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Abstract: - This paper proposes an acoustic diagnosis technique for detecting abnormalities in and deterioration 
of machines that emit intermittent sounds during operation. The effectiveness of this technique is demonstrated 
experimentally. Acoustic diagnosis is generally applied to continuous sounds by analyzing the power spectrum 
patterns of regular, periodic sounds emitted by rotating components. However, machines such as automatic teller 
machines (ATMs) emit intermittent, episodic sounds during operation, making it impossible to employ the same 
diagnosis techniques as those used for conventional, continuous sounds. The proposed technique enables 
intermittent acoustic abnormalities to be diagnosed. It achieves this by constructing two vector series that are 
polygonal chain approximations of the temporal changes in the pressure levels of the most characteristic 
frequencies of the acoustic emissions during normal operation (the “standard vector series”) and during inspection 
(the “measured vector series”). The technique employs dynamic programming (DP) matching to collate and 
compare the two vector series at standard intervals. The technique consists of the following six steps: (1) 
acquisition of the temporal changes in the pressure level, as acoustic data; (2) extraction of the diagnosis regions; 
(3) selection of relevant features using a polynomial expansion filter; (4) polygonal chain approximation of the 
acoustic waveforms by vector series; (5) collation of the resulting measured vector and standard vector series by 
DP matching; (6) diagnosis of abnormality by vector dissimilarity. This paper provides detailed descriptions of 
steps 3 to 6. Steps 3 and 5 are particularly notable: in step 3, the acoustic data are approximated as vectors in a 
polygonal chain using a Hermite polynomial and the relevant features are extracted; in step 5, the DP collation 
absorbs operational asynchronicities, thereby eliminating what has been the greatest impediment to intermittent 
sound diagnosis. The effectiveness of this method for localizing and diagnosing abnormalities is demonstrated 
experimentally by applying it to acoustic data from the paper-slip transport in an actual machine. 
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1 Introduction 

Acoustic emission (AE) and vibrational techniques 
are conventional methods for inspecting mechanical 
systems and diagnosing deterioration.1)-7) Typical 
examples include acoustic diagnosis of insulated 
transformers2),5) and underwater concrete columns3)

The sounds that precision equipment emit during 
operation are modified by wear and deterioration in 
their components over long periods and by changes in 
the ambient temperature and humidity. Skilled 
maintenance personnel are able to assess the internal 
state of equipment from its acoustic emissions based 
on experience. It may thus be possible to detect 
abnormalities by analyzing acoustic data. Diagnosis 
utilizing acoustics is used to detect abnormalities and 

, 
using AE sensors that require contact with the 
inspected object. This requirement, however, makes it 
difficult to employ them to diagnose small abnormal 
or deteriorated regions out of the many regions 
present in precision equipment. In contrast, 
noncontact methods can readily acquire multipoint 

data. Thus, we investigated the possibility of applying 
them to acquire and utilize the series of sounds 
emitted by such equipment.  
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failures in vibrating bodies,2),8),9) rotational 
mechanisms (such as bearings, gears, and pumps),10) 
and engine exhaust systems.11) The acoustic target in 
such cases is generally continuous sound and the 
diagnosis generally utilizes frequency analysis12) and 
power spectral patterns of the periodic sounds emitted 
by rotating or vibrating bodies. Diagnosis is 
performed by comparing and pattern matching with 
spectral patterns from normal operation and by 
observing changes over time in the appearance of 
prominent frequency components in spectral patterns. 
However, these methods are inherently unsuitable for 
diagnosing precision machines that emit intermittent, 
episodic sounds, such as automatic teller machines 
(ATMs), which are described in this report. ATMs 
perform a wide variety of functions, including 
depositing, paying, transferring, displaying current 
balances, and saving. The sounds emitted by their 
mechanisms are intermittent and episodic. Power 
spectrum analysis is unsuitable for such mechanisms 
for two reasons. The first reason is because the sounds 
vary over time and analysis of the power spectrum at 
the sampling time would necessitate recording 
spectral pattern data at many different times, which is 
impractical. The second reason is because asynchrony 
occurs in intermittent sound emissions depending on 
the state of the mechanisms, making it difficult to 
establish the timing of abnormal sound emissions 
from the equipment. Other attempts to apply acoustic 
diagnosis to ATMs have been reported,13),14)

