010 11010000000000000000000  
    = 0xC1680000 
B = -0.375 = -1.1 x 2 -2 
B = 1 01111101 10000000000000000000000  
   = 0xBEC00000 
R = A x B = 5.4375 = 1.010111 x 2 2 
R = A x B  
   = 0 10000001 01011100000000000000000  
   = 0x40AE0000 
 
Test 3: 
7.5 x 15.5 = 116.25 
A = 7.5 = 1.111 x 2 2 
A = 0 10000001 11100000000000000000000  
   = 0x40F00000 
B = 15.5 = 1.1111 x 2 3 
B = 0 10000010 11110000000000000000000  
   = 0x41780000 
R = A x B = 116.25 = 1.11010001 x 2 6 
R = A x B  
   = 0 10000101 11010001000000000000000  
   = 0x42E88000 

  
  
As a result, all the outputs RESULT from the 
waveform in Fig.17 are matched with outputs R 
computed above after 13 clock cycles. This is 
shown that the 32-bit floating point multiplier is 
modeled successfully. 
 

 
Fig.17: Output waveform of complete 32-bit 
floating point multiplier 
 
 
4.6  TimeQuest Timing Analyzer 
The analysis is targeted on Arria II GX 
EP2AGX45CU17I3 device. The minimum CLOCK 
period is able to be constrained until 5 ns under 
TimeQuest Timing Analyzer. The path summary 
report for 32-bit floating point multiplier using this 
low power mid-range chip is generated in Table 5. 
The critical path is located from pa[27] to 
P_OUT[35] inside the Booth radix-4 multiplier. The 
data arrival time is 7.276 ns and the data required 
time is 7.425 ns. The slack is the difference between 
data required time and data arrival time, which is 
0.149 ns. The maximum frequency of Arria II GX 
EP2AGX45CU17I3 device is 206.14 MHz as shown 
in Fig.18. 

 
Table 5: Path summary for 32-bit floating point 

multiplier using Arria II GX series 
EP2AGX45CU17I3 

From Node booth_radix4:U1|pa[27] 
To Node booth_radix4:U1|P_OUT[35] 
Launch Clock CLOCK 
Latch Clock CLOCK 
Data Arrival Time 7.276 
Data Required Time 7.425 
Slack 0.149 
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Fig.18: TimeQuest timing waveform of 32-bit 
floating point multiplier using Arria II GX Series 
EP2AGX45CU17I3 device 
 
 
4.7 Booth Radix-4 and Wallace Tree 
Performance Comparison 
Some research engineers claimed that Wallace Tree 
multiplier performs faster than Booth multiplier. 
The Wallace Tree multiplier modeled in [14] is used 
as 24-bit Wallace Tree mantissas multiplier. Their 
observation may be true but the question is how the 
Wallace Tree multiplier improves its performance 
compared to Booth multiplier. This experiment will 
prove that Booth multiplier still the best option to 
build a high speed multiplier rather than Wallace 
Tree multiplier. 
 The performance of the 32-bit Wallace Tree 
floating point multiplier is compared with 32-bit 
Booth radix-4 floating point multiplier in this test. 
The CLOCK signal is constrained by 5 ns for both 
types of multiplication and using Arria II GX 
(EP2AGX45CU17I3) FPGA is used to conduct this 
performance test. Table 6 summarizes the 
performance between Wallace Tree and Booth 
Radix-4 multiplier on the Arria II GX device. 
 Fig.19 shows the difference between 32-bit 
Wallace Tree and Booth radix-4 floating point 
multiplier by comparing the number of Adaptive 
Look-up Tables (ALUTs) and logic register used in 
Arria II GX FPGA chip. As shown in Fig.19, the 
resource consumption of Booth radix-4 multiplier is 
88.8% less than the Wallace Tree multiplier. 
Wallace Tree multiplier consumes more resource 
usage on Arria II GX FPGA despite its performance 
is only slightly faster than Booth radix-4 multiplier. 
The 32-bit floating point multiplier with Wallace 

Tree multiplier used extra 88.8% of the total 
combinational ALUTs and 94.5% of the total logic 
registers to improve only 1% (2.76 MHz) faster than 
the Booth radix-4 multiplier. In contrast, the 32-bit 
floating point multiplier with Booth radix-4 
multiplier consumes less resource usage and still 
able to perform with maximum frequency almost as 
fast as Wallace Tree multiplier. 
 
Table 6: Performance comparison between the 32-
bit Wallace Tree and Booth radix-4 floating point 
multiplier on Arria II GX (EP2AGX45CU17I3) 

24-bit 
Mantissas 
Multiplier 

Type 

Wallace 
Tree 

Booth 
Radix-4 

Difference 

Chip Family Arria II GX 
EP2AGX45CU17I3 

 
Device 

Combinational 
ALUTs 

2122 / 
36100 
(6%) 

238 / 
36100 
(< 1%) 

88.8% 

Logic 
Registers 

1939 / 
36100 
(5%) 

106/ 
36100 
(< 1%) 

94.5% 

Total Pins 98 / 176 
(56%) 

99/ 176 
(56%) 

 

Minimum 
Clock Period 

5 ns  

Maximum 
Frequency 

208.9 
MHz 

206.14 
MHz 

1% 

  

 
Fig.19: Resource usage comparison graph between 
32-bit Wallace Tree and Booth radix-4 floating 
point multiplier on Arria II GX FPGA device 
 
 
5 Conclusion 
The high speed single precision 32-bit Booth radix-
4 floating point multiplier has been modeled using 
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VHDL. It consists of 4 modules, i.e. Booth Radix-4 
mantissa multiplier, normalizer, exponent adder and 
the signer. Booth radix-4 multiplication is one of the 
suitable algorithm to be used to design the high 
speed 24-bit mantissas multiplier because this 
algorithm is much simpler than the complex 
Wallace Tree multiplier, thus less gate delay and 
able to perform such complex multiplication faster. 
In addition, Booth radix-4 performance is doubled 
compared to Booth radix-2 that allows high speed 
multiplication can be achieved. The 32-bit floating 
point Wallace Tree multiplier operates up to 208.9 
MHz with same constrained clock period of 5 ns on 
Arria II GX FPGA. However, Wallace Tree 
multiplier consumes more than 90% extra resources 
compare to Booth radix-4 multiplier to gain only 1% 
performance improvement. The 32-bit floating point 
Booth radix-4 multiplier design is a better option 
because it consumes much lesser resource on FPGA 
and supports the maximum frequency of 206.14 
MHz. 
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