
Intelligence Diagnosis Method Based on Particle Swarm Optimized 
Neural Network for Roller Bearings 

 
ZUOYI DONG1, HUAQING WANG1, *, SHUMING WANG2, WEI HOU1,QINGLIANG ZHAO1 

1 School of Mechanical & Electrical Engineering 
Beijing University of Chemical Technology  

Chaoyang District, Beijing, 100029 
CHINA  

2 College of Mechanical Engineering 
Jiamusi University 
Jiamusi, 156100 

CHINA 
2011200693@grad.buct.edu.cn, *corresponding author: hqwang@mail.buct.edu.cn, 
wsmwsm2000@163.com, 2012200658@grad.buct.edu.cn, zhaoql@mail.buct.edu.cn  

 
 
Abstract: - This paper presents an intelligent diagnosis approach based on the particle swarm optimized BP 
(PSO-BP) neural network and the rough sets to detect roller bearings faults and distinguish fault types, using 
symptom parameters of acoustic emission signals. The rough sets algorithm is used to reduce details of time-
domain symptom parameters for the training of the neural network instead of principal component analysis. 
The PSO-BP neural network, which used for condition diagnosis of roller bearing, can obtain good 
convergence using the symptom parameters acquired by the rough sets when learning, and can automatically 
distinguish fault types when diagnosing. Using the PSO-BP neural network can increase the learning rate and 
the subtracting capability of the neural network. Practical examples are provided to verify the efficiency of the 
proposed method. 
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1 Introduction 
The rolling bearings are important components in 
rotating machines, which are wildly used in 
industrial production. The event of failure, it will 
cause serious damage to persons and property. The 
fault diagnosis technology has played a very 
important role for quality and life of machines. 
Neural networks (NN) have potential applications in 
auto-mated detection and diagnosis of machine 
failures [1]. However, NN usually will converge 
slowly, when the symptom parameters, input to the 
first layer of the NN, have the same values in 
different states. In order to solve these problems and 
improve the efficiency of the fault diagnosis, this 
paper proposes a method of condition diagnosis of 
rolling bearings in rotating machinery using the 
rough sets and the Particle Swarm Optimized BP 
neural network to detect faults and distinguish fault 
types, on the basis of symptom parameters of AE 
signals. Particle swarm optimization (PSO) has 
undergone many changes since its introduction in 

1995. Researchers have learned about the technique, 
derived new versions, developed new applications, 
and published theoretical studies of the effects of 
the various parameters and aspects of the algorithm. 
Practical examples of fault diagnosis for rotating 
machinery have verified that the proposed method is 
effective [2]. Quite a few works have been done in 
this field [3, 4].  

The traditional diagnosis methods can play a 
better role of single process, single fault and 
gradually developed fault of simple systems. 
However, it has larger limitations for complex 
process and fault, abrupt faults and highly 
automated equipment. Intelligence diagnosis 
methods especially neural network, which not 
depended on the control object and mathematical 
model, have a good advantage of solving these 
problems. Otherwise, as too many of the training 
sample parameters inputted, it will cause the 
training with slow convergent speed and low 
identification accuracy when we use neural network 
alone. Therefore, attribute reduction usually works 
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before using neural network to make pattern 
recognition in order to improve recognition 
accuracy and efficiency. By now, there are many 
attribute reduction methods and each method has its 
own advantages and disadvantages[5]. 
 
 
2 Intelligence Diagnosis Method by 
Particle Swarm Optimized Neural 
Network 
In order to make better use of the advantages of 
various methods and avoided the limitations of 
single method at the same time. This paper presents 
a method for roller bearings, using the way of the 
combination of the rough sets algorithm, to reduce 
details of time-domain symptom parameters for the 
training of the neural network, which process shown 
as Fig.1. 

 

 
Fig.1. Process of the proposed method 

 
 

2.1 Symptom Parameters Extraction 
For automatic diagnosis, symptom parameters are 
needed that can sensitively distinguish the fault 
types. A large set of symptom parameters has been 
defined in the pattern recognition field [6]. Here, 
the dimensional, non-dimensional and acoustic 
emission symptom parameters in the amplitude 
domain, commonly used for the fault diagnosis of 

rolling bearing, are considered. Using the 
normalized signals, the 11 symptom parameters in 
the amplitude domain are calculated as follows, 
respectively [7]. 
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2.2 Principal Component Analysis (PCA) 
Principal component analysis (PCA) is a 
mathematical procedure that uses an orthogonal 
transformation to convert a set of observations of 
possibly correlated variables into a set of values of 
uncorrelated variables called principal components 
[8] [9]. The more Characteristic parameter, the 
more profound we recognize the system. Number of 
characteristic parameter contains many interrelated 
factors. Too much data takes a lot of storage space 
and processing time. According to the linear 
mapping principle, we can start from a number of 
original features, reducing dimensions through 
mapping method, to construct a handful of new 
features. The number of principal components is 
less than or equal to the number of original 
variables.  

