
 

Wavelets and Ridgelets for Biomedical Image Denoising

D. MARY 

SUGANTHARATHNAM 

Assistant Professor 

Government College of 

Engineering, Tirunelveli, 

TamilNadu,  

INDIA. 

maryvictorin@yahoo.co.in 

 

DR. D. MANIMEGALAI 

Professor 

National Engineering College 

Kovilpatti, TamilNadu,  

INDIA. 

megalai_nec@yahoo.co.in 

 

 

B. GANAPATHY RAM 

P.G. Scholar  

Anna University, Tirunelveli  

Region, TamilNadu,  

INDIA. 

ganathippu@gmail.com 

 

Abstract:- Image de-noising is a key step in the processing of medical images as they are often corrupted by noise 

in the process of receiving, coding and transmission. In this paper the performance of Discrete Wavelet Transform 

(DWT) (Bivariate shrinkage), Stationary Wavelet Transform (SWT) (hard thresholding), Dual Tree Complex 

Wavelet Transform (DTCWT) (Bivariate shrinkage) and Ridgelet Transform (Hard thresholding) for biomedical 

image de-noising are evaluated and compared in terms of Peak Signal to Noise Ratio (PSNR). The DWT in many 

applications reaches its limitations such as oscillations of coefficients at a singularity, lack of directional selectivity 

in higher dimensions, aliasing and consequent shift variance. Therefore SWT and DTCWT, both with their shift 

invariant property are studied. DTCWT a moderately redundant multi-resolution transform with decimated sub 

bands runs into two DWT trees (real and imaginary) of real filters producing the real and imaginary parts of the 

coefficients. A locally adaptive de-noising algorithm using the bivariate shrinkage function is illustrated using both 

DWT and DTCWT. A simple bivariate shrinkage rule is described to model the statistics of wavelet coefficients of 

images. The Ridgelet transform was developed over several years to break the limitations of Wavelet Transform 

and possesses high directional selectivity. Simulations and experimental results demonstrate that the DTCWT 

outperforms SWT and DWT as well as Ridgelets in denoising biomedical images corrupted by Random noise, Salt 

and pepper noise and Gaussian noise while SWT outperforms other wavelet techniques and Ridgelets in de-noising 

biomedical images degraded by Speckle noise and Poisson noise.       
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1  Introduction 
Digital Image acquisition involves several 

optical and electronic devices whose imperfections 

generate noise in the acquired image. Medical image 

processing is the use of algorithms and procedures for 

operations such as image enhancement, image 

compression etc. Several state of the art equipments 

that produce human organs in digital form used during 

treatment include X-ray based methods such as 

radiography, CT(Computed Tomography), 

MRI(Magnetic resonance Imaging), PET(Positron 

Emission Tomography)and SPECT(Single Photon 

Emission computed Tomography) and several 

methods in optical imaging. 

The main problem encountered by medical 

imaging systems is the distortion of visual signals 

obtained due to imperfect acquisition and transmission 

errors. Noise in medical images has two 

disadvantages. They are (i) degradation of image 

quality, (ii) obscuring important information required 

for accurate diagnosis. Thus all medical imaging 

devices need some de-noising algorithm to enhance 

the image under consideration and thus help the 

medical practitioner to make diagnosis quickly and 

efficiently. The goal of removing various types of 

noise in biomedical images is to suppress the noise 

while preserving the integrity of edge and detail 

information associated with the original image. 

Medical images are usually represented in low 

contrast and noise suppression in these images is 

particularly a difficult task. A trade off between noise 

reduction and the preservation of actual features has to 

be made in a way that enhances the diagnostically 

relevant image content. Multi scale decompositions 

have shown significant advantages in representation of 

signals in de-noising. 
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Wavelet transforms have emerged as a 

premier tool for image de-noising due to statistically 

useful properties of wavelet co-efficients. Its energy 

compaction and multi-resolution properties has made 

wavelet as a powerful tool in image de-noising. Hence 

shrinkage methods combined with wavelets is widely 

used. Though wavelet transforms have been 

successfully used in many scientific fields such as 

image de-noising, ridgelets deals effectively with line 

singularities.  

This paper is organized as follows: Section 2 

presents the literature review and motivation. In 

Section 3, the various Multi-resolution transforms are 

illustrated. The thresholding used in image denoising 

algorithm is discussed in Section 4.In section 5 the de-

noising algorithm using bivariate shrinkage function 

and the local adaptive image enhancement algorithm 

is discussed. The experimental results are discussed in 

Section 6. Finally the conclusions are drawn in 

Section 7. 

 

2. Literature review and Motivation 
Over the last decade abundant interest has 

been shown in wavelet methods for noise removal in 

signal and images. Initial efforts included very simple 

ideas like thresholding of orthogonal wavelet 

coefficients of the noisy data followed by 

reconstruction. Later efforts found that substantial 

improvements in perceptual quality could be obtained 

by translation invariant methods based on thresholding 

of an un-decimated wavelet transform [1][20]. 

Donoho and his co-workers pioneered a 

wavelet denoising scheme by using soft thresholding 

and hard thresholding[3]. This approach appears to be 

a good choice for a number of applications. This is 

because a wavelet transform can compact the energy 

of the image only to a small number of large 

coefficients and the majority of the wavelet 

coefficients are very small so that they can be set to 

zero. Donoho’s algorithm offers the advantages of 

smoothness and adaptation. This algorithm exhibits 

visual artifacts, therefore a translation invariant 

denoising scheme to suppress such artifacts by 

averaging over the de-noising signals of all circular 

shifts is used. 