The present report proposes a technique for acoustic 
detection and diagnosis of abnormalities in machines 
that emit nonperiodic, intermittent sounds. Using 
vector series, this technique performs polygonal chain 

approximations of temporal changes in the acoustic 
pressure at the frequencies that exhibit the most 
conspicuous changes in emitted sounds during normal 
operation and inspection. Abnormality diagnosis is 
performed by collating and comparing the two vector 
series. By collating with the waveform obtained by 
polygonal chain approximation during normal 
operation, the operation interval is obtained in the 
target region of the diagnosis. This enables acoustic 
diagnosis of machines that have indefinite operating 
times in the component regions. The collation is 
performed by dynamic programming (DP) matching, 
which facilitates temporal compression. Furthermore, 
polygonal chain approximation of the data waveform 
by a vector series enables the acoustic data to be 
stored in compressed form, thereby reducing the 
data-storage volume and enabling high-speed 
calculation. 

 but they 
have been limited to frequency analysis of the ATM 
stack wheel units. They apply frequency analysis to 
continuous sounds emitted by rotating mechanisms, 
and thus belong to the same category as conventional 
methods. In contrast, the diagnosis technique 
described in the present report is not restricted to 
internal rotational mechanisms but is applicable to the 
entire ATM, including its banknote transporter, 
stocker, and banknote checker. The sounds emitted 
from many points within the ATM include not only 
continuous sounds emitted by wheels and other 
rotational mechanisms considered in Refs. 13 and 14, 
but also sounds from transport drives, banknote 
engagement, roll winding, banknote impact on boxes, 
and friction involved in the movement of both 
machinery and banknotes — a complex combination 
of sounds that is impossible to diagnose solely using 
frequency analysis. 

In this report, Section 2 describes the abnormality 
diagnosis method including the diagnostic process, 
acoustic data feature extraction, and feature collation. 
It also discusses various aspects of abnormality 
diagnosis. Section 3 provides an example of its 
application in the diagnosis of abnormalities in 
regions within actual paper-slip transporters of ATMs 
and it evaluates its effectiveness for this purpose. 
 
 
2 Method of abnormality diagnosis 
2.1  Diagnostic process 

Machines consist of various types of operating 
regions. The acoustic emissions from each region tend 
to vary over time. Accordingly, these changes can be 
observed in the waveforms of acquired acoustic data. 
Diagnosis of abnormalities in these constituent 
regions is performed by analyzing these waveform 
changes. Figure 1 illustrates the diagnostic method of 
the proposed technique. 

(1) Data acquisition 
At the time of inspection, the series of sounds 

emitted from various operating regions that operate in 
a given sequence is acquired as electrical signals using 
a microphone. The acoustic pressures in the frequency 
range most characteristic of the condition of each 
region are sampled and the acoustic pressure levels are 
converted into acoustic data. In this way, temporal 
changes in the acoustic pressures are obtained. 

(2) Extraction of diagnosis points 
Diagnosis of particular operating regions requires 

obtaining acoustic data for each portion of that region 
during its operation. However, the timing of operation 
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in each portion fluctuates with its operating 
environment. For this reason, acoustic data extraction 
from the region in the vicinity of its time of operation 
is performed in a predetermined time range. 
Smoothing of the acoustic data is also performed to 
eliminate noise. 
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Fig. 1 Overview of abnormality diagnosis technique  
 
(3) Feature extraction 
To enable polygonal chain approximation of the 

acoustic data by a vector series, the peak and trough 
times of the acoustic data waveform are obtained by 
polynomial expansion of the acoustic data for each 
time point, in which the second-order coefficient of 
expansion represents the peak and trough times. 
Approximate values (restoration values) are computed 
from the polynomial expansion of the data at these 
times. These times and the calculated restoration 
values occurring at these times are hereafter referred 
to as the feature points. 