This transformation is defined in such a way that 
the first principal component has as high a variance 
as possible, and each succeeding component in turn 
has the highest variance possible under the 
constraint that it be orthogonal to the preceding 
components [10]. Principal components are 
guaranteed to be independent only if the data set is 
jointly normally distributed. PCA is sensitive to the 
relative scaling of the original variables. PCA 
technology can overcome the difficulties in 
modelling such as nonlinear factors. The feature 
extraction can be done and the PCA model can be 
established through dimensional reduction of 
sample features sets of different state test data.  

(1).The first step of PCA is data standardization 
of original feature sets using the formula as 
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Short as *Y CP=  and 1 2 3, , , , pY y y y y =   , 

1 2 3, , , , py y y y each of the principal component 
is independent. 
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components as 

1

m
kk

n
=∑ . Contribution rate is 

higher, indicating that the corresponding principal 
component reflects the stronger the ability of 
integrated information. At last, selecting front m 
(m<p) principal components to multiply primitive 
symptom matrix, when accumulation contribution 
rate reached the specified requirements, and getting 
a new matrix mZ P Y= ∗  which can achieve the 
purpose of dimension reduction of feature set. The 
original feature set can also be reduced 
as [ ]1 2 3, , , , mZ z z z z=  . 

 
 

2.3 Rough Sets (RS) 
Rough set theory [11] is a new mathematical tools 
which processing the fuzzy and uncertainty 
knowledge. The main idea is that exporting the 
decision-making classification rules of the issue, 
through the knowledge reduction in the premise of 
keeping the same classification ability. Rough set 
theory thinks that knowledge is based on the object 
classification ability [12]. For any information 
system K = (U, R), { }1 2 3, , , , nU x x x x=   is all 
of discussing which called domain and 

{ }1 2 3, , , , nR r r r r=   called attribute set. To 
any  and P R P⊆ ≠∅ , the elements of the U about 
the equivalence class of Z constitute an 
indiscernibility relation signed as ind (Z). The 
equivalence class formed by Z can be expressed 
as ( ) { }1 2| , , , nU ind Z X X X=  . We call that 
set X related to the relationship Z can be precise 
defined, when X can be expressed as the union set 
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of the equivalence class. It can only be depicted 
through the upper and lower approximation if not. 
The upper and lower approximation of set X about 
Z are expressed as ( )Z X−

 and ( )Z X−  which meet 

( ) ( )|i iZ X X X X− = ⊆ and

( ) ( )|i iZ X X X X− = ≠ ∅  . The lower 
approximation is also called as the positive field of 
Z and signed as ( )zpos X . Supposing that Z and S 
are two equivalence relation in U 
( { }1 2| , , nU S X X X=  ), the Z positive field of 

S is signed as ( )zpos S  which 

meet ( ) ( )1
n

z i ipos S Z X= −=  . If there exist r Z∈  

which meet ( ) { } ( )z z rpos S pos S
−

= , we call that r 

is S omitted in Z and { }Z r−  is S relative simplified 
of Z. 

 
 

2.4 The Particle Swarm Optimized BP 
Neural Network 
 
 
2.4.1 The BP Neural Network 
BP neural network is a multilayer feed forward 
neural network model. The transfer function of the 
neuron is S function and the inputs is a continuously 
quantity between 0 and 1. It can realize a nonlinear 
mapping from the input to the output. We call it BP 
neural network because of the adjustment of the 
weights with back propagation learning algorithm. 
The advantages of BP neural network are fast 
calculation speed and low consumption of memory 
[13] [14]. The BP neural network model consists of 
the input layer, hidden layer and output layer. Each 
layer has several nodes, which are some neurons. 
The most important factor of the neural network is 
the number of each layer nodes [15]. The number of 
input and output layer nodes is determined by the 
actual problem. At present, the vast majority of 
neural network model is adopted by the BP network 
and its change forms in the artificial neural network 
of practical application. It is a central part of the 
feed forward network which reflecting the essence 
of artificial network [16]. After determining the 
structure of BP neural network, we use the input / 
output sample to set learning and training, that is, 
learning and adjustment the weights and biases of 
the network. It makes the network achieve the 
given input / output mapping relationship, and 

complete the system identification. The construction 
of normal BP neural network is shown as Fig.2. 