In the literature many image denoising 

methods have been proposed to remove additive white 

Gaussian noise only. For example D. L. Donoho and 

I.M Johnstone proposed denoising images corrupted 

with additive white Gaussian noise by thresholding 

the wavelet co-efficients[2][25]. Further removal of 

additive Gaussian noise in natural images has been 

implemented by Shan Gai et al. and Shyam Lal et 

al[13][15]. 

In addition Nick kingsbury adopted a method 

for removing additive Gaussian noise from digital 

images based on statistical modelling of co-

efficients[12].H.A. Noubari et al. has introduced 

optimal thresholding of wavelet co-efficients[21]. 

Wen-Chien Yen and Ahen-Chuan tai has 

focussed only on the removal of Speckle noise in 

ultrasound images and Shuai Xing and Qing Xu has 

proposed a bivariate shrinkage function for removal of 

speckle noise in Synthetic Aperture Radar 

Images(SAR)[14][11].Latha Parthiban and R. 

Subramanian have implemented the removal of 

speckle noise in medical images using Contourlets and 

have proved that it offers much better performance 

than wavelets[10]. 

Ling Wang et al. have utilized Multiwavelet 

multiresolution analysis using co-variance shrink in 

removing Poisson noise in medical X-ray images[9].S. 

Kother Mohideen has proved that Complex Wavelet 

Transform using Neigh Sure shrink algorithm 

achieves better results than Discrete Wavelet 

Transform in the removal of additive Gaussian 

noise[19]. 

The critically sampled DWT is applied to a 

wide range of image processing tasks. However its 

performance is limited because of oscillations of 

coefficients at singularity, shift variance, aliasing and 

lack of directional selectivity in higher dimensions .To 

overcome this shift dependence problem the Dual 

Tree Complex Wavelet Transform (DTCWT) is used 

which is nearly shift invariant and is oriented in 2D. 

The 2D dual tree wavelet transform produces six sub 

bands at each scale, each of which is strongly oriented 

at distinct angles [4]. 

The decimated DWT used in image denoising 

algorithms has non-redundant orthogonal property. 

Although the Stationary Wavelet Transform (SWT) 

reduces this problem substantially, it is 

computationally expensive[16]. To overcome the 

limitations of Wavelets in the applications of high 

dimensions a new system of representation namely 

Ridgelets is proposed by Candes and Donoho. 

Ridgelets deals effectively with line or super plane 

singularities [6]. But images always exhibit edge 

discontinuities across curves. However at sufficiently 

fine scales a curved edge is almost straight, so we can 

use ridgelets to analyse curves in a localized manner at 

sufficiently fine scales. 
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This work explores the utility of Wavelets and 

Ridgelets for denoising medical images corrupted by 

various types of noises namely, Random noise, Salt 

and Pepper noise, Gaussian noise, Speckle noise and 

Poisson noise. A local adaptive estimation of 

necessary parameters for the bivariate shrinkage 

function will be described [8]. The performance of the 

system will be demonstrated on DWT and DTCWT 

with bivariate shrinkage and some comparisons with 

the redundant SWT and Ridgelets is given in order to 

illustrate the effectiveness of a particular technique[7]. 

A denoising algorithm using locally adaptive bivariate 

shrinkage function for medical images is implemented 

with DWT and DTCWT [5][17]. It is a low 

complexity denoising algorithm using the joint 

statistics of the wavelet coefficients of medical 

images. The bivariate shrinkage function models the 

relationship between the parent and child coefficients 

located respectively at different scales of multi-

resolution decomposition. 

The various wavelet techniques are classified 

according to different medical images on the basis of 

PSNR. This paper describes the various de-noising 

techniques such as DWT, SWT, DCWT and Ridgelets 

degraded by various types of noise and all these 

methods are compared in terms of PSNR [22]. The 

quality of de-noised images is determined by 

calculating the PSNR which is one of the quantitative 

measures for image quality evaluation. 

 Existing approaches as stated in the literature 

mainly is focussed in the removal of white Gaussian 

noise in natural images [13]. Very few literatures has 

concentrated in the removal of only a specific type of 

noise, for example either Speckle noise in Ultrasound 

images or Poisson noise in medical X-ray images. The 

idea of comparison of different methodologies can be 

revealed from [23][24][26]. 

 In this paper the classical problem of 

removing various types of noise such as Random 

noise, Salt and Pepper noise, Gaussian noise, Speckle 

noise and Poisson noise in different medical imaging 

modalities is addressed[18].The transforms used are 

Wavelet Transforms like  DWT,SWT and DTCWT. 

Further initial efforts on image denoising based on 

recently introduced family of transforms, namely 

Ridgelets has been proposed as alternatives to wavelet 

representation of image data. 

Certain wavelet techniques works excellently 

for a certain type of original image or degradation 

while it may not be suitable for other images. 

Therefore the choice of right wavelet techniques for a 

particular type of noise is important in a specific 

imaging modality as it will determine the final result 

of the images.  

Standard Wavelet methods using Bi-variate 

shrinkage and thresholding is compared with the 

Ridgelets and the choice of  a particular transform for 

a specific medical imaging modality in the removal of 

a particular type of noise is justified in terms of 

PSNR. 
 