(4) Construction of measured vector series 
Successive feature points are connected, forming 

vectors in which each vector embodies the difference 
between two feature points in time and acoustic 
pressure. The vector series formed by linking these 
vectors enables polygonal chain approximation of the 
acoustic data waveform, and is hereafter referred to as 
the measured vector series.  

(5) Feature collation 
The measured vector series is next collated by DP 

matching with a vector series (hereafter, called the 

standard vector series) previously obtained during 
normal equipment operation by the same procedure as 
that used for the measured vector series, which was 
stored for this purpose. Those spans of the measured 
vector series that most closely resemble those of the 
standard vector series are taken as representing 
waveforms of the operating regions in the equipment. 

(6) Abnormality diagnosis 
If an abnormality exists in the region being 

diagnosed, the corresponding vector in the 
measurement vector series will, as a result of collation, 
have very different lengths and slopes from that of the 
standard vector series. The difference in vector 
conformation (also known as the dissimilarity) is 
calculated using an equation that relates the 
differences in length and slope. If any part of the 
vector series exceeds a standard value, which is 
established as an error limit to allow for ordinary 
fluctuations that occur during normal operation, it is 
judged to be abnormal. 

The above processing is performed for each region, 
with the abnormality diagnosis progressing through 
extracting the acoustic data corresponding to each of 
the regions in the order of their operation. 

This section has provided an overview of the 
abnormality diagnostic process. Section 2.2 onwards 
provides a more detailed description of Steps (3) to (6) 
of the process in their application to a single region. 
 
2.2  Feature extraction 

A polynomial expansion filter is used in the 
polynomial expansion of the acoustic data in the 
vicinity of each sampling time, to determine the 
coefficient of each order in the polynomial. The 
acoustic data are time-series data and are generally 
referred to by that term in Section 2.2.1. 

 
2.2.1 Polynomial expansion 

As the raw time sequence data would require a huge 
amount of processing, the waveform of the data series 
is approximated by a vector series, which eliminates 
excess data on the waveform. The feature points of the 
data series are extracted by polynomial expansion. 

The waveform of small data intervals can be 
approximated by the quadratic function 
( ) wvxuxxf ++= 2 , where the coefficient of the 

quadratic term u represents the degree of curvature of 
the second-order peak and the constant term w  
represents the peak’s maximum value. Using the 
approximation of the small data series intervals by the 
second-order polynomial, it is possible to obtain the 
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features of that interval of the data waveform from the 
coefficient of the quadratic term and the constant term. 

The expansion method utilizes the Hermite 
polynomial ( )xHm ,14) 15)

 
 which is defined as 

( ) ( ) ( ){ } ( )
m

m
m

m dx
xEdxExH 11 −−=                  (1) 
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where ( )xE  is the Gaussian error function 
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and the constant a  indicates the defined interval. 

Moreover, x  is the variable in the time direction in 
units of the sampling time interval. If the 
normalization constant mA is defined as 
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ax
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Then 
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A

x m
m
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constitutes an orthonormal function that may be 

regarded as a weighting of ( )xHm  by ( )xE . The 
time-series data ( )tf  centered on time t  is 
approximated. As in Eq. (5), time-series data ( )tf  is 
weighted by ( )xE  to obtain ( )th , which is expanded 
as: 

 
( ) ( ) ( ){ } 21xExtfxth +=+                        (6) 

 
When Eq. (6) is expanded using the orthonormal 

function in Eq. (5), time-series data ( )tf  can be 
expanded as: 
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with ( )( )∞= ,,1,0 mtam 　  as the expansion 
coefficient obtained from: 