 

 
Fig.2. The construction of BPNN 

 
 

2.4.2 The Particle Swarm Algorithm 
The Particle Swarm optimization (PSO) can be 
described in math as follows: determine an n-
dimensional solution space firstly, and particle 
swarm search in this solution space. Initialize m 
particles X={X1，X2，…，Xm} and the speed of 
m particles Vi={vi1，vi2，…，vin} in the solution 
space randomly, particles adapt their positions to 
search the new solutions[17] [18]. Every particle 
can lock its optimal solution- idp , and the optimal 
solution of the whole particle swarm- gdp . Getting 
both of the optimal solution, every particle adjusts 
its speed on the basis of formula below:  

     

1 1

2 2

( 1) ( ) ( ( ))

( ( ))
id id id id

gd id

v t wv t c r p x t

c r p x t

+ = + −

+ −
     (13) 

    

        ( 1) ( ) ( 1)id id idx t x t v t+ = + +       (14) 

From adjustable speed formula, we can see that 
it consists of three parts: its original speed ( )idv t , the 

distance to its optimal particle ( )id idp x t− , and the 
distance to the optimal particle in the group. 

The basic PSO described above has a small 
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number of parameters that need to be fixed. One 
parameter is the size of the population. This is often 
set empirically on the basis of the dimensionality 
and perceived difficulty of a problem[19]. Many 
parameters in related to particle swarm, the specific 
meaning are as follows: 

(1).Dimension of the particle vector n: 
dimension of problem solution space. 

(2).The scale of particle swarm m: the number of 
particle in the group. There is no theory to follow in 
determining the number of particle swarm, 
generally determined by experiment many times. 
Typically the number of particles of 20-40 will be 
able to solve most of the problems the optimal 
solution. For some simple questions, 10 particles 
can achieve quite good results. 

(3).Learning factor c1, c2. In the speed regulation 
formula of the particle swarm, the learning factor is 
very important. c1, c2 represents the degree of 
influence of individual and group experience on the 
speed adjustment respectively. When c1 is 0, the 
particle velocity is completely free from the impact 
of individual experience. At this time, it will soon 
convergence, but easy to fall into local minimum, 
not the global optimum. When c2 is 0, the particle 
velocity is completely free from the impact of group 
experience. This allows each particle adjust the 
position according to their own experience, difficult 
convergence, nor get an effective solution. 
Therefore, in order to ensure global convergence of 
particle swarm speed and fitness, we need 
appropriate c1 and c2. 

(4).Inertia weight w. It affects the capability of 
the global search. In general, when w is large, the 
speed of particles in the iterative process will be 
large, global search ability will be stronger. 
Conversely, when the w is small, the speed of 
particles in the iterative process will be small, local 
search capability enhanced, and global search 
capability weakened. Therefore, appropriate inertia 
weight can make PSO has better global search 
capability, while also fast convergence rate. In the 
early PSO, has no inertia weight, means, inertia 
weight is a fixed value of 1. However, in the 
process of the convergence of the particle, we need  
inertia weight to be a dynamic value. At the 
beginning of the PSO, we hope the particle has a 
large global search capability, so that allow the 
particle swarm converges rapidly and find the 
approximate location of the optimal solution. In late, 
we need to increase the local search ability of 
particles, so that make particles search around the 
optimal solution, and get the optimal solution. 
Based on this, often use linear decrease inertia 

weight, the mathematical formula is as follows: 
max

max min min
max

( ) t tw w w w
t
−

= − × +       (15) 

maxt  is the PSO iterations of maximum number, t is 
the PSO iterations of present. maxw  is the inertia 
weight at the beginning of iterative algorithm,  minw  
is the inertia weight of maximum number of 
iterations the algorithm. Typically inertia weight of 
initial value is 0.9, the minimum value is 0.4. 

(5).Random number r1 and r2. It used to keep 
impressing particles the randomness of the flight, to 
make sure particles can jump out of bondage, 
enlarging the searching scale. 

