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Abstract: — Frequency Modulated sound synthesis is a technique widely used for replicating sound of a natural 

music instruments to use it in a computer sound synthesizer. Many sound synthesis technique have been 

successful in reproducing the sounds of musical instruments. Sound synthesis techniques require parameter 

calibration. However, this task can be difficult and time consuming because of the non-linear parameter space. 

Two difficult challenges have to handle for synthesizing sound, that is-proper parameter extraction from a 

difficult search space and search time, which matters for a real time application. This article presents an 

application of stagnation adaptive DE scheme for faster parameter identification of a FM synthesized sound to 

match an unknown target sound. The simulation result shows that DE can perfectly reproduce the sound signal 

over other algorithm and also have a very faster convergence rate than classic DE. 

 

Key Words: — differential evolution, sound synthesis, frequency modulation, optimization, parameter 
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1 Introduction 
Replicating the sounds of musical instruments using 

parametric synthesis technique is a problem frequently 

addressed in the field of computer music. The success 

of any particular synthesis algorithm is dependent on 

the selection of suitable controls and synthesis 

parameters. It is very difficult and time consuming for 

a particular synthesis algorithm to find a best set of 

parameter manually. Thus, diverse optimization 

methods have been used for automatic calibration, 

such as HMM [3], neural network [4], cellular 

automata [5], particle swarm [1], genetic algorithm [7] 

etc. Another simple method to create complex audio 

spectra was proposed by John Chowing in 1973, 

which uses a six dimension frequency modulated 

signal equation [1]. In this technique, frequency of a 

carrier oscillator is altered in accordance with the 

amplitude of a modulating signal [1]. As shown in 

chowning’s original paper, and in much of the 

literature that followed, FM synthesis made it possible 

to create complex spectra with only a limited number 

of oscillators. FM sound synthesizer is a six-

dimension problem [12], which aims to optimize a set 

of parameters to match the target sounds [16]. 

However, it is an expensive task to achieve desired 

target sound through manual or automatic adjustment 

of parameter values because of non-linear nature of 

target sound spectrum [9]. Several evolutionary 

algorithms taken this problem as an unconstrained 

optimization problem and used to extract parameters. 

Real coded GA [16] have been extensively used for 

estimating the parameters of FM synthesizer. 

Simulation studies of different variant of GA like one 

of the proposed gradual distributed real coded GA by 

Herreta and Lozano [15] [16] found better result in 

finding parameters. An extensive study on 

evolutionary computation applied to FM audio 

synthesis parameter [16] extraction done by Mitchell 
[9]. 

Particle Swarm Optimization (PSO), a population 

based stochastic optimization technique [13] proposed 

by Eberhart and Kennedy was applied on this problem. 

Like GA, it does not have any biological operator such 

as crossover and mutation. The potential solution 

called particles, fly through the problem space by 

tracking the coordinates in the problem space which 
are associated with the best fitness value.  

Differential Evolution (DE), developed by Storn 

and Price [10], is a robust yet simple global stochastic 

optimization algorithm. Several experimental studies 

shows that DE has power to dominate over many 

algorithms in terms of robustness and convergence 

speed [10] [11]. Some recent study shows that DE can 
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perfectly reconstruct a signal without any error [16] 
than any other tested so far.  

The rest of the paper introduces a study to improve 

the speed of convergence and error variance of classic 
DE algorithm to meet faster computational efficiency.   

 

 

2 Problem Definition of FM Sound 

Synthesis 
Frequency Modulated (FM) sound synthesis provides 

an efficient solution to create complex spectra of 

sound wave with less computational burdens. The 

original six-dimension problem was originated from a 

simple frequency modulation signal expression as 

follows. Let us consider that 𝑓𝑐 and 𝑓𝑚 are the carrier 

and modulator frequencies, respectively. 𝑀 is the 

modulation index and 𝐴 represent the output 

amplitude of the signal. The function for simple FM 

can be expressed as follows [9]: 

 

𝑦(𝑡) = 𝐴𝑠𝑖𝑛(𝑤𝑐 + 𝑀 sin(𝑤𝑚𝑡))  …………………….   
(1) 

 

𝑤𝑚 = 2𝜋𝑓𝑚 

𝑤𝑐 = 2𝜋𝑓𝑐 

𝑀 =
𝑑

𝑓𝑚
 

 

where 𝑦(𝑡) is the modulated carrier amplitude with 

respected to time. The modulating signal varies the 

carrier signal frequency of FM in the range expressed 

by peak frequency deviation  𝑑 , which is the product 

of modulation index 𝑀 and modulating frequency 

expressed by 𝑓𝑚 [9][16]. If modulation index 𝑀 = 0, 

there will be no modulation of carrier signal 

frequency, and therefore the generated signal will be 

the sine wave having frequency same as carrier 

frequency 𝑓𝑐 .  