( ) ( ) ( )∑
−=

+=
a

ax
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From Eqs. (6) and (7), in the vicinity of time t , 

expansion of the time-series data ( )tf  can thus be 
performed by: 

 

( ) ( ) ( )
m
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Thus, as shown in Eq. (1), ( )xHm  is a polynomial 

of degree m and the time-series data ( )tf  in the 
vicinity of time t  is expanded using this polynomial. 
Substituting Eqs. (5) and (4) into Eq. (8) yields 
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We can thus obtain the polynomial coefficient ( )tam , 

which is obtained from the function ( )xWm  as  
 

( ) ( ) ( )xE
A

xHxW
m

m
m =                                       (11) 

 
by multiplying and summing the time-series data 
( )tf . ( )xWm  is hereafter called the feature extraction 

filter. Figure 2 shows the feature extraction filters used 
in obtaining the zero-, first-, and second-order 
polynomial expansion coefficients. 

Using the results of the polynomial expansion with 
the feature extraction filter ( )xWm , we can obtain the 
restoration value ( )tfe  for the time-series data at time 
t  by inserting 0=x  into Eq. (9). 

 

( ) ( ) ( )∑
∞

−=

=
ax m

m
me A

Htatf 0  

( ) ( )∑
∞

−=
=

ax
mm Wta 0                                   (12) 

 
The feature extraction filter width [ ]aa −,  is selected 

on the basis of the curvature at the point that is 
determined as the feature point. In calculations using 
Eq. (12), a second-degree polynomial is assumed to be 
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sufficient for approximating a small data interval and 
the maximum degree of the polynomial is defined by 
setting 2=m . 

 
 
 
 
 
 
 
 
 
 
 

Fig. 2  Feature extraction filter(σ=8) for determining 
the polynomial expansion coefficient from measured 
data 

 
 

2.2.2 Feature extraction method 
In Eq. (7), the second-order expansion coefficient 
( )ta2  represents the time-series curvature in the 

vicinity of time t . If ( ) 02 >ta  the curve is convex 
above and if ( ) 02 <ta  it is convex below; the larger 
the value of ( )ta2  is, the greater its curvature is. 

By obtaining the second-order expansion 
coefficient ( )ta2  for time-series data ( )tf , we can 
therefore find the “center of balance” of intervals 
having either a positive or a negative value. The center 
of balance lies near the point of greatest curvature in 
the interval and is therefore taken as the feature point 
time jt . The method for calculating jt  is illustrated in 
Fig. 3 for the interval ( st , et ) having a positive value. 
As shown, the areas under the curve to the left and 
right of point jt  are equal and the center of balance jt  
lies in the region of maximum height in the waveform 
peak, which is the point of greatest curvature, and thus 
close to the feature point. The center of balance is thus 
taken as the feature point and jt  is obtained from the 
equation: 
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where st  is the starting point of a given interval,  

et  is its end point, and J  is the number of feature 
points in the time-series data. From the point jt  on the 

time axis and the restoration point ( )je tf  obtained 
from Eq. (12).  It is possible to obtain the feature point 

( )( )jej tft , . 

ts tj te Time  [ms]

a2(t)

 
Fig. 3 Location of the center of balance ( jt ) is nearest 
the point of maximum curvature in a positive-value (or 
negative value) interval ( st , et ) ; hatched and dotted 
portions are of equal area  

 
 
2.3 Measured vector series construction 

The time-series data restoration point jt  is obtained 
from Eq. (12) and the corresponding feature point 

( )( )jej ttt ,  is calculated. The successive feature points 
are then connected to express the time-series data 
( )tf  as a vector series: 
 

( ) ( )( )jejejjj tftftta −−= ++ 11 ,  

( )1,,2,1 −= jj  .          (14) 
 

Figure 4 illustrates the course of the polygonal chain 
approximation of the acoustic data by the vector series. 
In this example, (a) shows the raw acoustic data, (b) is 
the smoothed acoustic data obtained by the average 
movement of each point together with the three points 
on either side of it, (c) is the second-degree 
polynomial expansion coefficients ( )ta2  calculated 
with a feature extraction filter having 8=σ , and (d) is 
the waveform obtained by the vector series 
approximation. 

