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Abstract: Filtering noise in image sequences is an important preprocessing task in many image processing appli-
cations, including but not limited to real-time x-ray image sequences obtained in angiography. The main objective
in real-time noise filtering is to improve the quality of the resultant image sequences. Practically affordable ap-
proaches are generally suboptimal and deal with the spatial and temporal dimensions independently. Spatial filters
can be adaptive and edge sensitive, however, they may require more hardware real estate for the real-time process-
ing of each frame. On the other hand, temporal-only filters are one-dimensional and take advantage of temporal
correlation. These 1-D temporal filters, which are applied to each individual pixel, can be designed using adap-
tive approaches to compensate for motions as well as noise variations. Existing adaptive 1-D filters are relatively
complex and do not lend themselves to an affordable hardware implementation for real-time processing. In this
article, after reviewing different filtering approaches, an adaptive temporal restoration algorithm, based on discrete
Kalman filter, is developed. Adaptation in this case is with respect to the variation of the noise statistics as well
as motion. In each step of the algorithm, the conventional adaptive Kalman filter proceeds if no motion is de-
tected. However, in the case of detected motion, the adaptive Kalman filter resets itself in a way that the motion is
preserved and cause no lagging in the processed image sequence. The overall procedure is suitable for hardware
implementation with present FPGA/VLSI technology.
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1 Introduction
Filtering noise in image sequences has significant pos-
itive impact in real-time medical image sequence fil-
tering. For example, this operation can improve image
quality at very low dose X-ray angiography. Many
different noise reduction techniques for dynamic im-
age sequences are proposed in literature; [2]. These
techniques can be divided into different categories
based on their underlying assumptions and justifica-
tions. Some of these approaches are based on the as-
sumption that the image sequences are stationary both
in time and space. In these cases, the optimal filter-
ing is done in a spatial-temporal manner and as a re-
sult, the filters are three-dimensional. These spatial-
temporal filters take advantage of spatial and temporal
correlations and optimally improve the image signal-
to-noise ratio (SNR). The algorithms and hardware
implementations for the 3-D filters are generally very
involved and complex.

The 3-D optimal filters are generally applicable
where the underlying assumptions, spatial-temporal
stationary signal, is true. However, in practice, due
to edges and motions, image sequences are in general
non-stationary in both space and time. In address-
ing some of these practical problems, adaptive algo-

rithms are proposed in which filter characteristics are
adjusted based on detection of motion and/or edge in
the image sequence. Adaptive 3-D spatial-temporal
filters are generally very complex and prohibitive for
real-time implementation.

Complexity of 3-D filters is reduced by decou-
pling the spatial and temporal dimensions and im-
plementing spatial-only filters in conjunction with
temporal-only filters. Extensive research has resulted
in development of many different two-dimensional
filters. These spatial filters are generally nonlinear
and/or adaptive due to their approaches in dealing
with edges in the image. On the other hand, temporal-
only filters are one-dimensional and rely on temporal
correlations in the image sequence. Temporal filters
also need to adapt their characteristics to the motions
in the image sequence and should handle different pix-
els accordingly. Several adaptive 1-D noise filtering
algorithms exist that can be utilized for this applica-
tion. However, since these techniques are generally
very complex, they do not lend themselves easily to
an affordable hardware implementation for real-time
processing. It is important to note that these temporal
filters should adapt themselves to the behavior of each
individual pixel in time and hence need to perform in-
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dependently from one pixel to another.
In this paper, first the problem of noise filtering

in digital image sequences is discussed. Then, based
on the knowledge of the problem, different practical
approaches are compared and analyzed. In this con-
sideration, both adaptive and no-adaptive techniques
are considered. Our analysis include spatial-temporal,
spatial-only, and temporal-only filters. Adaptation
discussed here is based on motions and edges as well
as noise statistics. Finally, an adaptive temporal fil-
tering algorithm, based on Kalman formulation, is de-
veloped in a way that it adjusts its behavior with re-
spect to the variation of the noise statistics and mo-
tion detection in the image sequence. In each step of
the algorithm, the conventional adaptive Kalman filter
proceeds if there is no motion. However, in the case
that a motion is detected, the adaptive Kalman filter
resets itself in a way that the motion is preserved and
lagging is prevented.

2 Statement of The Problem
The problem of concern in this study is real-time
restoration of image sequences in critical applications,
e.g., real-time medical imaging such as X-ray angiog-
raphy. The main source of degradation considered
in this study is noise. This can be due to thermal
electronic noise or quantum noise. Thermal noise
can be modeled by a Gaussian density function with
zero mean and constant variance. This noise is gen-
erally assumed to be white; almost uniformly dis-
tributed in the frequency domain. Quantum noise,
however, is modeled as a signal dependent noise in
which the noise variance is proportional to the sig-
nal level. Since most of the useful information in
the image sequence is in the low frequency region,
it seems logical that low-pass filtering of image se-
quences should solve this problem. This simple log-
ical approach, however, does generate some problem
due to filtering of higher frequency components which
causes blurring of edges and lagging of motions.

In most cases, blurring and/or lagging problems
are sever enough that conventional approaches ren-
der themselves useless. Adaptive approaches can
minimize the aforementioned degradation problems.
Adaptation should be based on preservation of edges
and motions. In the case of spatial-only filters, we
have to adapt to the transitions in the spatial domain
and adjust the filter behavior accordingly. In the
case of temporal-only filters, however, the adaptation
should be based on the motion estimation in the image
sequence. Finally, in the case of 3-D spatial-temporal
filters, the adaptive algorithm should adjust the char-
acteristics of the filter based detection of edges in the

spatial domain as well as motions in the image se-
quence.

One important factor that should always be taken
into account for adaptive filtering of image sequences
is to find an adaptive algorithm with satisfactory per-
formance (not necessarily optimal) that can be uti-
lized for real-time implementation. This requirement
is very limiting and we should make a decision as to
which features to extract for adaptation and how to
facilitate a proper real-time adaptation algorithm.