(6).Error precision e. It used to control error 
range. 

(7).Maximum iterations. Setting maximum 
iterating times can prevent vibration in 
convergence. 

 
 

2.4.3 Particle Swarm Optimized Neural Network 
The particle swarm algorithm has the advantage of 
high speed of convergence and powerful searching 
ability, therefore, the Particle Swarm to Optimize 
BP neural network was proposed[20]. The 
optimization flow chart is as shown in Fig.3. 
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Fig.3. Process of particle swarm optimized BP 
neural network 

 
As shown in Fig.3, in the process of using the 

particle swarm to equip BP neural network, first 
step is initializing the particle swam, different 
dimension of the particle swarm contributes to 
different weights and bias,. The number of weights 
and bias of the neural is equal to the number of 
dimensions of the particle. The site of the particle 

concerns  the weights and bias of the particle, which 
contribute to the output of the neural network to 
satisfy the given precision [21]. Whether the site of 
the particle is the optimized solution, it is need an 
accommodated function to decide. The used 
accommodated function adopts mean-square error 
of the neural network. The value of weight and 
threshold of the neural network is determined by the 
number of unit in the neural network[22] [23][24]. 
In this paper, the number of unit in the hidden layer 
is 12. Initialized particle swam iterative optimizes 
on the basis of velocity formula and position 
formula. When it reaches the given iteration, stops 
searching and get the optimum solution. Using the 
optimum solution, and substituting it into the 
formula, applies the pattern recognition.  
 
 
3 Experimental Verification 
Fig.4 shows the rotating machine and the bearing 
for diagnosis. An AE sensor is used to measure AE 
signals for the bearing diagnosis. Fig.5 shows 
bearing flaws made artificially for diagnosis 
purposes. The types of bearing faults are: An outer 
race flaw (O) shown in Fig.5, (a) and an inner race 
flaw (I) as in Fig.5, (b). The AE signals are 
measured at a rotational speed of 600 rpm (10Hz). 
The sampling frequency is 1 MHz, and the sampling 
time is 2s or 20 cycles[25][26].  

 

 
Fig.4. Experiment system of bearing flaw 

 

 

Initialize BP neural network and the speed and 
position of particle swam and Fault Recognition 

Calculate adaptive value of present position 
on the basis of BP neural network 

 

The maximum adaptive value of the number 
i particle and its corresponding position 

Update the speed and position of the particle 

Whether meet the  
termination 

Output the optimum position as the final value of 
weight and threshold of the BP neural network 

Test the trained BP neural network 

End 

Y 

N 
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Fig.5. Bearing flaws, (a), outer race flaw (O);  (b), 
inner race flaw (I). 
 

The acoustic emission signals were measured 
under three conditions which are normal (N), outer 
(O) and inner (I) race fault. After collecting, the 
time-domain data are divided into 20 parts each 
containing 500,000 (5 cycles) samples to calculate 
the symptom parameters. Then the symptom 
parameters of each part are calculated respectively. 
Finally, the original characteristic matrixes of three 
different conditions are divided into 2 groups 
averagely and making the data of first and second 
groups together respectively form the sample and 
test data. The first step is normalizing the original 
features data. The partial sample and test data after 
standardization process are shown in Table 1. Now 
the raw data should be  processed by two ways 
respectively (PCA and RS), to compare the pros and 
cons of both approaches. 

 
Table 1. Data after standardization process 

 Sample Data Test Data 

   1 …
  

    30     1 …  30 

Mean 0.0005 … 0.0002 -0.0002 … 0.0001 

RMS 0.7999 … 0.7700 0.8056 … 0.7700 

Var. 0.6398 … 0.5929 0.6490 … 0.5929 

SD 0.7998 … 0.7700 0.8056 … 0.7700 

MAX 2.7575 … 3.5833 2.7683 … 3.5833 

ABS 0.6391 … 0.4784 0.6482 … 0.4784 

SF 1.2514 … 1.6093 1.2427 … 1.6093 

CF 3.4475 … 4.6536 3.4362 … 4.6536 

IF 4.3142 … 7.4890 4.2703 … 7.4890 

ClF 5.0959 … 9.8934 5.0147 … 9.8934 

KV 2.9345 … 10.37 2.8487 … 10.37 
 
We reduced the data in Table 1 by PCA. We 

made eigenvalue decomposition to the relevant 
matrix of it, in order to get the projection matrix 
which namely the transformation matrix. Then we 
choose the front 8 principal component as the 

transformation matrix based on accumulative 
contribution rate (99.9%). The data after PCA is 
shown in Table 2. Characteristic matrixes are 
named as Z1 to Z8.  