3 Methodology 
 

3.1  Wavelet Transform 
Wavelets are mathematical functions that 

analyze data according to scale or resolution. They aid 

in studying a signal in different windows or at 

different resolutions. For instance, if the signal is 

viewed in a large window, gross features can be 

noticed, but if viewed in a small window, only small 

features can be noticed. Wavelets provide some 

advantages over Fourier transforms. For example, they 

do a good job in approximating signals with sharp 

spikes or signals having discontinuities. The term 

“wavelets” is used to refer to a set of orthonormal 

basis functions generated by dilation and translation of 

scaling function φ and a mother wavelet ψ. The finite 

scale multi resolution representation of a discrete 

function can be called as a discrete wavelet transform. 

DWT is a fast linear operation on a data vector, whose 

length is an integer power of 2. This transform is 

invertible and orthogonal, where the inverse transform 

expressed as a matrix is the transpose of the transform 

matrix. The wavelet basis or function, unlike sines and 

cosines as in Fourier transform, is quite localized in 

space. But similar to sines and cosines, individual 

wavelet functions are localized in frequency.  

 

3.2  Discrete Wavelet Transform: 

A  DWT is any wavelet transform for which 

the wavelets are discretely sampled. A key advantage 

it has over Fourier transform is temporal resolution, it 

captures both frequency and location information. The 

DWT of image signal produces a non redundant image 

representation which provides better spatial and 

spectral localization. The DWT can be interpreted as 

signal decomposition in a set of independent spatially 

oriented frequency channels. The signal is passed 

through two complimentary filters and emerges as two 

signals, approximations and details. This is called 

decomposition or analysis. The components can be 

assembled back into the original signal without loss of 
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information and this is called as reconstruction or 

synthesis. 

Forward DWT ∶  ajk =   f t Ψjk
∗  t 

t

                      (1) 

Inverse DWT ∶  f t =   ajk Ψjk t 

jk

                  (2) 

Ψjk t =  2
j

2 Ψ(2jt − k)                                              (3) 

We can construct discrete WT via iterated (octave 

band) filter bands as shown in Figure 1. 

 
Figure 1. Construction of Wavelet Transform 

 

3.2.1  Analysis Section 

For images we use separable WT . First a 1D 

filter bank is applied to the rows of the image. Then 

the same transform is applied to the columns of each 

channel of the result. Therefore 3 high pass channels 

corresponding to vertical, horizontal and diagonal and 

one approximation image is obtained. The above 

procedure can be iteratively applied on the low pass 

channel. The analysis and synthesis filters are shown 

in Figure 2 and Figure 3 respectively. 

 
Figure 2. 2D Analysis filter bank 

 

The Discrete wavelet transform of a 2D signal is 

DWT m, n =  2−
m

2  S(k)Ψ(2−m k − n)

k

           (4) 

The DWT uses wavelet filtering and down sampling 

and it is a reversible process. The wavelets break the 

signal down into a series of 𝑎𝑗  (average coefficients) 

and  𝑑𝑗 (detail coefficients).  

 

 
Figure 3. 2D Synthesis filter bank 

 

 
Figure 4. Scheme for Wavelet Denoising 

The wavelet model is shown in Figure 4. The 

steps involve forward DWT and Non linear 

thresholding followed by Inverse DWT. 

 

3.3  Complex 2-D Dual-tree Wavelet Transform 

The dual-tree complex DWT (DT-CDWT) of 

a signal x is implemented using two critically-sampled 

DWTs in parallel on the same data, as shown in the 

Figure 5. 

 
Figure 5. Dual Tree Complex Discrete wavelet 

Transform 

 

  The DTCWT is a Multi resolution transform 

with decimated sub bands and provides perfect 

reconstruction at the input. The DTCWT calculates 

the complex transform of a signal using two separate 

DWT decompositions .If the filters used in one are 

specifically designed different from those in the other 
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it is possible for one DWT to produce the real 

coefficients and the other the imaginary. This 

redundancy of two provides extra information for 

analysis but at the expense of extra computational 

power. It also provides approximate shift invariance 

yet still allows perfect reconstruction of the signal. 

The wavelet associated with the upper DWT can be an 

approximate Hilbert transform of the wavelet 

associated with the lower DWT. The complex 2D dual 

tree DWT gives rise to wavelets in six distinct 

directions one the real part of the complex valued 2D 

wavelet while the other is the imaginary part. 

Ψ1 𝑥,𝑦 =  𝜑 𝑥 Ψ y      LH Wavelet                      (5) 

Ψ2 𝑥,𝑦 =  Ψ 𝑥 𝜑 y     (HL Wavelet)                     (6) 

Ψ3 𝑥,𝑦 = Ψ 𝑥 Ψ y     (HH Wavelet)                     (7) 
The two real wavelet transforms use two 

different sets of filters with each satisfying the perfect 

reconstruction conditions. The two sets of filters are 

jointly designed so that the overall transform is 

approximately analytic. 