There is another category of filters that is referred
to as robust and/or nonlinear filters. These filters are
generally suboptimal but provide good solutions to the
filtering problem of non-stationary signals. The class
of nonlinear filters that is suitable for noise filtering of
image sequences is the group of filters that are based
on order statistics; [1]. The simplest filter in this group
is the median filter which is robust with respect to im-
pulsive noise and preserves sudden changes in the sig-
nal. Another class of nonlinear filters is based on lin-
earization of the nonlinear problem and application of
a linear filter to the resultant linearized problem. The
most familier exmple in this case is what is referred
to as extended Kalman filte; [8]. The more advanced
and computationally involved class of nonlinear fil-
ters depends on fuzzy systems [13]. One such system
is applied to images in [12]. A fuzzy system that be-
haves as a nonlinear filter and is referred to as cluster
filtering, is first proposed in [5]. This filter is based on
fuzzy clustering of the signal in a locality, temporal
and/or spatial, and decision making process. Deci-
sions can generally be based on crisp or fuzzy logic.
Cramer-Rao lower bounds for performance of such fil-
ters is presented in [11]. The main problem with these
nonlinear filters, in general, is the complexity of their
algorithms and the issues related to their real-time im-
plementations.

In the following, the problems raised in this sec-
tion are specifically addressed and, when appropriate,
theoretical formulation is presented. Final recommen-
dations, based on different scenarios are made at the
end, by proposing an adaptive temporal Kalman fil-
ter which resets itself whenever a motion is detected.
This method works only in temporal direction and, in
general, is independent from one pixel to another.

3 Analysis and Comparison
In this section first different conventional approaches
to image sequence filtering are discussed. Then the
issue of adaptation, under different circumstances, is
addressed. Finally, the idea of nonlinear filtering, in
general and its application to image sequences in par-
ticular, is considered. In each case, the intention is
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to discuss the relevance of the proposed technique to
digital processing of image sequences.

3.1 Spatial-Temporal Filters
Our analysis is based on the assumption that the image
sequence is presented to the filtering algorithm or its
hardware implementation as a three-dimensional (3D)
digital signal. Each frame is represented by a two di-
mensional array and sequence of frames are assumed
to be temporal samples in time. Generally, temporal
sampling rate is fixed and when needed we consider
it to be 30 frames per second or temporal sampling
rate of 30 Hz. In this case, the problem can be stated
mathematically as follows. The image sequence ob-
served by the imaging system is represented by a 3D
array x(n,m, k), given in (1) in which f(n,m, k) is
the ideal noise free image sequence and η(n,m, k) is
the additive noise sequence.

x(n,m, k) = f(n,m, k) + η(n,m, k) (1)

The objective is to process x(n,m, k) in order to
obtain the best possible estimate of f(n,m, k). In
most cases, there is a high correlation between pixels
both in spatial and temporal dimensions. However,
this argument is not completely true when a pixel is
close to an edge or belongs to a moving object. The
best estimation can be achieved when we take advan-
tage of both spatial and temporal correlations. When
a pixel is located in a locally stationary region; e.g.,
pixel is not close to an edge and does not belong
to a moving object, a linear three dimensional filter
can maximally filter white noise by proper filter de-
sign. This approach is referred to as standard linear
3D filtering. If the 3D linear filter impulse response
is h(n,m, k), then the filter output is given by (2), in
which S is the region of support for the impulse re-
sponse.

f̂(n,m, k) =
∑

p,q,l∈S
h(p, q, l)x(n− p,m− q, k − l)

(2)
In general, the main requirements for these filters

are to have spatially linear phase response and tempo-
rally minimal lagging effect. To this end, the 3D fil-
ter is spatially FIR and temporally IIR. Conventional
approach in this case is based on minimum mean-
square-error (MMSE) or Wiener filter [3]. The knowl-
edge of the signal autocorrelation function is not gen-
erally available and, in practice, based on the assump-
tion that the signal is stationary and noise is white, the
correlation function is estimated from available data.
The recursive part of the 3D filter; i.e., the temporal
component, can be implemented based on Kalman fil-
tering. This implementation is more suitable for adap-

tation. This separation of the spatial and temporal do-
mains is based on the assumption that the temporal
and spatial components of the 3D filter are separable.

In its general form, the 3D filter, in a non-adaptive
implementation, cannot remain optimum for all pixels
and at all times. The optimality can only be achieved
when the 3D signal is stationary. Adaptive filters are
more suitable in these circumstances. Adaptation is
generally based on the idea that the 3D signal is lo-
cally stationary and the rate of filtering can be reduced
properly in the vicinity of an edge and motion. The
general 3D adaptive filter cannot lend itself to real-
time processing and hence its complete formulation is
avoided here.

When adaptation in spatial and temporal domains
are separated, the real-time implementation becomes
more feasible. Therefore, we first discuss spatial-only
and temporal-only filters and then we address the is-
sues of adaptation and/or robust nonlinear filtering.

3.2 Spatial Filters
Spatial filters for filtering noise in still images is well
developed and studied; [4]. Similar approaches and
algorithms can be employed for noise filtering in im-
age sequences. Requirement of linear phase response
limits our choices to the optimum FIR Wiener filter.

Let the spatial auto-correlation function of the de-
sired noise-free image be given by rd(i, j), where i,
and j, are respectively, delays in horizontal and verti-
cal directions and rd(0, 0) is the image power. When
the image is stationary, and the noise is white with
variance of σ2n, the auto-correlation function of the
noisy image becomes

rn(i, j) = rd(i, j) + σ2nδ(i, j) (3)

which is assumed to be fixed throughout the image
and does not change from one pixel to another. In (3),
δ(i, j) is the discrete unit impulse function. Knowl-
edge of rd(i, j) and σ2n can readily be used to design
the optimum FIR Wiener filter. For simplicity and
without lack of generality, we assume that the corre-
lation function is separable, rd(i, j) = rdh(i)rdv(j),
rn(i, j) = rnh(i)rnv(j) and as a result the separable
optimum FIR Wiener filter can be obtained. Assum-
ing that the filter size is (2I + 1) × (2J + 1), the
horizontal and the vertical 1-D filters are given by

hoh = R−1nh · rdh

hov = R−1nv · rdv
(4)

where
rdh = [rdh(−I), rdh(−I + 1), · · · , rdh(I − 1), rdh(I)]T

rdv = [rdv(−I), rdv(−I + 1), · · · , rdv(I − 1), rdv(I)]T
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Rnh =


rnh(0) rnh(1) · · · rnh(2I)
rnh(1) rnh(2) · · · rnh(2I − 1)
...