 The FM sound synthesizer equation is formed by 

repetitive inserting of another carrier modulator within 

the modulating sine wave of equation (1). Thus a six-

dimensional problem [8] can be expressed as follows. 

 

𝑦(𝑡) = 𝑎1sin (𝜔1𝑡𝜃 + 𝑎2sin (𝜔2𝑡𝜃
+ 𝑎3sin (𝜔3𝑡𝜃))) 

                                                                                                                          ………

…. (2) 

 

The FM sound synthesis problem aims to tune the 

parameters of a FM synthesizer consisting of six 

variables [ 𝑎1, 𝜔1, 𝑎2, 𝜔2, 𝑎3, 𝜔3 ] to match with a 

target sound. In our experiment, our aim is to optimize 
the parameters to achieve the following target sound. 

 

𝑦0(𝑡) = 1.0 sin (0.5 𝑡𝜃 +  1.5 sin (4.8 𝑡𝜃
+  2.0 sin (4.9 𝑡𝜃))) 

     ………………… 

(3) 

 

For equation (2) and (3), 𝜃 = 2𝜋/100  and the 

parameters for equation (2) are initialized [12] in the 
range [-6.4, 6.35]. 

    

     Now, to convert this problem as a minimization 

problem to fit it with DE, the fitness function is 

expressed as summation of square errors [12] between 

the estimated wave (2) and the target wave (3) as 

follows: 

 

𝑓(�⃗�) = ∑(𝑦(𝑡) − 𝑦0(𝑡))2

100

𝑡=0

 

     …………………. 
(4) 

 

For perfect reconstruction of the sound wave, fitness 

function value should be zero.  
 

 

3 Differential Evolution Algorithm 
Differential Evolution algorithm is a population based 

direct search tool, which supports real number 

encoding of parameters [17]. It uses tournament 

selection method and adopts differential strategy, 

which changes population by differential vector of 

individuals in mutation scheme. Mutation plays an 

important role in differential evolution algorithm, that 

can effectively utilize the characteristics of population 

distribution by introducing the concept of difference 

vector and avoid inefficient variation of search 

performance in GA, while enhancing the search speed 

[17]. Like other evolutionary algorithms, population 

vector is randomly generated within search space 

without the prior knowledge about the nature of search 

space [9][17]. There are three basic steps, named as 

mutation, crossover and selection. DE creates NP 

number of chromosome (fitness vector) having real 
valued parameters as a population of each generation. 

 
].,.....,,,[ ,,,,3,,2,,1, GiDGiGiGiGi xxxxX 



 where i=[1,2,3, ….. , NP].  

 Xi,G is a D-dimensional parameter vector, can be 

called as an individual. G denotes one generation. At 

each generation, algorithm uses evolutionary 

operators like mutation and crossover operation to 

generate a trial vector ,i GU  for each individual target 

vector 𝑋𝑖,𝐺 , in the current population. 
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3.1 Mutation: 

After initialization of population, DE creates a 

mutation vector 𝑉𝑖,𝐺 corresponding to each target 

vector 𝑋𝑟,𝐺  through differential strategy. A scaled 

difference between two randomly generated parameter 

vector from current population is added to base vector 

to produce mutant vector 𝑉𝑖,𝐺. The process can be 

expressed as  

).(
,,,,

321 GrGrGrGi iii XXFXV


  

There are several other strategies for generating 

mutant vector described by Storn and Price can be 

summarized as follows [10]: 

“DE/rand/1”:    𝑉𝑖,𝐺 =  𝑋𝑟1,𝐺 + 𝐹. (𝑋𝑟2,𝐺 − 𝑋𝑟3,𝐺) 

“DE/best/1”: 𝑉𝑖,𝐺 =  𝑋𝑏𝑒𝑠𝑡,𝐺 + 𝐹. (𝑋𝑟1,𝐺 − 𝑋𝑟2,𝐺) 

“DE/current to best/1”:  