 
2.4 Feature collation 

As noted above, DP matching is used to collate and 
extract the vector series of the range of movement in 
the region to be diagnosed from the measured vector 
series. In the collation results, it is necessary to avoid 
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the correspondence states shown in Fig. 5.  
In Fig. 5(a), the third vector from the left in the 

lower vector series is in redundant correspondence 
with the second and third vectors in the upper series.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
Fig. 4  Acoustic data approximation process: 

(a) acoustic data; 
(b) mean movement in acoustic data; 
(c) second-order coefficient  a2

(d) waveform  approximated by a vector series. 

(t)  of  polynomial 
expansion (σ=8); 

 
In Fig. 5(b), the third vector in the lower series does 

not correspond to any vector in the upper series. To 
avoid these states at any given node ( )ji,　  and to obtain 
the route that minimizes the evaluation function value 
for the two vector series, the route is selected from 
three directions, as illustrated in Fig. 6. 

The evaluation function is applied to route selection 
at each node ( )ji,　 . In the DP matching, during 
determination of the correspondence for set t in the 
two vector series, the optimum correspondence of the 
previous set 1−t  for minimizing the difference 
between the two vector series (hereafter referred to as 
the “error”) has already been determined. 

When determining the correspondence for set t , at 
node ( )ji,　 , the evaluation function is expressed by:   

 

∑∑
−

==

+=
1

11

t

c
tc

t

c
c ggg  ,                        (15) 

where tg is the correspondence error in set t  and 

∑ −

=

1

1

t

c cg  is the sum of the correspondence errors in sets 
1 to 1−t . 

 
 (a)                                       (b)  

 
Fig. 5 Unallowable correspondence between two 

vector series, where the dotted lines mean the 
correspondence between vectors. 

(a) A vector marked arrow is duplicated by two 
vectors.  

(b) A vector marked arrow has no corresponding 
vector.  
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Fig. 6  Route candidates to the node (i,j)  
 

Error tg  also represents the square of the error 
between the two vectors. In the correspondence 
between the two vectors α  and β , this “squared 
error” can be expressed as:  

 

( ) 222 2 ββααβα +⋅−=−=tg .     (16) 
 
This involves the correspondence of one vector to 

just one vector and is the case for route (b) in Fig. 6, 
and would thus lead to its selection. If either route (a) 
or route (c) were selected, the number of vectors 

)1( ≥rr  involved in the correspondence to one vector 
would be larger. In the correspondence of vectors 

r1 ββ  to α , the squared error may be expressed as: 
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It should be noted that r1 ββ  vector sum in this 
equation is not rββ 1  but rather 

r1 ββ ++ .  
The former would apply in the case of correspondence 
to α  by a vector extending from the initial point of 1β  
to the terminal point of rβ . The latter applies for 
correspondence to α  by the vector series 

( )rpp ,,2,1 =β , and the difference between the 
vector series peak and trough conformations is thus 
included in the error. 
 
 
2.5 Abnormality diagnosis 
The dissimilarity is calculated for each vector as the 
correspondence determined by the collation. The 
dissimilarity is compared with the standard value (the 
“error limit”), which is established on the basis of the 
error variation in similar equipment units during 
normal operation as determined from the frequency 
distribution of the variations among those units.  
When abnormality symptoms begin to appear, 
changes are generated in the acoustic data waveform. 
Within the vector series, large changes occur in the 
slope of the component vectors. Changes in vector 
length (i.e., shortening or lengthening relative to the 
time axis) can be attributed in large part to normal 
fluctuations in acoustic emissions depending on 
variations in the state of the equipment and other such 
factors. Accordingly, the change in slope is more 
strongly represented in quantification of the difference 
between two corresponding vectors in length and 
slope as the dissimilarity. For this reason, it is 
calculated as the product of the squared error and 