...
. . .

...
rnh(2I) rnh(2I − 1) · · · rnh(0)



Rnv =


rnv(0) rnv(1) · · · rnv(2I)
rnv(1) rnv(2) · · · rnv(2I − 1)
...

...
. . .

...
rnv(2I) rnv(2I − 1) · · · rnv(0)


In general, the size of the filter is chosen based

on the way that the auto-correlation function dies out.
For example, if we can ignore rd(4, 4) in comparison
with rd(0, 0), then we can safely choose a filter of size
(2×3+1)×(2×3+1) = 7×7. With this simple rule,
the deviation from optimal solution is insignificant.

This 2D spatial filter is a fixed non-adaptive spa-
tial filter that may not be useful in many practical ap-
plications. In cases where enough processing power
is available, the above formulation can be adapted to
the local statistics. The overall effect of this non-
adaptive formulation is optimal removal of stationary
noise from stationary regions of the image, with a side
effect of causing some degrees of blurring on edges,
where the image is not stationary.

In practice, it is desired to not only reduce the
noise but also to enhance the image. This desired
performance, however, cannot be achieved by appli-
cation of a fixed linear spatial low-pass filter. Adap-
tive and robust nonlinear spatial filters; e.g [9], are
heavily used in filtering of still images. Due to the in-
herent blurring effect of any linear fixed spatial filter-
ing and high computational requirement for adaptive
and/or nonlinear filtering, the noise filtering for image
sequences is generally done in temporal domain. In
the next section, this class of filters is discussed and
the advantages and disadvantages of temporal filters
along with some remedies for their improvements are
considered.

3.3 Temporal Filters
In this case we discuss one-dimensional temporal fil-
ters that are more realistic for real-time implementa-
tion. This filtering approach only takes advantage of
temporal correlation with no concern on existing spa-
tial correlation in the image sequence. Due to the re-
quirement of real-time processing and lack of linear
phase requirement, it is advantages to use recursive
filters. Optimality of the filter corresponds to its effec-
tiveness in maximally filtering the noise. For simplic-
ity, the noise characteristics, as before, can be mod-
eled as white Gaussian random process.

For any given pixel, the variation from one frame
to the next is only due to noise when there is no mo-
tion. In other words, the pixels that are located in the

non-moving fields of the video image are highly cor-
related from one frame to another. The optimum fil-
tering, in this case would be a very narrow-band low-
pass filter which only passes the DC component. In a
recursive fashion, this can simply be achieved by us-
ing

y(k) = αy(k − 1) + (1− α)x(k) (5)

for each pixel. In this case α can be very close to 1 for
higher averaging or filtering (note that 0 < α < 1). In
(5), k denotes the current frame, y(k) represents the
filter output (new pixel value) and x(k) is the present
pixel value for the current frame. Note that y(k − 1)
denotes the filter output for the same pixel at previ-
ous frame. The corresponding frequency responses of
the recursive filter given by (5), for various values of
α, are shown in Figure 1. If faster role-off is desired,
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Figure 1: Frequency response of the recursive filter
given in (5) for various values of α parameter. The
best filter characteristics, with no motion, is the one
associated with α = 0.9 in these examples.

higher order recursive filters can be used. For exam-
ple, by increasing the filter order by one and adding
another pole at the same position; i.e., p1 = p2 = α,
for any given α, the role-off is increased by a factor of
two. The recursive equation, in this case, becomes

y(k) = 2αy(k−1)−α2y(k−2)+(1−α)2x(k) (6)

which will produce better frequency response for any
given α. The corresponding frequency responses, for
various values of α, are shown in Figure 2.

The major problem with the large values of α,
in (5) and (6), is that it gives a very small weight to
the pixel values on the current frame and very large
weight to the previous filtered outputs. This is fine and
desirable for the regions in which there is no motion.
However, when there is a motion, the corresponding
pixel value changes rapidly from one frame to another
due to motion. Large values of α strongly filters rapid
variations due to motion and causes a lagging effect in
the image sequence. This ia an undesirable effect and
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Figure 2: Frequency response of the recursive filter
given in (6) for various values of α parameter. The
best filter characteristics, with no motion, is the one
associated with α = 0.9 in these examples.

should be avoided. One way to avoid this problem,
or to reduce its effect, is to decrease the value of α.
This will result in a sub-optimal performance where
there is no motion. Another approach is to adjust the
value of α in different regions of the image and not to
use a fixed value at all times and for all pixels. The
adjustment should be based on some form of motion
estimation. This adaptive approach is addressed in the
next section.

In general, the optimum choice for α is evaluated
based on the desired noise reduction under a given
condition. If there is no motion, the noise filtering
can be set at its maximum acceptable level without
generating any undesirable side effect. To this end,
α should be chosen as close to 1 as possible. This
choice, however, should be traded off by the maxi-
mum effective averaging that we desire to have. The
relation of α with the effective averaging and noise
filtering are derived as follows.

For the first order filter in (5), the filter’s trans-
fer function and its impulse response are respectively
given by:

H(z) =
1− α

1− αz−1
and h(k) = (1− α)αku(k)

Comparison of the above exponential equation with
the general continuous-time exponential function
indicates that the system time-constant is τ =
−T/ ln(α) sec., where T is the temporal sampling pe-
riod defined as the inverse of the number of frames
per second; T = 1/fs. This time constant translates
to no = −1/ ln(α) number of frames in the image
sequence.