𝑉𝑖,𝐺 = 𝑋𝑖,𝐺 + 𝐹. (𝑋𝑏𝑒𝑠𝑡,𝐺 − 𝑋𝑖,𝐺)+. (𝑋𝑟1,𝐺 − 𝑋𝑟2,𝐺) 

“DE/Best/2”:  

𝑉𝑖,𝐺 =  𝑋𝑏𝑒𝑠𝑡,𝐺 + 𝐹. (𝑋𝑟1,𝐺 − 𝑋𝑟2,𝐺)

+ 𝐹. (𝑋𝑟3,𝐺 − 𝑋𝑟4,𝐺) 

“DE/rand/2”:  

𝑉𝑖,𝐺 =  𝑋𝑟1,𝐺 + 𝐹. (𝑋𝑟2,𝐺 − 𝑋𝑟3,𝐺)

+ 𝐹. (𝑋𝑟4,𝐺 − 𝑋𝑟5,𝐺) 

Where indices named r1, r2, r3, r4, r5 are random and 

mutually exclusive integers taken from the range 

[1,NP]. F is a factor initialized in the range [0, 2] for 

scaling differential vectors and 𝑋𝑏𝑒𝑠𝑡,𝐺is the 

individual vector having best fitness value in the 

population at current generation G. In conventional 

real coded GAs, mutation takes the form of a random 

perturbation of a fixed type, whose purpose is to 

prevent premature convergence, but it can sometime 

generate destructive population. DE avoids this 

problem by mutating base vectors with population-

derived difference vectors. As generations pass, these 

differences tend to adapt to the natural scaling of the 

problem. For example, if the population becomes 

compact in one variable but remains widely dispersed 

in another, the difference vectors sampled from it will 

be small in the first variable, yet large in the other. 

This automatic adaptation significantly improves the 

convergence of the algorithm. 

3.2 Crossover: 

To maintain the diversity of the population, a 

crossover operation comes into play after generating 

the donor vector through mutation. The donor vector 

exchanges some fraction of its components with the 

target vector GiX ,


 and forms the trial or mutant 

vector 

],...,,,[ ,,,,3,,2,,1, GiDGiGiGiGi uuuuU 


.  

Different DE algorithms suggested by Storn and Price 

generally use two kinds of crossover methods - 

exponential and binomial [1]. 

Most commonly used crossover is binomial 

crossover.  

Binomial crossover is performed on the D variables 

of each vector. The process exchanges gene when a 

crossover probability (Cr value) is less than or equal 

to a randomly generated number between 0 and 1. The 

number of parameters that will be inherited from the 

donor has a binomial distribution due to the selection 

of rand(0,1) function. The scheme may be expressed 

as:  

𝑢𝑗,𝑖,𝐺 =

 {
𝑉𝑗,𝑖,𝐺           𝑖𝑓 (𝑟𝑎𝑛𝑑𝑖,𝑗(0,1) ≤ 𝐶𝑟 𝑜𝑟 𝑗 = 𝑗𝑟𝑎𝑛𝑑

𝑋𝑗,𝑖,𝐺                                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

Where, as before, ]1,0[, jirand is a uniformly 

distributed random number, which is called anew for 

each j-th component of the i-th parameter vector. 

],....,2,1[ Djrand  is a randomly chosen index, which 

ensures that GiU ,


gets at least one component from 

GiV ,


. It is instantiated once for each vector per 

generation [1]. 

3.3 Selection: 

To maintain constant population size over subsequent 

generations, the next step of DE calls for a greedy 

selection process, in which the target or trial vector 

survives to the next generation (at 1GG ) based on 

the better fitness value among them. The selection 

process can be expressed as follows: 

𝑋𝑖,𝐺+1 =

 {
𝑈𝑖,𝐺                                          𝑖𝑓 (𝑈𝑖,𝐺) ≤ 𝑓(𝑋𝑖,𝐺)

𝑋𝑖,𝐺                                         𝑖𝑓 (𝑈𝑖,𝐺) > 𝑓(𝑋𝑖,𝐺)
  

Where f (𝑋𝑖,𝐺) is the objective function that is to be 

minimize. Thus, it selects the trial vector best suited 

for that given objective function. 

 
 

4  Stagnation Adaptive DE (DESSAS) 

for Faster and Better Optimization  
In our algorithm, three factors dominantly affect the 

performance of DE algorithm.  

 Q-number best vector selection for Qbest 

Mutation. 
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 Stagnation sense window to trigger 

mutation strategy. 

 Stagnation threshold to adapt F and Cr 

values. 