 
Table 2. Data after PCA process for NN 

Training Data State Data 

 Z1 … Z8 N O I 

1 5.2811 … 1.998 1 0 0 

2 5.1537 … 1.9288 1 0 0 

3 4.9335 … 1.8145 1 0 0 

… … … … … … … 

8 4.7809 … 1.7368 1 0 0 

9 5.2597 … 1.963 1 0 0 

10 5.3287 … 2.016 1 0 0 

11 19.034 … 7.9955 0 1 0 

12 19.493 … 8.3609 0 1 0 

13 19.815 … 8.5592 0 1 0 

… … … … … … … 

18 20.046 … 8.4142 0 1 0 

19 19.07 … 8.1058 0 1 0 

20 16.576 … 7.1874 0 1 0 

21 11.457 … 4.6861 0 0 1 

22 10.057 … 4.0106 0 0 1 

23 11.514 … 4.6277 0 0 1 

… … … … … … … 

28 10.682 … 4.2888 0 0 1 

29 10.964 … 4.5738 0 0 1 

30 11.423 … 4.6871 0 0 1 
 
For RS, we make continuous attributes 

discretization to the decision table, which consists 
of the sample and test data after reduction, using the 
method of equidistance. Decision table is as shown 
in Table 3. And the test data is in Table 4. Here, the 
section number is 10.  

 
Table 3. Decision table 

  Training Data State Data 

 Z1 Z2 … Z10 Z11 N O I 

1 7 8 … 1 1 1 0 0 

2 3 8 … 1 1 1 0 0 

 (b)  (a) 
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3 10 9 … 1 1 1 0 0 

… … … … … … … … … 

8 7 10 … 1 1 1 0 0 

9 1 8 … 1 1 1 0 0 

10 7 8 … 1 1 1 0 0 

11 7 1 … 10 9 0 1 0 

12 3 1 … 10 10 0 1 0 

13 6 1 … 10 10 0 1 0 

… … … … … … … … … 

18 6 1 … 10 10 0 1 0 

19 5 1 … 10 9 0 1 0 

20 5 2 … 8 8 0 1 0 

21 1 6 … 5 4 0 0 1 

22 10 8 … 4 4 0 0 1 

23 5 5 … 5 4 0 0 1 

… … … … … … … … … 

28 6 7 … 4 4 0 0 1 

29 8 7 … 5 4 0 0 1 

30 6 6 … 5 4 0 0 1 
 

Table 4. Test table 

 Test Data  

 Z1 Z2 Z3 Z4 … Z9 Z10 Z11 

1 5 8 8 8 … 1 1 1 

2 3 8 7 8 … 1 1 1 

3 10 10 10 10 … 1 1 1 

… … … … … … … … … 

8 9 10 10 10 … 1 1 1 

9 1 9 8 9 … 1 1 1 

10 6 9 8 9 … 1 1 1 

11 5 2 1 2 … 9 9 8 

12 5 3 2 3 … 8 9 8 

13 6 2 2 2 … 9 9 8 

… … … … … … … … … 

18 4 1 1 1 … 10 10 10 

19 7 1 1 1 … 10 10 10 

20 6 1 1 1 … 9 9 9 

21 4 7 6 7 … 5 5 4 

22 3 8 7 8 … 4 4 4 

23 9 7 6 7 … 5 5 4 

… … … … … … … … … 

28 1 7 6 7 … 4 4 4 

29 2 7 6 7 … 5 5 4 

30 6 7 7 7 … 5 5 4 
 
Then observing each condition attributes of the 

sample data in decision table by line. We can delete 
the line which attributes completely the same with 
all the other lines. After that we can delete the 
column which each attribute values are not all the 
same between two lines of the others column 
attribute when it is deleted. The partial training and 
state data after RS process for PSP-BP are shown in 
Table 5. Characteristic matrixes are named as Z1 to 
Z11. 