For calculation of the filters effective averaging
length (or number of frames), it is required to find the
step-response of the filter and the minimum number
of frames that it takes for the output to approach its

final steady-state value within a specified tolerance. If
εr is the desired tolerance, e.g., εr = 0.1 for 10% tol-
erance, it can be shown that the rise-time of the filter
(in terms of the number of frames), is

nr =

⌈
ln(εr)

ln(α)

⌉
in which dxemeans the ceiling of x (the smallest inte-
ger number larger than or equal to x). This parameter,
nr, is also the effective averaging length within the
same tolerance εr. In other words, if it is desired to
have at least εr fraction of a given frame to influence
the output of the nr frames in the future, then the value
for α should be:

α = eln(εr)/nr

In order to analyze the performance of the first-
order filter on the input noise, some statistics of the
noise process should be assumed. For example, if the
input to the filter is a zero mean stationary noise se-
quence with known auto-correlation function Rn(`),
defined by:

Rn(`) = E{x(k)x(k − `)}

The output would also be a zero mean stationary se-
quence with its auto-correlation function given by

Ry(`) =

(
1− α
1 + α

)
α|`| ∗Rn(`)

in which ∗ stands for discrete linear convolution.
When the input noise is white with the variance of σ2n,
the output auto-correlation function becomes

Ry(`) = σ2n

(
1− α
1 + α

)
α|`|

which results in

σ2y = Ry(0) = σ2n

(
1− α
1 + α

)
In this case the ratio of the output power over the input
power is simply given by:

σ2y
σ2n

=

(
1− α
1 + α

)
Apparently as α → 1 the filtering of the noise ap-
proaches perfection. However, as α → 0 the system
approaches zero noise filtering.

Proper selection of α, for a non-adaptive station-
ary case with no motion detection, should be based on
a given objective. The effective number of frame aver-
aging, nr, as suggested above is a good objective. For
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Table 1: First-Order Low-Pass Noise Filtering Char-
acteristics (note that

(
σ2y/σ

2
n

)
are specified in dB).

εr = 0.1 εr = 0.05 εr = 0.01

nr α
(
σ2y/σ

2
n

)
α

(
σ2y/σ

2
n

)
α

(
σ2y/σ

2
n

)
0 0.0 0.00 0.0 0.00 0.0 0.00
1 .10 -0.87 .05 -0.43 .01 -0.09
2 .32 -2.84 .22 -1.98 .10 -0.87
3 .46 -4.37 .37 -3.36 .22 -1.90
4 .56 -5.53 .47 -4.46 .32 -2.84
5 .63 -6.45 .55 -5.36 .40 -3.66
6 .68 -7.22 .61 -6.12 .46 -4.37
7 .72 -7.88 .65 -6.76 .52 -4.98
8 .75 -8.45 .69 -7.33 .56 -5.53
9 .77 -8.95 .72 -7.83 .60 -6.01

10 .79 -9.41 .74 -8.28 .63 -6.45
11 .81 -9.82 .76 -8.69 .66 -6.85
12 .83 -10.2 .78 -9.06 .68 -7.22
13 .84 -10.5 .79 -9.40 .70 -7.56
14 .85 -10.9 .81 -9.72 .72 -7.88
15 .86 -11.2 .82 -10.0 .74 -8.17
16 .87 -11.4 .83 -10.3 .75 -8.45

different values of this parameter, and α, the amount
of noise filtering is specified in Table 1.

Similar discussion can be carried out for the sec-
ond order filter given in (6). In this case, the filter’s
transfer function is

H(z) =
(1− α)2

(1− αz−1)2

and its impulse-response is given by

h(k) = (1− α)2(k + 1)αku(k)

The step-response of this filter takes longer time
(more number of frames) to settle; i.e., has longer rise-
time. In this formulation, the relation between εr, nr,
and α is implicit and is given by:

(nr + 1− αnr)αnr = εr

By using numerical methods, characteristic of this fil-
ter under different conditions are summarized in Table
2.

Auto-correlation function of the output can be re-
lated to that of the input by:

Ry(`) =

(
1− α
1 + α

)2

α|`| ∗ α|`| ∗Rn(`)

When the input is a zero mean stationary white noise
with variance of σ2n, the output power (variance) is

Table 2: Second-Order Low-Pass Noise Filtering
Characteristics (note that

(
σ2y/σ

2
n

)
are specified in

dB).

εr = 0.1 εr = 0.05 εr = 0.01

nr α
(
σ2y/σ

2
n

)
α

(
σ2y/σ

2
n

)
α

(
σ2y/σ

2
n

)
0 0.0 0.00 0.0 0.00 0.0 0.00
1 .05 -0.87 .03 -0.43 .01 -0.09
2 .20 -3.11 .14 -2.21 .06 -0.99
3 .32 -4.88 .25 -3.87 .14 -2.29
4 .42 -6.18 .34 -5.18 .22 -3.49
5 .49 -7.18 .42 -6.20 .29 -4.51
6 .55 -7.99 .48 -7.04 .36 -5.37
7 .59 -8.67 .53 -7.73 .41 -6.09
8 .63 -9.26 .57 -8.33 .46 -6.72
9 .66 -9.77 .61 -8.86 .50 -7.26

10 .69 -10.23 .64 -9.32 .53 -7.75
11 .71 -10.64 .66 -9.74 .56 -8.18
12 .73 -11.0 .68 -10.1 .59 -8.58
13 .75 -11.4 .70 -10.5 .61 -8.93
14 .76 -11.7 .72 -10.8 .63 -9.27
15 .78 -12.0 .74 -11.1 .65 -9.57
16 .79 -12.3 .75 -11.4 .67 -9.86

given by:

σ2y = Ry(0) = σ2n

(
1− α
1 + α

)2
(

1 + α2

1− α2

)

= σ2n ·
1− α+ α2 − α3

1 + 3α+ 3α2 + α3

In this case, the ratio of the output power over the in-
put power is simply given by:

σ2y
σ2n

=
1− α+ α2 − α3

1 + 3α+ 3α2 + α3

This relation has similar properties as before, namely;
as α→ 1 the filtering of the noise approaches perfec-
tion and as α → 0 the system approaches zero noise
filtering.