 

For each generation, Q number of best individual 

is selected from the entire population. Initially Q=20 

is taken by default but after 100 generation, if standard 

deviation of fitness values of Q best vectors is low 

enough then Q is changed to 5. Low standard deviation 

indicates best population loses diversity due to either 

unimodality of function or local premature 

convergence. 

A stagnation sense window (namely t window) is 

used to switch mutation strategy dynamically. After 

passing 50 generation, t takes the average value of last 

50 generation’s minimum fitness value of population. 

 IF the value of t is nearly equal to the current 

generation’s minimum fitness value, then it sense the 

situation of stagnation and changes the mutation 

strategy to DE/Qopp/1 where the base vector is 

randomly selected from pool of (NP-Q) vectors, which 

is the set of all present generation population vector 

excluding Q best vector. The strategy helpful for 

finding some of the least explored places in a 

premature convergence condition. 

ELSE randomly selects base vector from Q and 

take mutation strategy DE/Qbest/1 to speed up the 

convergence process. 

If, after changing the mutation strategy due to 

stagnation, found no improvement of fitness values, 

then algorithm starts adapting F to increase the 

difference vector distance for exploiting more space.   

 

For each generation, algorithm checks stagnation 

by comparing fitness value of current generation with 

the previous one. If it is reduced, then it stores the 

successful F and Cr value and gives reward by 

increasing stagnation threshold window t to reduce 

computational complexity.  

In the selection process, we have used binomial 

crossover scheme. 

 

Following section describes our DE algorithm in steps 

as follows: 

Step 1:  Set the generation number G=0 and 

randomly initialise a population of NP individuals 

},......,{ ,,1 GNPGG XXP


 with each 

],.....,,,[ ,,,,3,,2,,1, GiDGiGiGiGi xxxxX 


 individuals 

having dimension D and uniformly distributed in the 

range ],[ maxmin XX


 .where 

},...,,{ min,min,2min,1min DxxxX 


 and  

},...,,{ max,max,2max,1max DxxxX 


with i=[1,2,..,NP]. 

Then evaluate fitness of each individual. 

 

Step 2:    FOR generation g=1:GEN 

For each generation, Q number of best individual 

is selected from the entire population. Initially Q=20 

is taken by default but after 100 generation, if standard 

deviation of Q best vectors is low enough then Q is 

changed to 5. Low standard deviation indicates best 

population loses diversity due to either unimodality of 

function or local premature convergence. 

A stagnation window (namely del) is initialized 

with initial value adapted by the algorithm. The 

adaption is based on the objective function to be 

minimized. The stagnation window, del plays critical 

role in mutation strategy selection and F and Cr 

adaption. As generation passes, del gradually reduced 

to facilitate exploration first and exploitation later by 

using formula del=[(abs(best fitness value)/g)+bias]. 

bias parameter is the reward and punishment factor 

that further enhances batter parameter retention or 

failed parameter replacement. 

WHILE the stopping criteria is not satisfied 

DO 

FOR j=1 to NP 

 

Step 3 (Mutation Step):  For each generation 

choose two random individual from population 

mutually different from each other and j. then 

randomly select one base vector from Q best selection. 

One of the stagnation sense window (namely t 

window) is used to switch mutation strategy 

dynamically. After passing 50 generation, t takes the 

average value of last 50 generation’s minimum fitness 

value of population.  

t= sum[A(g-50):A(g-1)]/10 

IF (t - minimum(fitness) <del  &&  rand()>0.5) 

then change the mutation strategy to DE/Qopp/1 where 

the base vector is randomly selected from pool of (NP-

Q) vectors, which is the set of all present generation 

population vectors excluding Q best vector. 

           �⃗⃗�i,G =  Qopp + (𝑋𝑟1,𝐺 − 𝑋𝑟2,𝐺) 

ELSE randomly select base vector from Q and take 

mutation strategy DE/Qbest/1 

                    �⃗⃗�i,G =  Qbest + (𝑋𝑟1,𝐺 − 𝑋𝑟2,𝐺) 

WSEAS TRANSACTIONS on SYSTEMS Sohan Ghorai, Sumit Kumar Pal

E-ISSN: 2224-2678 607 Issue 12, Volume 12, December 2013



k window triggers the F (scale factor) value 

adaptation, where adopted F value is F= 

mode(F_array)+0.1*randn(). Where F_array is the 

array of successful F values in the past generations. 