Let ℎ0 𝑛  and ℎ1 𝑛 denote the low pass and 

high pass filter pair for the upper filter bank and let 

𝑔0 𝑛  and 𝑔1 𝑛  denote the low pass and high pass 

filter pair for the lower filter bank. The two real 

wavelets associated with each of the two real wavelet 

transforms are denoted as Ψℎ 𝑡  and Ψ𝑔 𝑡 . In 

addition to satisfying the perfect reconstruction 

condition the filters are designed so that the complex 

wavelet Ψ 𝑡 ≔  Ψℎ 𝑡 + 𝑗Ψ𝑔 𝑡  is approximately 

analytic. They are designed such that Ψ𝑔 𝑡  is 

approximately the Hilbert transform of Ψℎ 𝑡 . 
The filters themselves are real and no complex 

arithmetic is required for the implementation of the 

dual tree CWT. The dual tree CWT is not a critically 

sampled transform. It is two times expansive in 1D 

because the total output data rate is exactly twice the 

input data rate. To obtain the inverse of DTCWT, the 

real part and the imaginary part are each inverted, the 

inverse of each of the two real DWT’s are used to 

obtain two real signals. These two real signals are then 

averaged to obtain the final output. Finally the original 

signal can be reconstructed from the real part or the 

imaginary part alone. 

3.4. Overview of Stationary Wavelet Transform 

(SWT) 

The down sampling operation must be 

suppressed to make it translation invariant and the 

decomposition is redundant. This is called SWT. Thus 

the approximation coefficients and the detail 

coefficients at each level are the same length as the 

original signal. The high and low pass filters are 

applied to the data at each level. Decimation is not 

performed. The filters are modified at each level by 

padding them with zeros. This transform is 

computationally more complex. The computational 

complexity of SWT is O(𝑛2).The redundant 

representation makes SWT shift invariant and suitable 

for application such as de-noising. 

In this section the basic principles of the SWT 

method is presented. In general the Stationary Wavelet 

Transform method can be portrayed as follows. At 

each level the data is given to both the high pass and 

low pass filters so as to produce the two new 

sequences having same length as the original 

sequences. For doing this the original data is not 

decimated. However the filters at each level can be 

altered by padding zeros with them. 

 
Figure 6. Stationary Wavelet Method 

 

If suppose, a function f(x) is projected at each 

step  j on the subset 𝑉𝑗  then the projection is defined 

by the scalar product cj,k of f(x) with the scaling 

function φ(𝑥) which is dilated and translated. 

cj,k =   f x , φ
j,k

(x)                                                        (8) 

φ
j,k
 x =  2−jφ(2−jx − k)                                             (9) 

In equation (9) the term φ(x) denotes the scaling 

function which is a low pass filter. cj,k  is also called a 

discrete approximation at the resolution 2𝑗 . 
If φ(𝑥) is the wavelet function, the wavelet 

coefficients are obtained by  

wj,k =   f x , 2−jφ(2−jx − k)                                    (10) 

wj,k  is called the discrete detail signal at the resolution 

2𝑗  
As the scaling function φ(𝑥) has the following 

property 
1

2
φ  

x

2
 =   h n φ(x − n)                                      (11)

n
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cj+1,k  can be determined by direct computation from 

cj,k  

cj+1,k =   h n − 2k cj,k

n

                                         (12) 

1

2
φ  

x

2
 =   g n φ x − n                                       (13)

n

 

The scalar products  f x , 2−(j+1)φ(2−(j+1)x − k) are 

computed with 

wj+1,k =   g n − 2k cj,n                                         (14)

n

 

Equations 13 and 14 are the multi resolution algorithm 

of the traditional DWT. In this transform a down 

sampling algorithm is used to perform the 

transformation. That is one out of two points is kept 

during transformation. Therefore the whole length of 

the function f(x) will reduce by half after the 

transformation. This process continues until the length 

of the function becomes one. However for stationary 

or redundant transform instead of down sampling an 

up sampling procedure is carried out before 

performing filter convolution at each scale. The 

distance between samples increasing by a factor of 

two from scale j to the next 𝑐𝑗+1,𝑘  is obtained by 

cj+1,k =   g l cj,k+

l

2jl                                             (15) 

The discrete wavelet coefficient can be given by 

wj+1,k =   h l cj,k+

l

2jl                                            (16) 

The redundancy of this transform facilitates 

the identification of salient features in a signal 

especially for recognizing the noises. In Stationary 

Wavelet Transform (SWT) instead of down sampling, 

an up sampling procedure is carried out before we 

separate the variables x and y of image f(x, y) shown 

in the following wavelets.  

Vertical wavelet (LH): φ1 x, y =  φ x φ(y) 

Horizontal Wavelet (HL): φ2 x, y =  φ x φ(y) 

Diagonal Wavelet (HH): φ3 x, y =  φ x φ(y) 

Thus the detail signal is contained in three sub images 

wj+1
1  kx , ky =    g lx h ly cj,k+2j (lx , ly )

+∞

ly =−∞

+∞

lx =−∞

 

(17) 

wj+1
2  kx , ky =    h lx g ly cj,k+2j (lx , ly )

+∞

ly =−∞

+∞

lx =−∞

 

(18) 

wj+1
3  kx , ky =    g lx g ly cj,k+2j (lx , ly )

+∞

ly =−∞

+∞

lx =−∞

 

(19) 

 

3.5  Ridgelet Transform  

In 1998, Donoho introduced the ridgelet 

transform. Continuous Rridgelet transform (CRT) can 

be defined from a 1D wavelet function oriented at 

constant lines and radial directions. Ridgelet transform 

has been generating a lot of interest due to its superior 

performance over wavelets, while wavelets have been 

very successful in applications such as denoising and 

compact approximations of images containing zero 

dimensional or point singularities. Wavelets do not 

isolate the smoothness along edges that occur in 

images, and they are thus more appropriate for the 

reconstruction of sharp point singularities than lines or 

edges. These shortcomings of wavelet are well 

addressed by the ridgelet transform; the functionality 

of wavelet has been extended to higher dimensional 

singularities and becomes an effective tool to perform 

sparse directional analysis. Generally speaking, 

wavelets detect objects with point singularities, while 

ridgelets are able to represent objects with line 

singularities.  