Proper selection of α for non-adaptive cases can
be based on a desired value of nr. For different values
of this parameter, and α the amount of noise filter-
ing is specified in Table 2. By careful study of Tables
1 and 2, we can see how parameter α affects perfor-
mance of the two filters and how the two different fil-
ters are compared against each other for various εr’s.

For example, for the first-order filter, if it is de-
sired to have the maximum effective averaging to be
about 16 frames, in the case of 30 frames per second,
α should be bounded to the maximum of 0.75 in order
to reduce the effect of the frames that are farther than
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16 away from the present one to less than 1%. For the
second-order filter this upper bound should be set at
about 0.67. In the first-order filter case; (5), the noise
amplitude will be reduced by about 62% (about 8.45
dB) when α = 0.75 and in the case of the second-
order filter; (6), by about 68% (about 9.86 dB) for
α = 0.67.

When there is a motion, we would like to reduce
the effective averaging length in time so that the mo-
tions appear with minimal lagging. In this situation,
ideally, depending on the statistics of the motion, its
speed of change, the temporal averaging should be ad-
justed. Motion characteristic changes from one pixel
to another and any adjustment of the effective averag-
ing length should be conducted adaptively. This issue
is discussed in the next section. Adaptive adjustment
of this parameter, for optimum noise filtering, is de-
sirable under all conditions. In the next section, the
general adaptation process and the corresponding is-
sues are discussed and the problem of automatically
adjusting α is addressed.

3.4 Adaptive Filtering
In general most adaptive filters are based on adap-
tively adjusting the parameters of the supposedly op-
timum filter based on estimation of the unknown pa-
rameters. For example, adaptive Wiener or Kalman
filter can be based on an on-line estimation of the sig-
nal and noise statistics from available data. These al-
gorithms, in general, are computationally intense and
expensive. With some minor assumptions, the adapta-
tion can be made more affordable. For example, if it
is assumed that the noise is an independent Gaussian
random process with zero mean but unknown vari-
ance, or slowly varying variance (both in time and
space), then the unknown variance can be estimated
by using the residual of the filter over the last N sam-
ples. Or when the signal is not stationary, it can be
assumed that it is locally stationary and the local data
can be used to estimate the signal statistics; i.e., auto-
correlation function.

The general problem of adaptive filters is dis-
cussed in the work by [7]. In particular, some relevant
algorithms for adaptive spatial-temporal noise filter-
ing for video images are reviewed by [2]. In this case,
the adaptation is done in terms of first estimating what
pixels, both in space and time, belong to an object and
then only use them for averaging. The problem of es-
timation of pixels of a spatial-temporal object is com-
putationally very expensive and does not lend itself to
the real-time processing. However, if the problem is
divided into two independent problems of adaptation
in the spatial domain and adaptation in the temporal
domain, then the computational expense is more man-

ageable.
Adaptation in the spatial domain may require

edge detection and segmentation of the local pixels.
In this case, for any given pixel and its local surround-
ings, a decision has to be made as to what region it
belongs to and only use pixels in that region to esti-
mate the unknown parameters (or conduct the aver-
aging only over those pixels). Another, simpler ap-
proach in this case, is to adaptively estimate the local
statistics, with no regards to the edges and segments.
In this case, with reference to (4), hoh and hov can be
calculated for each pixel by using the local neighbor-
ing pixels to estimate Rnh, Rnv, rdh, and rdv. When
there is an edge in the local pixels, the variance esti-
mate increases and as a result strength of the filtering
will be reduced.

Although, there are several computationally effi-
cient algorithms for adaptive calculation of hoh and
hov, but due to the real-time requirement and inverse
matrix calculation at each pixel, these adaptive algo-
rithms are not employed for real-time processing. One
common approach in spatial filtering of images is to
employ nonlinear filters like order-statistic and clus-
ter filtering which are robust with respect to edges.
Although these filters are computationally more ex-
pensive than linear filtering, however, they are more
affordable than previously mentioned adaptive spatial
filters.

Adaptation in the temporal direction can be done
in two ways. One approach is based on the estima-
tion of motion and the other one is based on the es-
timation of the short-term temporal variance. In each
case, when the motion is present or when the temporal
variance increases, the filtering is reduced to prevent
the lagging effect in the motion. Nonlinear tempo-
ral filters are more robust to the motion and lagging
effect. In the remaining part of this section only tem-
poral adaptation, in terms of variance estimation and
motion estimation, is discussed.

In our discussion of adaptive temporal filter the
following model is used for any pixel in a discrete
time. Let a given pixel be represented by x(k), where
k represents the discrete time index or frame index.
The ideal unknown noise-free pixel value is assumed
to be s(k), with unknown second-order statistics. It is
assumed that the signal is a first-order autoregressive
(AR) model. Other orders or models can be assumed,
but the first-order AR model is the more realistic and
simple model to work with. Under this assumption,
the process and noise model equations are:

1. s(k + 1) = as(k) + w(k), where a is a constant
that depends on the signal statistics and w(k),
is the process noise, assumed to be a zero-mean
white Gaussian random process with variance of
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σ2w.

2. x(k) = s(k) + v(k) is the noise measurement of
the signal and v(k) is the independent additive
zero mean Gaussian white noise with variance of
σ2v .

Here it is implicitly assumed that the noise and signal
are stationary random processes that are fully deter-
mined by their second-order statistics. Although this
assumption is not completely true, but we can use it in
practice for local statistics. With above model and as-
sumptions, our approach for filtering noise would be
the recursive discrete Kalman filter. In this approach,
the recursive algorithm is conducted based on the fol-
lowing definitions:

1. y(k), is the output of the filter, estimate of the
signal, at time k.

2. σ2(k) = E{[y(k) − s(k)]2}, variance of the es-
timation error, initially unknown. It should be
pointed out that this variance is also representing
the level of the noise after filtering. Optimum
value of this parameter is achieved only in the
steady-state condition and for stationary signal.