The function creates new F value around the 

neighbourhood of most successful F value archive.  k 

window is the average value of last 40 generation’s 

minimum fitness value. If k value is not reduced by 

some certain threshold amount (0.25*del) then it 

triggers the F adaptation, otherwise it retains the 

previous F value. 

 

Step 4 (Crossover Step):     Generate a trial vector   

for the i-th target vector through uniform crossover. 

Then verify whether the generated trial vectors are 

within boundary constraints.  

The crossover constant Cr is taken 0.9 initially, 

which is adapted along with the search process. The 

adaptation is triggered by the stagnation sense window 

z. z is the average value of last 20 generation’s 

minimum fitness value. z= sum[A(g-20):A(g-1)]/20. If 

z value is not reduced by some certain threshold 

amount (0.5*del), then it triggers the Cr adaptation, 

otherwise it retains the previous Cr value.     

Crossover rate Cr is adapted by using the formula  

Cr= mode(Cr_array)+pt*smu.  

Where smu= randn() and Cr_array is the array of 

successful   Cr values in the past generation. 

IF smu<0 then pt=0.2 

ELSE take pt=0.1 

 

Step 5 (Selection Step):  calculate the fitness of 

trial individual     

},.......,{ ,,,,1, GiDGiGi uuU 


 

IF )()( ,, GiGi XfUf


 , THEN

GiGi UX ,1,


                                          

   IF )()( ,, GbestGi XfUf


 , THEN

GiGbest UX ,,


  

                                END IF 

                         ELSE  

GiGi XX ,1,


 ,  

)()( ,1, GiGi XfXf



 

END IF 

END FOR 

• Increase the generation count. g= g+1 

• Store minimum fitness value over generation 

to A array. 

• Check stagnation by comparing fitness value 

of current generation with the previous one. If it is 

reduced, then store the successful F and Cr value and 

give reward by increasing stagnation threshold 

window. If it is not reduce by some threshold amount, 

then discard current F and Cr value and give 

punishment by decreasing stagnation threshold 

window. 

• Generate stagnation parameters t, k, z, u 

•  Store Q best vectors in a P matrix 

• Measure the diversity of best vectors by 

taking the standard deviation of P matrix. 

• Store the successful F values through 

generation in an array. 

• Store the successful Cr values through 

generation in an array. 

• If fitness value is reduced, then current F and 

Cr value is taken for the use in future generation till 

further stagnation replaces it. If fitness value is not 

reduced then last successful F and Cr value is applied 

in every even generation and newly generated value is 

tried in every odd generation. 

END FOR 

 

 

5  Performance Evaluation of 

Stagnation Adaptive DE (DESSAS)   

5.1 Numerical Benchmark: 

DESSAS algorithm is tested using a set of 25 well-

known boundary constrained standard benchmark 

function from the special session and competition on 

real parameter optimization held under the IEEE CEC 

2005. These functions contain a diverse set of 

problem features including multimodality, 

ruggedness, noise in fitness, ill-conditioning, 

nonseparability and interdependence (rotation) for 

single objective optimization and are based on 

classical benchmark function such as Rosenbrock’s, 

Rastrigin’s, Swefel’s, Griewank’s and Ackley’s 

function. 
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5.2 Algorithms Compared: 

The performance of the DESSAS algorithm is 

compared with the following algorithms that include 

five state-of-the art DE variants: 

1) JADE 

2) jDE 

3) SADE 

4) EPSDE 

Unless otherwise stated, for all the contestant 

algorithms, we employ the best-suited parametric 

setup chosen with guidelines from their respective 

literatures. The population size NP for the DE variants 

has been kept equal to 150 irrespective of the problem 

dimension D. also we have compared our main DE 

variant with above mentioned contestant algorithms 

at D=50.  

 

5.3 Results on Numerical Benchmark: 

 

System:  Windows 7 Home (SP1) 

CPU: Pentium ® 4 (3.00 GHz) 

RAM: 2GB 

Language: Matlab 7.10 

Algorithm:  DESSAS 

 

Experiment is conducted on 30-D and 50-D problem. 

We choose population size to be 150 for 30-D 

problem and 250 for 50-D problem. We have taken 25 

run for each function. Function error value is taken 

after number of function evaluations [FES] =3 x 105 

for 30-D problem and FES=5 x 105 for 50-D problem. 