θcos1−  (θ : angle between the two vectors). However, 
a further consideration of vector length is necessary 
due to the use of DP matching, in which the vector 
correspondence is not necessarily one to one. 
Therefore, when correspondence occurs between one 
vector and )1( >rr  vectors, a one-to-one 
correspondence is constructed by dividing one vector 
into r  parts in accordance with the component time 
ratios of the other, and the dissimilarities of the 

vectors in the one-to-one correspondence are then 
summed. Thus, in the event of correspondence to α  by 

rββ 1 , α  is divided into rαα 1  in accordance 
with the component time ratios of rββ 1 , and the 
dissimilarity between α  and rββ 1 is then 
obtained as 
 

( ) ( ){ }∑
=

−⋅=
r

p
qqqE

1

2 cos1 θβα  

( ) ( )qqqqq βαβα ⋅=θcos       (18) 
 

The enhancement of the increase in dissimilarity 
with increasing angle between the vectors that results 
from using the product of the squared error and 

θcos1−  is illustrated by the vector series shown in 
Figs. 7 and 8. In Fig. 7, the dissimilarity is calculated 
from the squared error alone, whereas in Fig. 8 it is 
calculated from the product of the squared error and 

θcos1− . In Fig. 7, large dissimilarities are rather 
pervasive and the waveform changes are not clearly 
presented. In Fig. 8, all the dissimilarities are smaller, 
but those representing differences in the inter-vector 
angle are much more prominent than those 
representing differences in vector length, thus more 
clearly and accurately representing the waveform 
changes and enabling more reliable detection of the 
waveform change regions. 

  
 
 
 
 
 
 
 
 
 
 
 
Fig. 7   Dissimilarity between standard vector series 
and vector series for diagnosis using the squared error  
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Fig. 8  Dissimilarity between standard vector  series 
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3  Experimental results and evaluation 

The proposed method described in the previous 
section was applied experimentally to diagnose the 
paper-slip transport portion (hereafter called the 
“transporter”) of an actual machine. 

The operation of such a transporter during its 
processing of a slip proceeds in a prescribed sequence, 
and its acoustic emissions are thus intermittent. 
During mechanism initialization, operation in the 
constituent regions of the transporter proceeds in the 
order determined by an operation verification program. 
In the evaluation, the acoustic emissions during that 
time were subjected to a 1/6 octave bandpass filter that 
passes only 10 kHz, and an envelope was then 
obtained by squared detection of the resulting output 
signal. The frequency of 10 kHz was chosen because 
transporter abnormality is generally most conspicuous 
at that frequency and 1/6 octave attenuation was used 
to enable accurate acquisition of the changes in the 
shape of the waveform. The output signal was 
sampled at a sampling rate of 1 ms to obtain the 
time-series data. 

In the proposed method, diagnosis of the state of 
each region within the transporter is performed on the 
basis of the waveforms of the operating sounds 
acquired from it in the above-described manner. It is 
first necessary, however, to establish a standard value 
as the “error limit”, to allow for normal variations 
among products in a given product line that result in 
differences among their acoustic data and thus their 
waveform peak shapes and widths. For this purpose, 
we measured the acoustic emissions of 84 transporters 
of the same model during actual operation and 

determined the resulting error frequency distribution. 
The term “error” here refers to the divergence between 
the data from a normally operating transporter and the 
data from the others. Figure 9 shows the resulting data 
distribution. The value shown by statistical 
calculations to be equivalent to a 97% degree of 
certainty was taken as the standard value. A feature 
extraction filter having 8=σ  and a width of 33 
( )16=a  was used throughout.  