 
Table 5. Data after RS process for NN 

Training Data State Data 

 Z1 Z5 Z6 Z8 Z11 N O I 

1 7 2 8 1 1 1 0 0 

2 3 2 9 1 1 1 0 0 

3 10 2 9 1 1 1 0 0 

… … … … … … … … … 

8 7 3 10 1 1 1 0 0 

9 1 2 9 1 1 1 0 0 

10 7 2 9 1 1 1 0 0 

11 7 9 1 9 10 0 1 0 

12 3 9 1 9 10 0 1 0 

13 6 8 1 9 10 0 1 0 

… … … … … … … … … 

18 6 8 1 10 10 0 1 0 

19 5 9 1 9 9 0 1 0 

20 5 9 2 8 8 0 1 0 

21 1 10 5 5 4 0 0 1 

22 10 10 6 6 4 0 0 1 

23 5 10 5 6 4 0 0 1 

… … … … … … … … … 

28 6 10 5 5 4 0 0 1 

29 8 10 5 5 4 0 0 1 

30 6 10 5 5 4 0 0 1 
 
In this paper, the numbers of the input layer, 
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hidden layer and output layer for the PSO-BP neural 
network are 5, 12 and 3 based on the actual 
situation and set iterations as 1000. For the data 
after PCA, training accuracy reaches 0.0085, which 
process shown in Fig.6, (a). For the data after RS, 
training accuracy reaches 0.0003, which process 
shown in Fig.6, (b). Moreover, training accuracy 
reaches 0.0037 when using PSO-BP, which process 
shown in Fig.6, (c). From the better result of RS 
above, we can conclude that RS is more suitable for 
this condition. So here, we use the RS for reduction, 
and renounce the use of PCA. 
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Fig.6. Training process of BPNN, (a) with PCA 
reduction; (b) with  RS reduction; (c) without any 
reduction. 
 

Table 6 shows the partial diagnosis results for 
each state by the RS reduction, which the 
recognition rate is 100%. According to the test 
results, the probability grades output by the BPNN 
show the correct judgment in each state. Therefore, 
the BPNN can precisely distinguish the type of 
bearing fault, more efficiency on the basis of the 
symptom parameters of signal after RS process. 
 

Table 6. Verification results 

 Possibility grade in each state State  

 N O I  
1 1.0069 -0.0116 0.0057 Normal 

2 0.9241 -0.0076 0.0515 Normal 

3 1.0038 0.0041 9.0056e-06 Normal 

… … … … … 

8 1.0016 0.0015 0.0002 Normal 

9 0.8046 0.2718 -0.0731 Normal 

10 1.0042 -0.0062 0.0033 Normal 

11 -0.0126 0.9948 0.0193 Outer 
race flaw 

12 0.0009 0.9535 0.0426 Outer 
race flaw 

13 0.0007 0.9902 0.0052 Outer 
race flaw 

… … … … … 

18 0.0690 1.0313 -0.0599 Outer 
race flaw 

19 0.0018 1.0019 -0.0094 Outer 
race flaw 

20 -0.0108 1.0044 -0.0019 Outer 

(b) 

(c) 

(a) 
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race flaw 

21 -0.0021 0.0073 1.0018 Inner 
race flaw 

22 -0.0462 -0.0434 1.0028 Inner 
race flaw 

23 0.0011 0.0090 0.9997 Inner 
race flaw 

… … … … … 

28 -0.0644 -0.0495 1.0189 Inner 
race flaw 

29 -0.0225 -0.0087 1.0166 Inner 
race flaw 

30 0.0007 0.0089 0.9996 Inner 
race flaw 

 
 
4 Conclusion 
The rolling bearings are important components in 
rotating machines, which are wildly used in 
industrial production. The intelligent diagnosis 
technology has played a very important role for 
quality and life monitoring of machines. To 
effectively diagnose faults and discriminate fault 
types for rotating machinery at early stages, this 
paper proposes an intelligent diagnosis method for 
rolling bearings using features of acoustic emission 
signals. The diagnosis approach is constructed on 
the basis of the rough sets and the PSO-BP. First, 
use the RS reduce the data. And then, the diagnosis 
knowledge used for PSO-BP learning can be 
acquired by the rough sets. It is proved that the 
effect of RS is better than PCA here by experiment. 
The PSO-BP can quickly converge when learning, 
and when diagnosing can quickly and automatically 
distinguish fault types with high accuracy. This 
method is suitable for different type of rotating 
machinery and has been successfully applied to the 
condition diagnosis of a bearing experiment system. 
It is significant to apply this method in equipment’s 
bearing failure. 
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