We have compared our algorithm with other state-of-

the-art algorithm in 30-D and results are listed in 

table-1. We have also listed our performance results 

for 50-D problem in Table-2 and Table-3. We have 

not listed our whole comparison result due to space 

problem. In order to evaluate how the performance of 

our algorithm changes with the scaling of the search 

spaces, we also compared our results with other 

algorithms in functions f1 to f14 in 100 dimensions. 

Table-1 shows the mean and standard deviation of the 

best-of-run errors for 25 independent runs of each of 

5 algorithms on 25 numerical benchmarks for D=30. 

Table-2 and Table-3 reports the same values for 

functions f1 to f14 tested in D=50. It is to be noted that 

best-of-the-run error corresponds to the absolute 

difference between the actual output value f(𝑋𝑏𝑒𝑠𝑡) 

and the actual optimum f* of a particular objective 

function. Convergence graph of some functions given 

below: 

 

Fig.1     convergence graph of shifted rotated high 

conditioned Elliptic Function 

 

Fig.2     convergence graph of Shifted Rastrigin’s 

Function 

 

Fig.3     convergence graph of Schwefel’s Problem 

2.13 
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Fig.4     convergence graph of expanded extended 

Griewank’s plus Rosenbrock’s function 

 
 

 

 

6  Experimental Study with FM Sound 

Synthesis 

In our experiment, we have compared the performance 

of our stagnation adaptive DE with classic DE, 
Particle Swarm Optimization (PSO) and GA.  

For GA algorithm, non-uniform mutation operator 

is applied to overcome premature convergence. The 

probability of updating a chromosome by mutation is 

taken 0.125 and the crossover probability is taken 0.6. 

For PSO, the parameters 𝜔, 𝑐1, 𝑐2 are set to 10, 

0.72984, 1.49618 respectively. For classic DE, control 

parameters, F and Cr are fixed to 0.5 and 0.9 

respectively but for our DE algorithm F and Cr are 

initialized to 0.5 and 0.9 respectively. We used same 

settings for the common parameters of PSO and DE. 

The population size (𝑁𝑝) is taken 100 and the 

maximum number of function evaluations is set to 

1,00,000. We have taken 30 independent runs of each 

algorithms and the mean best function values and 
standard deviation are recorded for study.  

 

The computational result of PSO, GA, classic DE 

and stagnation adaptive DE shown in Table 4. “mean 

error” represents best-of-run errors (the error between 

estimated sound and the target sound) for 30 

independent runs. “std_dev” denotes the standard 

deviation of errors for 30 runs. “AFE” represents 

average number of function evaluation requires to 

perfectly reach the zero error. Since we have set our 

algorithm termination criteria MAX_FES=1,00,000 

function evaluation, so result is taken within this run 
length. 

 

Table 4.     Performance Table for different tested 

Algorithm 

Algorithms AFE 
mean 

error 
std_dev 

PSO 100000 8.79 5.32 

GA 100000 6.3e-15 4.83 

classic DE 68680 0 0 

stagnation 

adaptive 

DE 

28700 0 0 

 

From the results, it can be observed that stagnation 

adaptive DE can perfectly extract parameters with less 

number of function evaluation. It is also tested that 

standard deviation of function evaluation for 30 runs 

for classic DE is 8.14e+03 whereas for stagnation 

adaptive DE is 6.24e+03. Figure 5 and Figure 6 

presents convergence graph of classic DE and 

stagnation adaptive DE respectively. It is observed 

that our DE algorithm converges faster than classic 
DE. 

 

Fig. 5     convergence graph of classic DE algorithm 

 
 

Fig. 6    convergence graph of stagnation adaptive DE 
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Figure 7 shows the target wave and reconstructed 

wave by our DE algorithm. It can be observed that our 

DE algorithm can perfectly mimics the target sound 
wave. 

Fig. 7    Target wave and estimated wave constructed 

using stagnation adaptive DE 

 

7 Conclusion 
In this paper, we have taken benchmark problem 

described in [12] to conduct experimental studies on 

it. We have refined classic DE algorithm to work faster 

and more robust on a different benchmark problem. 

One of the problems is FM sound synthesis, which has 

complex multimodal landscape. Our DE can 

successfully extract parameters with no variance and 

almost 50% less iteration require than classic DE. On 

the other hand, PSO and GA fail to optimize 

parameters perfectly for same initial condition. We 

want to investigate our algorithm’s performance on 

modified FM synthesizer and high dimensional 
problem in future.  