3. K(k), is used to represent the Kalman filter gain.

The Kalman filter algorithm is then given as follows:
Let y(−1) = 0, and σ2(−1) = σ2v ,

Start by setting k = 0

LOOP: for k do the following:

K(k) =
a2σ2(k − 1) + σ2w

a2σ2(k − 1) + σ2w + σ2v
y(k) = K(k)x(k) + a[1−K(k)]y(k − 1)

σ2(k) = a2[1−K(k)]σ2(k − 1) + σ2w

If finished go to END otherwise:

Increment k, k ← k + 1, and go to LOOP
END

In this algorithm, there are couple of parameters
that are assumed to be known but in practice are un-
known. These parameters are, σ2v , σ2w, and a. The al-
gorithm can be made adaptive by properly estimating
these parameters, using local available data. Estima-
tion of these parameters can be based on optimization
of a criterion function like minimum mean-square er-
ror (MMSE). No matter which estimation technique
is used, the quality or reliability of the estimates, will
always depend on the length of data used to estimate
them. Based on the aforementioned assumptions, the
following instantaneous estimates, in each step of the
recursive Kalman filter, can be used to achieve a fast

and simple implementation:

a =
E{x(k)x(k − 1)}

E{x2(k)}
∼=

x(k)x(k − 1)
1
2 [x2(k) + x2(k − 1)]

It is suggested to use some a priori information about
the signal and keep this parameter constant for stabil-
ity issues.
σ2v = E{[x(k)− ay(k − 1)]2} ∼= [x(k)− ay(k − 1)]2

σ2w = E{[x(k)− ây(k − 1)]2} ∼= [x(k)− ây(k − 1)]2

These simple procedures are very noise sensitive
and should be tested under practical circumstances for
their usability. The advantage of an adaptive over a
non-adaptive method is that, in the adaptive case, the
Kalman gain starts with relatively large values, and
gradually decreases when the temporal signal is sta-
tionary. This is a desired property which produces
more noise filtering as time goes by. However, when
there is a motion, the estimate of the noise variance,
σ̂2v , and process noise variance σ̂2w, increase and cause
the Kalman gain to increase and consequently, the
filter output dependency be weighted more on the
present signal than previous output. This will reduce
the noise filtering so that it can better follow the mo-
tion with a minimal lagging effect.

In the above adaptation, only two sample points
(from two consecutive frames) are used to estimate
variance and correlation. As a result, the filter out-
put is relatively noisy and the overall filtering is not
in the desired optimum level. An example of varia-
tion of a single pixel value in discrete time (from one
frame to another) is simulated and shown in Figure
(3). In this example, there is a sudden step change
in the signal, representing motion, with the signal-to-
noise ratio (SNR) of 20 dB. The smooth solid line in
this example is the result of the non-adaptive Kalman
filter using true parameter values. As it is evident, the
non-adaptive filter completely goes out of its desired
behavior when there is a sudden change in the signal.
The adaptive filter is robust with respect to the sud-
den change but is not optimum in terms of the noise
filtering.

If storage of more frames can be afforded, then a
better adaptation can be employed by using more data
points for estimation of the unknown parameters. Bet-
ter estimates of the unknown parameters may provide
a better filtering result but generates more lagging ef-
fect in the order of the number of frames used for pa-
rameter estimation. In Figure (4), an example is given
in which eight frames are used for parameter estima-
tion. From this example, it is evident that adaptation is
not improved significantly while an eighth-order lag-
ging is introduced.

The above results show the typical behavior of an
adaptive Kalman filter. A better approach, in this case,
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Figure 3: Filtering a noisy step-like signal, repre-
senting motion caused change, using optimum non-
adaptive and adaptive Kalman filter (in which a is kept
constant for stability).
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Figure 4: Filtering a noisy step-like signal using op-
timum non-adaptive and adaptive Kalman filter with
eight sample storage (in which a is kept constant for
stability).

would be to assume that the exact values of these pa-
rameters are known and only try to estimate the loca-
tion of the sudden changes, associated to a motion in
the image sequence. This approach also requires more
frame storage for motion estimation and generates a
lagging effect proportional to the number of frames
used to estimate the motion (assuming that the motion
is correctly estimated).

One example for motion estimation is to compare
two consecutive temporal samples and use their mag-
nitude difference to infer existence or nonexistence
of motion. This estimation can be conducted by us-
ing a statistical test based on the assumption of white
Gaussian noise; [10]. For example, when there is a
sudden change in the signal, the difference between
ay(k − 1) and x(k) goes beyond its statistical varia-
tion, with some level of statistical confidence. In this
case, a simple test can be employed to estimate sudden
changes in the signal (motion in the image sequence).
Assuming that σ2v represents the variance of the afore-

Table 3: Threshold values for Motion detection

Confidence Level Γ2 Γ

99.90% 10.827 3.29
99% 6.635 2.576
98% 5.412 2.326
95% 3.841 1.96
90% 2.706 1.645

mentioned differences, then based on Gaussian noise
distribution, it can be said that a motion is present if

γ =
|x(k)− ay(k − 1)|

σv
≥ Γ

If the test is positive, then the gain calculation in
the Kalman filter algorithm can be re-initiated by as-
suming σ2(k) = σ2v . This new gain value significantly
reduces the lagging effect while improves the noise
filtering. There are other modifications that can be
used. For example, the Kalman gain can directly be
set equal to 1 and the filtering be re-initiated right af-
ter the motion. Or both σ2(k) and σ2w can be set equal
to σ2v , which results the Kalman gain to be re-initiated
to

K(k) =
a2 + 1

a2 + 2

which would be equal to a relatively large value of 2/3
for a = 1.

Selection of the threshold Γ, is very important.
In this case, it can be shown that γ2 has χ2 distribu-
tion with one degree of freedom. For the purpose of
statistical test of hypothesis, different values of Γ, for
different confidence level, are tabulated in Table 3.