The Finite Ridgelet Transform (FRIT) was 

computed in two steps: a calculation of discrete radon 

transform and an application of a wavelet transform. 

The Finite Radon Transform (FRAT) is computed in 

two steps: a calculation of 2D Fast Fourier Transform 

(FFT) for the image and an application of a 1D inverse 

Fast Fourier Transform (IFFT) on each of the 32 

radial directions of the radon projection. 1D wavelet is 

applied restricted to radial directions going through 

the origin for three levels of decompositions. 

Applying FRAT on image can be presented as a set of 

projections of the image taken at different angles to 

map the image space to projection space. Its 

computation is important in image processing and 

computer vision for problems such as pattern 

recognition and the reconstruction of medical images. 

For discrete images, a projection is computed by 

summation of all data points that lie within specified 

unit-width strips; those lines are defined in a finite 

geometry. 
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The FRAT of a real function on the finite grid 

Zp
2
  is defined in 

rk l =  FRATf k, l =  
1

 P
  f i, j 

(i,j)∈L(k,l)

              (20) 

In equation (20) the term L(k, l) denotes the set of 

points that make up a line on the lattice Zp
2
 as in 

L k, l =   i, j : j = ki + l mod p , i ∈ Zp              (21) 

Where 0 ≤ 𝑘 < 𝑝 

L k, l =   i, j : j ∈ Zp                                                 (22) 

To compute the K
th
 radon projection (i.e., the 

K
th
 row in the array), all pixels of the original image 

need to be passed once and use P histogram’s: one for 

every pixel in the row. At the end, all P histogrammed 

values are divided by K to get the average values.   

Each output of the radon projection is simply passed 

through the wavelet transform before it reaches the 

output multiplier. As shown in Figure 7, ridgelets use 

FRAT as a basic building block, where FRAT maps a 

line singularity into point singularity, and the wavelet 

transform has been used to effectively detect and 

segment the point singularity in radon domain. 

 

 
Figure 7. FRIT block diagram. 

 

Ridgelet transformation on medical images 

was not promising. Medical images comprised of 

curves which are still not singularity points after 

applying radon transform. Wavelet transform cannot 

detect those singularities properly, since it is still not 

singularity points, resulting that ridgelet 

transformation is not suitable for de-noising these 

images. Ridgelet transform can be used in other 

applications, where images contain edges and straight 

lines.  Figure 8 illustrates the radial grid in ridgelet 

transform; however, straight lines evaluate the image 

in the frequency domain. 

 
Figure 8.  Ridgelet parameters. 

 

4.  IMAGE DENOISING 
Image De-noising is used to produce good 

estimates of the original image from noisy 

observations. The restored image should contain less 

noise than the observations while still keep sharp 

transitions (i.e edges)  

Suppose an image f(m,n) is corrupted by the additive 

noise  

g(m,n) = f(m,n) + η(m,n)  

where η(m,n) are independent identically distributed 

Gaussian random variable with zero mean and 

variance σ
2
. Image de-noising algorithms vary from 

simple thresholding to complicate model based 

methods. However simple thresholding methods can 

remove most of the noise. 

 

4.1  Thresholding Function 

 The most frequently used thresholding 

methods are soft and hard thresholding.  The soft 

thresholding ignores signals below noise threshold and 

attenuates low level signals. There is a smooth 

transition between on/off. The hard thresholding also 

ignores the signals below the noise threshold but there 

is sharp transition from on/off. 

1. Soft Thresholding is defined by a fixed threshold σ 

Sσ x =   
x − σ x ≥ σ

0         x < σ

x + σ x ≤ σ

                            (23)           

2. Hard Thresholding 

Sσ x =   
x  x ≥ σ

0  x < σ
                                     (24)        

These thresholding functions might be a good choice 

because large coefficients remain nearly unaltered. 
 

5. Bivariate Shrinkage function for 

Image De-noising 
To model the statistics of wavelet coefficients 

of images, a new simple non-Gaussian bivariate 

probability distribution function is implemented in this 

paper. The model captures the dependence between a 

wavelet coefficient and its parent. Using Bayesian 

estimation theory, this model is derived, which 

generalizes the soft thresholding approach. The new 

shrinkage function, which depends on both the 

coefficient and its parent, yields improved results for 

wavelet based image denoising. 

Let w2 represent the parent of w1. Then, y = 

w+n. Where w = (w1, w2), y = (y1, y2) and n = (n1, n2). 

The noise values n1,n2 are zero mean Gaussian. Based 
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on the empirical histograms, the non-Gaussian 

bivariate PDF is given by, 

Pw w =  
3

2πσ2
exp −

 3

σ
 w1

2 + w2
2                  (25) 

With this PDF, w1 and w2 are uncorrelated, but not 

independent. The MAP estimator of w1 yields the 

following bivariate shrinkage function 

w 1 =  
 y1

2 + y2
2 −  

 3σn
2

σ

 y1
2 + y2

2
 y1                                    (26) 

For this bivariate shrinkage function, the smaller the 

parent value, the greater the shrinkage. This is 

consistent with other models, but here it is derived 

using a Bayesian estimation approach beginning with 

the new bivariate non-Gaussian model. 