   

Table 1  

 Experimental Results of JADE, jDE, SaDE, EPSDE and DESSAS over 25 independent runs on 25 test functions of 

30 variables with 300000 FES 

Function 
JADE jDE SaDE EPSDE DESSAS 

Mean error ± Std Dev Mean error ± Std Dev Mean error ± Std Dev Mean error ± Std Dev Mean error ± Std Dev 

U
n

im
o

d
a

l  

F
u

n
c
tio

n
s 

F1 0.00E+00±0.00E+00= 0.00E+00±0.00E+00= 0.00E+00±0.00E+00= 0.00E+00±0.00E+00= 0.0000E+00 ± 0.0000E+00 

F2 1.02E-28±1.23E-28> 1.07E-06±1.54E-06< 7.26E-06±1.52E-05< 4.41E-26±5.17E-26< 0.0000E+00 ± 6.3553E-14 

F3 8.37E+03±7.23E+03< 1.87E+05±1.12E+05> 4.20E+05±2.88E+05> 8.63E+05±3.91E+06> 1.0835E+04 ± 6.6986E+03 

F4 1.62E-16±5.14E-16< 4.93E-02±1.36E-01> 1.22E+02±2.54E+02> 3.11E+02±2.01E+03> 4.5365E-08 ± 4.4086E-08 

F5 8.71E-08±5.12E-07< 5.89E+02±4.43E+02< 3.04E+03±5.61E+02> 1.28E+03±6.12E+02> 8.2731E+02 ± 4.1861E+02 

B
a

sic
 

M
u

ltim
o

d
a
l 

 F
u

n
c
tio

n
s 

F6 2.17E+01±2.76E+01> 2.25E+01±2.33E+01> 5.01E+01±3.32E+01> 5.94E-01±1.42E+00> 1.2101E-10 ± 2.7002-10 

F7 8.13E-03±7.41E-03< 1.17E-02±6.87E-03< 1.52E-02±1.21E-02> 1.63E-02±1.61E-02> 1.3297E-02 ± 9.9340E-03 

F8 2.09E+01±1.57E-01= 2.09E+01±4.92E-02= 2.09E+01±4.57E-02= 2.09E+01±5.29E-02= 2.0962E+01 ± 4.7658E-02 

F9 0.00E+00±0.00E+00= 0.00E+00±0.00E+00= 2.74E-01±3.91E-01> 3.14E-02±2.69E-01> 0.0000E-00 ± 4.3769E-01 

F10 3.09E+01±4.76E+00< 5.59E+01±8.42E+00< 4.83E+01±1.18E+01< 5.32E+01±3.00E+01< 8.7487E+01 ± 2.2847E+01 

F11 2.92E+01±1.73E+00< 3.49E+01±1.42E+00= 1.37E+01±2.40E+00< 3.63E+01±2.98E+00> 3.5407E+01 ± 5.5710E+00 

F12 5.98E+03±4.69E+03< 8.34E+03±8.43E+03< 3.21E+03±2.32E+03< 4.28E+04±6.55E+03< 1.8589E+05 ± 2.8421E+03 
E

x
p

a
n

d
e
d

 

M
u

ltim
o

d
a
l 

F
u

n
c
tio

n
s 

F13 1.41E+00±1.09E-01< 1.62E+00±1.32E-01< 3.96E+00±2.80E-01> 1.92E+00±1.38E-01< 3.0830E+00 ± 9.1590E-01 

F14 1.27E+01±3.10E-01< 1.33E+01±2.09E-01= 1.23E+01±2.75E-01< 1.35E+01±2.39E-01= 1.3484E+01 ± 3.0905E-01 

H
y

b
rid

 