Proper use of these values will result in the same
confidence level as stated in Table 3. In other words,
if the noise is white and independent from signal, us-
ing 95% confidence will produce only 5% error, in
average, when it is used for motion detection. In
Figure (5), the Kalman filter with motion detection
is compared with the standard non-adaptive optimum
Kalman filter when the SNR = 20 dB. In this simu-
lation, the confidence level is kept at the highest level
given in Table 3; namely 99.9%, which corresponds
to Γ = 3.29.

Similar simulation is conducted on a signal with
SNR = 10 dB. In this case, we have used two differ-
ent confidence level; one at the highest level in Table
3 and the other one at the level of 95%. Figure (6) de-
picts the result for 99.9% confidence level and Figure
(7) depicts the result for 95% confidence level

In these examples, it is assumed that σ2v is known
and the selected values for thresholds are simply based
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Figure 5: The result of Kalman filtering, using motion
detection, in comparison with the non-adaptive filter-
ing when SNR = 20 dB and Γ = 3.29.
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Figure 6: The result of Kalman filtering, using motion
detection, in comparison with the non-adaptive filter-
ing when SNR = 10 dB and Γ = 3.29.

on a desired confidence level. In any given applica-
tion, the user should provide a reasonable value for σ2v
based on his or her a priori information. As it is evi-
dent, the filter is performing very good in the case of
high confidence level and not very good for low SNR
and lower confidence level. It should be emphasized
that this approach is sensitive to impulsive noise and
assigns an impulsive noise to a motion. Therefore,
not only does not filter the impulsive noise but also
restarts the filter and deviates from its optimum oper-
ation. In the case of impulsive noise, an example with
SNR = 20 dB and Γ = 3.29, is simulated and the re-
sults are shown in Figure (8). This particular problem
of impulsive noise can be minimized by using some
form of local spatial filtering before temporal motion
detection. In other words, instead of using original
frames, we can use spatially filtered version of that
frame sequence just for the purpose of motion detec-
tion.

In all cases, when using Kalman filter, the level
of noise after filtering at each time can be monitored
by reading out the values for σ2(k). In the station-
ary case, where there is no motion (sudden changes in
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Figure 7: The result of Kalman filtering, using motion
detection, in comparison with the non-adaptive filter-
ing when SNR = 10 dB and Γ = 1.96.
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Figure 8: The result of adaptive Kalman filtering, us-
ing motion estimation, in comparison with the non-
adaptive filtering when SNR = 20 dB and Γ = 3.29.
In this case there are 10% impulsive noise present.

the signal), this value approaches its optimum value.
For the adaptive case, or when motion detection is em-
ployed, as long as the signal remains stationary, σ2(k)
approaches its optimum value, but right after detection
of a motion or changes in the adaptive parameters, the
noise filtering is reduced and σ2(k) will increase to
incorporate for that change. This is one of the inter-
esting and important feature of the Kalman filter.

In cases where spatially smoothed version of each
frame is available, the motion estimator can become
less sensitive to noise by using the smoothed frame
instead of the original frame in the motion estimation
process. This approach will improve the performance
of the adaptive filter for lower SNR. The problem of
impulsive noise can also be resolved by using some
form of nonlinear filtering approach, some of which
are discussed in the following sub-section.

3.5 Nonlinear Filtering
The class of nonlinear filters that are of interest in im-
age processing is the group of filters that are robust
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with respect to sudden changes (edges in spatial do-
main and motions in temporal domain) in the signal.
The first proposed filter in this class, and the simplest
one, is the median filter. Generalized version of this
filter is the order-statistics filter and stack filters; [14].
Different modifications and adjustments are proposed
which address some of the issues concerning the com-
putational complexities and performance of these fil-
ters; [1].

Another class of nonlinear filters is the one based
on cluster analysis and fuzzy set theory; [5]. These
filters, generally, require extensive computations and
are employed only on still images. The simplest non-
linear filter, namely median filter, can be used for real
time processing by designing special hardware, VLSI,
that is based on the idea of stack filters to calculate
the median of a set of integer numbers. In this sub-
section, due to the interest for image sequence appli-
cation, only spatial median filter and temporal median
filter are discussed.

In spatial median filter, a 2-D moving window
scans each frame, one pixel at a time. At each po-
sition, all the pixels in the window are used to find
the median as the filter output. This approach, as will
be shown for the 1-D temporal filter, is robust to im-
pulsive noise and preserves sudden changes (edges)
in the image. This filter (and many of its variations)
is readily used on images to maximally remove im-
pulsive noise. Independent Gaussian noise will also
be removed, but not as much as it is possible with
the optimum filter. The 2-D filter size is selected
based on the area of the largest undesirable impul-
sive noise or based on the smallest desirable detail
in the image. If the area of the largest undesirable
impulsive noise is ni pixels, then the window size
should be at least |

√
2ni + 1| × |

√
2ni + 1|, or if the

smallest detail of interest in the image is of nd pix-
els, then the window size should be at most equal to
|
√

2nd + 1| × |
√

2nd + 1|. In other words, if the 2-D
window, for median filter is nw × nw, then nw should
satisfy

|
√

2nd + 1| ≥ nw ≥ |
√

2ni + 1|

It should also be pointed out that the larger the win-
dow size the better the noise filtering would be. There-
fore, the upper limit of this inequality would be a bet-
ter choice for median filtering of the image in the spa-
tial domain.

In the temporal domain, median filter can be used
to preserve motions while filtering noise. Although
noise filtering is not optimal, but most of impulsive
noises would be removed without any lagging effect
in the image sequence. The size of the temporal me-
dian filter is selected similar to the 2D spatial median

filter as follows. If the temporal length of an impul-
sive noise is ni frames (usually we can assume that
ni is equal to 1) and the maximum effective averaging
in time is ne frames, then the length of the temporal
median filter is obtained from

ne ≥ nw ≥ 2ni + 1

In general, the maximum possible size, limited by
hardware complexity, is used to improve the noise fil-
tering. The minimum possible size would be 3. In
the following figures, i.e., Figures (9), (10), and (11),
several examples are presented for demonstration.
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Figure 9: Result of 3-point median filter on a signal
with SNR = 20 dB and 10% impulsive noise.
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Figure 10: Result of 7-point median filter on a signal
with SNR = 20 dB and 10% impulsive noise.