Figure 10 shows typical results of the experimental 
diagnoses by the proposed method for abnormality 
detection and Fig. 11 shows results for normal 
operation. The abnormality in Fig. 10 occurred during 
paper slip insertion when the paper-slip push plate 
came into contact with a guide. In the upper half of 
this figure, (a) and (b) show the standard acoustic data 
and the acoustic data obtained during the mechanism 
inspection, respectively. The lower half shows the 
results obtained by the proposed diagnostic method in 
the vector correspondence between the two vector 
series and in dissimilarities between corresponding 
vectors as shown by the bar graph. A symptom of 
abnormality is indicated by the circled peak shape in 
Fig. 10(b), which is absent in Fig. 10(a). In the 
diagnosis, the dissimilarity in peak shape in the circled 
portion clearly exceeds the error limit, thus 
demonstrating the detection of an abnormality. 
Variations in peak shape can also be observed prior to 
the circled peak shape, but these represent acoustic 
emissions just before the start of operation in this 
region and correspond to ordinary acoustic 
fluctuations during normal operation. Their 
dissimilarities, as shown in the bar graph, are smaller 
than the differences in peak shape that appear in the 
vector series, due to the use of the method described in 
Section 2.5 for calculating the dissimilarity. Thus, 
these results demonstrate the ability of this method for 
strong representation of vector slope. In contrast to Fig. 
10, Fig. 11 shows no difference such as that existing 
between the circled portions in (a) and (b) of Fig. 10 or 
any conspicuous dissimilarity such as that in the bar 
graph in Fig. 10. This demonstrates the ability to 
detect abnormalities by establishing a standard value. 

The proposed method has been applied to the 
development of a small, practical acoustic diagnosis 
system containing a digital signal processor (DSP) for 
rapid performance. The DSP is a single-chip 
microprocessor specifically designed to process 
time-series data and other measured values. The 
system consists of a microphone for acoustic data 
acquisition and the main unit, which includes a 
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diagnostic results display and utilizes memory cards 
that are particularly convenient for storing the 
necessary data relating to standard vector series and 
can thus be selected for acoustic diagnosis of different 
mechanism models and types. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 9  Error frequency distribution by 

84-mechanisms in normal cases  
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 10 Diagnosis result in the case of fault 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11 Diagnosis result in the case of ordinary 
 
 
4  Conclusions 

In this report, we have proposed a technique for 
diagnosing abnormalities in machines by utilizing their 
intermittent, episodic sound emissions. We have also 
described the experimental confirmation of its 
practicality and effectiveness in which the paper-slip 
transport region of an actual machine was diagnosed. 

This technique includes vector approximation of 
data-series waveforms, thus eliminating the inordinate 
processing volume that would be required for acoustic 
data in the form of raw time-series data and extraction 
of feature points by a polynomial expansion in which 
the center of balance is obtained by determining the 
relevant expansion coefficient. The center of balance in 
an interval of positive or negative value is near its 
center of curvature, and is thus taken as the time of the 
feature point, as described in this report. 

It is also necessary to locate the region of the 
mechanism that is the target of diagnosis despite the 
occurrence of departures from the time of intermittent 
sound emission that would apply under the operational 
sequence prescribed for the various regions, due to the 
particular state then existing in each region. This 
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problem of operational asynchronicity, which up to 
now has posed the greatest impediment to practical 
acoustic diagnosis of intermittent sound, is eliminated 
by the proposed method by taking the polygonal 
approximation of the waveforms of acoustic data 
during normal operation and during inspection and 
applying DP matching to collate the two waveform 
approximations, thereby enabling absorption of the 
asyncronicities. 

We have also described the results of experimental 
diagnosis of a target region within an actual paper-slip 
transporter, which confirmed that the technique is 
effective for acoustic diagnosis. Its facilitation of 
high-speed calculations with a small memory capacity 
has enabled the development of a compact diagnostic 
system containing a single-chip DSP. 

In further studies, we intend to investigate its 
application to other units and to other types of 
mechanisms. 
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