5.1 Denoising Algorithm: 

1. Set the window size. The signal variance of a 

coefficient will be estimated using neighboring 

coefficients in a rectangular region with this 

window size. 

2. Set number of stages to be used for the wavelet 

transforms. 

3. Extend the noisy image. (The noisy image will be 

extended using symmetric extension in order to 

improve the boundary problem.) 

4. Calculate the forward dual-tree DWT. 

5. Estimate the noise variance. The noise variance 

will be calculated using the robust median 

estimator. 

6. Process each sub band separately in a loop. First 

the real and imaginary parts of the coefficients and 

the corresponding parent matrices are prepared for 

each sub band. 

7. Estimate the signal variance and the threshold 

value: (The signal variance for each coefficient is 

estimated using the window size and the threshold 

value for each coefficient will be calculated and 

stored in a matrix with the same size as the 

coefficient matrix.) 

8. Estimate the magnitude of the complex 

coefficients. (The coefficients will be estimated 

using the magnitudes of the complex coefficient, its 

parent and the threshold value with the Bivariate 

Shrinkage Function.) 

9. Calculate the inverse wavelet transform. 

10. Extract the image. (The necessary part of the final 

image is extracted in order to reverse the 

symmetrical extension.) 

5.2 Local Adaptive Image Enhancement 

Using the bivariate shrinkage function shown in 

Equation (26),an effective and low complexity locally 

adaptive image denoising algorithm is proposed in this 

paper. This shrinkage function requires the prior 

knowledge of the noise variance and the signal 

variance for each wavelet coefficient Therefore the 

algorithm first estimates these parameters for the 

recipe of the estimation rules. 

 

5.3Local Adaptive Algorithm 

The estimator requires the prior knowledge of the 

noise variance σn
2   and the marginal variance σ2 for 

each wavelet coefficient. In the algorithm, the 

marginal variance for the k
th
 coefficient will be 

estimated using neighboring coefficients in the region 

N(k). Here N(k) is defined as all coefficients with in a 

square-shaped window that is centered at the kth 

coefficient. 

To estimate the noise variance σn
2  from the noisy 

wavelet coefficients, a robust median estimator is used 

from the finest scale wavelet co-efficient. 

σ n
2 =

median   yi  

0.6745
, yi  ∈ subband HH                 (27)  

Let us assume we are trying to estimate the marginal 

variance σ2 for the k
th
 wavelet coefficient. From the 

observation model, one gets σy
2 =  σ2  =  σn

2  where 

σy  
2 the marginal variance of the noisy observations y1 

and y2 is. Since y1 and y2 are modeled as zero mean, 

σy
2 can be found empirically by 

σ y
2         =  

1

M
 yi

2                                               (28)

y i  ∈N(k)

 

Where M is the size of the neighborhood N(k). Then σ 

can be estimated as 

σ =   σ y
2 − σ n

2                                                                (29) 

The algorithm is summarized as follows 

(1) Calculate the noise variance σ n
2
 using (27) 

(2) For each wavelet coefficient (k=1 number of 

wavelet coefficients) 

(a) Calculate σ y
2
 using (28) 

(b) Calculate σ  using  (29) 

(c) Estimate each coefficient using  σ  and σ n
2
 

using equation (26) 
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6  Experimental Results 
 Several experiments on simulated noise such 

as Random noise with a variance of σ = 20, Salt and 

Pepper noise with a variance of  σ = 0.01 , Gaussian 

noise with a variance of 0.01, speckle noise with a 

variance of 0.02 and Poisson noise were performed to 

validate the image domain optimization method. The 

various noises are simulated by MATLAB Image 

Processing Tool Box. 8 bit biomedical images such as 

CT, MRI, X-Ray, PET and SPECT of size 256 x 256 

were experimented. 

The PSNR is used to compare the results 

quantitatively which can represent how smooth the de-

noised image is. It is a quality measurement between 

the original and de-noised image. The higher the 

PSNR the better is the quality of the reconstructed 

image. 

PSNR = 10log10  
fmax

2

MSE
                                            (30) 

In equation (30) the term fmax is the 

maximum value of the image intensities and MSE is 

the Mean Square Error between the reconstructed  

image and original one  

MSE =  
1

MN
   f m, n −  f (m, n) 

2
N−1

n=0

M−1

m=0

           (31) 

In equation (31) the term f(m,n) is the original 

image, the term f (m, n) is the de-noised image and M 

x N is the number of pixels. The de-noised image is 

closer to the original one when PSNR is higher. The 

PSNR values were obtained for various bio-medical 

images and for each image type three samples were 

taken and the average PSNR of the noisy and de-

noised images were calculated to ascertain the overall 

performance of the system in terms of average PSNR 

gain. Results presented in Tables 1 to 5 are in terms of 

average PSNR gain which demonstrate the 

effectiveness of a particular type of Wavelet technique 

applied to noisy versions of biomedical images like 

CT, MRI, X-ray, PET and SPECT . 

 

Experiment 1 

Experiments were conducted on five test 

images, CT,MRI,X-ray, PET and SPECT of size 256 x 

256. Three samples of all these biomedical images 

were experimented. It is observed from Table 1 that 

the DTCWT outperforms other Wavelet techniques 

and Ridgelet for images corrupted by Random noise 

with noise variance of σ = 20. 