As it can be seen from these simulated results, the
median filter is robust with respect to impulsive noise
and somewhat filters the Gaussian noise as well. As
the window size increases, the filtering of Gaussian
noise becomes more significant. The main character-
istic of the median filter, as it is evident from these
examples, is the preservation of steps, which relates
to motion in an image sequences. From implementa-
tion point of view, this approach requires nw storage
frames and VLSI implementation of median filters. In
the next section we address issues related to the im-
plementation of the algorithms discussed in this work.
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Figure 11: Result of 11-point median filter on a signal
with SNR = 20 dB and 10% impulsive noise.

4 Real-Time Computation and Im-
plementation Issues

One of the important issues in the real-time image se-
quence processing is the hardware implementation of
the algorithms. The linear 3D filtering presented in
(2) requires storage for enough number of frames for
proper spatial-temporal filtering. If the 3D filter is L-
th order in the temporal direction then there is a stor-
age need for at least L frames. In terms of the number
of operations, assuming that each frame isN ×N and
there are 30 frames per second, the order of opera-
tions (multiplications/additions) is about 30N2M2L
operations per second, where M ×M is the size of
the spatial FIR filter and L is the order of the tempo-
ral filter. For example, for N = 1024, M = 11,and
L = 5, there will be a need for 20 × 109 multiplica-
tions/additions per second. When N = 512, M = 5,
and L = 3, the order of operations reduces to about
68 operations per second, which is still at a very high
formidable rate for real-time processing. Even with
todays technology, this kind of processing can only
be carried out using dedicated VLSI/FPGA hardware
design.

When we only use spatial filters for noise re-
moval; i.e., (4), our storage need is at least one frame
and the number of operations per second will be
about 30N2M2. For example, for N = 1024 and
M = 11, there will be a need for 4 × 109 multiplica-
tions/additions per second. When N = 512 and M =
5, the order of operations reduces to about 28 opera-
tions per second, which is still highly formidable.

For the temporal-only fixed non-adaptive filtering
proposed in (5) and (6), our storage need is between
two to five frames and the number of operations is
about 60N2 per second for the first-order system and
120N2 for the second-order filter. When N = 1024
the order of operation is about 64 × 106 operations
per second for the first-order filter and 128 × 106 op-

erations per second for the second-order filter, which
is completely manageable with todays high end pro-
cessors. We can still be more efficient by using VLSI
design or hardware specific design. These rates will
be reduced by a factor of 4 when the image size is
N = 512.

Implementation of the Kalman temporal filter re-
quires at least five storage frames and about 10 op-
erations (multiplications/additions) per pixel, which
translates to 300N2 operations per second. For N =
1024 we get the order of operations to be about
320 × 106 operations per second. When N = 512
this rate is decreased by the factor of 4 to 80 × 106

operations per second. This rate is manageable with
todays high-end processors and particularly with ded-
icated VLSI/FPGA design.

Implementation of the nonlinear, median, tempo-
ral filter requires about 3 to 5 frames of storage respec-
tively for 3-point and 5-point median filtering. Num-
ber of comparison for sorting and finding the median
is at most 3 for 3-point median and at most 4 for 5-
point median operation. Total number of comparisons
per second for N = 1024 is about 160× 106 per sec-
ond for 5-point median and 95 × 106 for 3-point me-
dian. This rate is within the acceptable range of oper-
ations and can be handled with todays technology.

Based on the examples and discussions presented
thus far, several recommendations are made in the fol-
lowing conclusion section.

5 Conclusion
In this article, the problem of noise filtering in im-
age sequences is discussed and for some limited cases,
several simulation results are presented. Based on
presented examples, we recommended using the pre-
sented Kalman filter along with the motion detection
algorithm. Although it is possible to use a second-
order recursive filter for better peformance, but as it is
shown here, in Tables 1 and 2, the difference between
the two, for a given effective averaging length, is at
most in the order of 2 dB. Adaptation and motion de-
tection for the second order recursive filter, however,
would be more complex.

The first-order Kalman filter with motion detec-
tion algorithm, in a simple form, would be as given in
the following frame. If there exists an impulsive noise
in the image sequence, instead of original frames, use
spatially filtered frames. The only parameters that
should be supplied by the user are σ2v , variance of the
white noise, and Γ; the desired confidence level for
the motion detection. If the noise is signal dependent,
then for motion detection there is a need to properly
normalize the D parameter in the algorithm. The only
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issue that should be resolved is how to use the two new
parameters, σ2 and σ2w, as explained in the algorithm.
For further simplification, with some approximation,
σ2w can be eliminated from the algorithm with a minor
adjustment in the update equation for σ2.

Let y(−1) = 0, σ2w = σ2v , and σ2 = σ2v ,

Start by setting k = 0

LOOP: for k do the following:

K =
σ2 + σ2w

σ2 + σ2w + σ2v
y(k) = Kx(k) + (1−K)y(k − 1)

if D =
|x(k)− y(k − 1)|

σv
≥ Γ

σ2w = σ2v

σ2 = σ2v

else

σ2w = K2σ2v

σ2 ← (1−K)σ2 + σ2w

end-if

If finished go to END otherwise:

Increment k, k ← k + 1, and go to LOOP
END

For future development, new approaches should
be considered, both for filtering and motion estima-
tion. These approaches should include median filter-
ing, cluster filtering, and wavelet decomposition of
images. The next step, in improving the temporal fil-
ter, would be the use of temporal median filter, in real
time, not for the filtering purposes, but for the motion
detection. This of course will increase the hardware
requirement for the temporal filtering.

DISCLAIMER AND NOTE

The views expressed herein are those of the author
and are not to be construed as official or reflecting the
views of the Commandant, the U.S. Coast Guard, the
Department of Homeland Security, or any agency of
the U.S. Government.
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