C
o

m
p

o
sitio

n
 

F
u

n
c
tio

n
s 

F15 3.41E+02±1.73E+02> 3.68E+02±8.12E+01> 3.81E+02±7.82E+01> 2.10E+02±1.79E+01< 2.2531E+02 ± 3.5227+01 

F16 1.26E+02±1.32E+02> 7.96E+01±2.91E+01< 8.62E+01±6.97E+01= 1.19E+02±8.91E+01> 8.6708E+01 ± 1.6799E+01 

F17 1.51E+02±1.29E+02> 1.35E+02±3.84E+01< 7.54E+01±3.86E+01< 1.71E+02±1.07E+02> 1.4604E+02 ± 4.9106E+01 

F18 9.04E+02±1.13E+00> 9.03E+02±1.00E+01> 8.66E+02±6.17E+01> 8.21E+02±3.41E+00> 6.3333E+02 ± 2.8867E+02 

F19 9.02E+02±7.98E-01> 9.04E+02±1.21E+00> 8.63E+02±6.09E+01> 8.23E+02±3.30E+00> 7.2000E+02 ± 2.3874E+02 

F20 9.04E+02±8.45E-01> 9.04E+02±1.16E+00> 8.72E+02±6.13E+01> 8.27E+02±4.17E+00= 8.2000E+02 ± 4.4721E+01 

F21 5.01E+02±4.61E-13< 5.00E+02±4.72E-13< 5.49E+02±1.80E+02< 8.53E+02±1.00E+02= 8.5902E+02 ± 7.8336E-01 

F22 8.54E+02±1.84E+01> 8.76E+02±1.93E+01> 9.18E+02±1.90E+01> 5.10E+02±7.12E+00> 5.0044E+02 ± 5.3786E-01 

F23 5.52E+02±7.15E+01< 5.30E+02±2.68E-04< 5.43E+02±4.57E-03< 8.61E+02±6.89E+01= 8.6710E+02 ± 1.1847E+00 

F24 2.01E+02±2.27E-14< 2.00E+02±2.47E-14< 2.01E+02±6.11E-13< 2.14E+02±1.54E+00> 2.1075E+02 ± 2.2870E-14 

F25 2.11E+02±7.94E-01< 2.10E+02±7.22E-01< 2.14E+02±2.10E+00> 2.14E+02±2.61E+00> 2.1230E+02 ± 2.5052E+00 

> (better) 11 11 15 16 

< (worse) 11 9 7 3 

= (equals) 3 5 3 6 

Mean Error” and “Std Dev” indicate the average and standard deviation of the function error values obtained in 25 runs respectively. “>” sign denotes performance 

of our algorithm is better than respective one. “<” sign denotes performance of our algorithm is worse than respective one. “=” sign denotes performance of our 
algorithm is more or less same than respective one. 
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Table 2 

Error Value and Standard Deviation achieved at 1e+3 FES for the DESSAS algorithm at D=50 
FES  F1 F2 F3 F4 F5 F6 F7 

5e+5 

1st (best) 0.0000E+00 5.6843E-14 3.9652E+03 3.1031E-09 1.6872E+02 5.6843E-14 2.8422E-14 

7th 0.0000E+00 5.6843E-14 4.5715E+04 3.1691E-08 3.5555E+02 5.6843E-14 2.8422E-14 

13th (median) 0.0000E+00 5.6843E-14 9.9839E+04 1.4579E-07 7.2474E+02 3.4106E-13 9.8573E-03 

19th 0.0000E+00 1.1369E-13 4.0837E+05 3.3913E-06 1.2259E+03 3.9866E+00 1.9678E-02 

25th (worse) 5.6843E-14 1.3636E+04 2.4348E+06 2.3367E+04 1.7162E+03 3.9866E+00 4.6729E-02 

Mean 0.0000E+00 5.4545E+02 4.2142E+05 9.3467E+02 7.8359E+02 1.4352E+00 1.3876E-02 

Std Dev 1.1603E-14 2.7272E+03 6.9365E+05 4.6734E+03 4.4413E+02 1.9530E+00 1.3664E-02 

 

 

Table 3 

Error Value and Standard Deviation achieved at 1e+3 FES for the DESSAS algorithm at D=50 
FES  F8 F9 F10 F11 F12 F13 F14 

5e+5 

1st (best) 2.0839E+01 0.0000E+00 2.1889E+01 2.7489E+01 2.0833E+04 2.1356E+00 1.2716E+01 

7th 2.0918E+01 0.0000E+00 5.2548E+01 3.2556E+01 2.8593E+04 2.6089E+00 1.3069E+01 

13th (median) 2.0946E+01 0.0000E+00 7.7821E+01 3.6557E+01 4.4120E+04 2.9172E+00 1.3596E+01 

19th 2.0956E+01 3.4106E-13 1.1293E+02 3.9644E+01 6.1502E+04 3.4263E+00 1.3660E+01 

25th (worse) 2.1016E+01 2.1772E+01 1.8354E+02 4.0732E+01 3.4769E+05 9.1752E+00 1.3802E+01 

Mean 2.0937E+01 1.8983E+00 9.0971E+01 3.5763E+01 5.7858E+04 3.4589E+00 1.3397E+01 

Std Dev 4.3654E-02 5.8642E+00 4.6841E+01 4.3433E+00 6.3555E+04 1.6671E+00 3.4753E-01 
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