 Figure 9 shows the de-noising results of CT 

image implemented with  DTCWT corrupted by 

random noise of variance =20.  

 

Table 1: Denoising results (Average PSNR Gain in 

dB) for Random noise, Variance σ=20 

Image 
SWT (Hard 

Thresholding) 

DWT with 

Bivariate 

shrinkage 

Dual tree 

Complex 

Wavelet 

Transform 

Ridgelet 

CT 6.7345 8.0351 9.1595 0.2627 

MRI 5.6436 7.5145 8.2605 0.3679 

X-Ray 8.3341 9.2244 10.4108 0.5792 

PET 8.0682 8.4313 9.4574 1.1541 

SPECT 5.5048 7.3182 8.3155 -0.3708 

Figure 9: Denoising results of Dual Tree Complex Wavelet 

Transform for CT Image (Random Noise – variance = 20) (a) 

Original  (b) Noisy (PSNR=21.6068 dB) (c) Recovered (PSNR  

= 31.1506dB) 

Experiment 2 

Simulations were carried out on five test 

images of size 256 x 256 and three samples in each 

were tested. The images were corrupted by Salt and 

Pepper noise with a noise variance of σ = 0.01. Table 

2 illustrates that the DTCWT offers an excellent 

choice in the removal of Salt and Pepper noise in 

biomedical images. The results shown in Figure 10 is 

for MRI image denoised by DWT.  

 

Table 2: Denoising results (Average PSNR Gain in 

dB) for Salt and Pepper noise, Variance = 0.01 

Image 
SWT (Hard 

Thresholding) 

DWT with 

Bivariate 

shrinkage 

Dual tree 

Complex 

Wavelet 

Transform 

Ridgelet 

CT 3.0687 3.0121 3.0624 -0.2844 

MRI 3.0395 3.0167 3.0434 0.1301 

X-Ray 3.0202 3.0114 3.0349 0.1614 

PET 3.0159 3.0118 3.0278 1.0156 

SPECT 3.0459 3.0162 3.0810 -0.7398 
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Figure 10: Denoising results of Discrete Wavelet 

Transform for MRI Image (Salt and Pepper Noise 

– variance = 0.01) (a) Original  (b)Noisy 

(PSNR=20.5025) (c) Recovered (PSNR= 

23.5130dB) 

 

Experiment 3 

Five types of biomedical images (i.e) CT, 

MRI, X-ray, PET and SPECT of size 256 x 256 are 

used for experimental evaluation purpose. The noise 

added is Gaussian noise with a noise variance of 

0.01.Table 3 depicts that the DTCWT is a good choice 

for de-noising medical images degraded by Gaussian 

noise. The results are shown in Figure 11 for X-ray 

image denoised  by DTCWT corrupted by Gaussian 

noise.  

 

Table 3: Denoising results (Average PSNR Gain in 

dB) for Gaussian noise, Variance = 0.01 

Image 
SWT (Hard 

Thresholding) 

DWT with 

Bivariate 

shrinkage 

Dual tree 

Complex 

Wavelet 

Transform 

Ridgelet 

CT 6.3088 6.4182 6.7490 1.0821 

MRI 5.1331 6.0494 6.4693 1.0546 

X-Ray 7.4330 7.2125 7.5920 1.3010 

PET 6.0766 5.7304 5.9040 1.5893 

SPECT 5.3670 5.8314 6.3114 0.5065 

Figure 11: Denoising results of Dual Tree Complex 

Wavelet Transform  for XRAY Image (Gaussian 

Noise – variance = 0.01) (a) Original  (b)Noisy 

(PSNR=20.7678 dB) (c) Recovered (PSNR= 

27.4066dB) 

 

 

Experiment 4 

The performance of the different Wavelet 

techniques and Ridgelets are demonstrated on five 

biomedical images of size 256 x 256 with three 

samples of each category viz, CT, MRI, X-ray, PET 

and SPECT. The noise added is Speckle noise with a 

variance of 0.02.   

From Table 4 it is observed that the average 

PSNR gain is highest for almost all types of 

biomedical images with SWT (Stationary Wavelet 

Transform) using hard thresholding of Wavelet co-

efficient.  The results are shown in Figure 12 for PET 

image degraded by Speckle noise.. 

 

Table 4: Denoising results (Average PSNR Gain in 

dB) for Speckle noise, Variance = 0.02 

Image 
SWT (Hard 

Thresholding) 

DWT with 

Bivariate 

shrinkage 

Dual tree 

Complex 

Wavelet 

Transform 

Ridgelet 

CT 4.6094 3.5913 3.4980 -1.0242 

MRI 4.9711 3.2757 3.3388 -2.8150 

X-Ray 3.6614 3.1221 3.1624 -0.6306 

PET 3.1775 3.0282 3.0484 -1.1298 

SPECT 3.9883 3.1027 3.1879 -2.2094 

 
Figure 12: Denoising results of Stationary Wavelet 

Transform for PETA Image (Speckle Noise – 

variance=0.02) (a) Original (b) Noisy 

(PSNR=24.2552 dB) (c) Recovered (PSNR = 

27.7610dB) 

Experiment 5 
8 bit biomedical images of dimension 256 x 

256 are used for simulation. The image is corrupted by 

adding Poisson noise. It can be observed from Table 5 

that the SWT (hard thresholding) outperforms other 

transforms in the removal of Poisson noise. The 

results are shown in Figure 13 for SPECT image 

degraded by Poisson noise with SWT. 
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Table 5: Denoising results (Average PSNR Gain in 

dB) for Poisson noise  

Image 
SWT (Hard 

Thresholding) 

DWT with 

Bivariate 

shrinkage 

Dual tree 

Complex 

Wavelet 

Transform 

Ridgelet 

CT 4.3539 3.5636 3.7874 -3.0568 

MRI 3.4726 3.7377 3.9504 -4.3380 

X-Ray 5.1818 3.5748 3.6526 -2.8401 

PET 3.2843 3.0464 3.0828 -3.0471 

SPECT 4.5135 3.2838 3.4074 -4.0974 

 
Figure 13: Denoising results of Stationary Wavelet 

Transform for SPECT Image (Poisson Noise) (a) 

Original (b) Noisy (PSNR=28.4781dB) (c) 

Recovered (PSNR = 31.6641dB) 

 

Experiment6 
In this experiment Ridgelets are used to 

denoise different biomedical images corrupted by 

various types of noise. Tables 1 to 5 clearly 

demonstrates that Ridgelets offers the lowest PSNR 

gain for all medical images and further the results as 

seen in Table 5 reveal that Ridgelets offers a negative 

average PSNR gain in the removal of Poisson noise in 

medical images. Figure 14 shows the results of X-ray 

image corrupted by Poisson noise with Ridgelets.  The 

effectiveness of the Dual tree Complex Wavelet 

Transform is demonstrated in terms of average PSNR 

gain  by comparing it with SWT, DWT and Ridgelets 

in the removal of random noise, Gaussian noise and 

Salt and Pepper noise. The comparison reveals that 

DTCWT offers the highest PSNR gain. The redundant 

SWT with hard thresholding is a better choice for the 

removal of Speckle noise and Poisson noise in 

medical images .Incorporation of Ridgelet transform 

is a poor choice for the removal of various types of 

noise in biomedical images as it shows a negative 

average PSNR gain and is ideally suitable to resolve 

straight line singularities.  

 
Figure 14: Denoising results of Ridgelet Transform 

for X-ray Image (Poisson Noise) (a) Original (b) 

Noisy (PSNR=38.7250dB) (c) Recovered (PSNR = 

35.9319dB) 

The charts for comparison of de-noising various 

imaging modalities are depicted in Figures 15 to 19.  

 

 
Figure 15: Chart for comparison of denoising 

performance of various imaging modalities with 

Random noise using multiresolution transforms 

 

 
Figure 16: Chart for comparison of denoising 

performance of various imaging modalities with 

Salt and Pepper noise using multiresolution 

transforms 
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Figure 17: Chart for comparison of denoising 

performance of various imaging modalities with 

Gaussian noise using multiresolution transforms 

 

Figure 18: Chart for comparison of denoising 

performance of various imaging modalities with 

Speckle noise using multiresolution transforms 

 

Figure 19: Chart for comparision of denoising 

performance of various imaging modalities with 

Poisson noise using multiresolution transforms 

 

 

Legends on Charts: 

 SWT (Hard Thresholding) 

 DWT with Bivariate Shrinkage 

 Dual Tree Complex Wavelet Transform 

 Ridgelet 

 

 

7  Conclusions 
This paper investigates the comparative study 

of four techniques namely DWT(Bivariate shrinkage), 

SWT(hard thresholding), DTCWT(Bivariate 

shrinkage) and Ridgelet transform for de-noising of 

biomedical images degraded by different kinds of 

noise. The different image denoising methods are 

compared by the objective measure of performance, 

viz PSNR. The denoising algorithm is tested on 

biomedical images namely CT, MRI, X-ray, PET and 

SPECT with various noises added to the images. A 

very simple hard thresholding of coefficients is used 

with SWT and Ridgelet transform while bivariate 

shrinkage rule is used for DWT and DTCWT. 

Local Adaptive de-noising methods in 

combination with bivariate shrinkage improves the de-

noising results. This algorithm is used with DWT and 

DTCWT and a bivariate function is used. First the 

image is decomposed by the wavelet transform to 

obtain the approximation coefficients and detail 

coefficients in different sub bands. Then the bivariate 

shrinkage function is applied in order to characterize 

the dependencies between a co-efficient and a parent. 

The DWT functions insufficiently in some of 

the image processing tasks due to strong shift 

dependence, lack of directional selectivity, aliasing 

and oscillations of the coefficients. The DTCWT due 

to its approximate shift invariance and improved 

directional selectivity outperforms the DWT in a wide 

range of applications. The comparison suggests that 

the DTCWT with bivariate shrinkage are competitive 

with other wavelet based techniques in the removal of 

Random noise, Gaussian noise and Salt and Pepper 

noise in biomedical images while the redundant SWT 

with hard thresholding seems to be a better choice for 

de-noising biomedical images degraded by speckle 

noise and Poisson noise. 

It is also observed that Ridgelet transform 

offers a negative PSNR gain in de-noising biomedical 

images. This is due to the fact that Ridgelet transform 

can be used in applications where images contain 

edges and straight lines (i.e.) Ridgelet transform is 

effective in detecting linear radial structures which are 

not dominant in medical images. In future the work 

can be extended by using different types of noise 

variance also. Hence it is concluded that Ridgelet 

transform offers inferior results in de-noising all 

medical imaging modalities corrupted by various 

types of noise.  
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