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Abstract: The task of diagnosis is to find an explanation for a set of observations and – in the case of prognosis 
–  to  forecast  the  course  of  events.  Diagnosis  can  be  broken  down  into  anomaly  detection  and  failure 
identification,  depending  on  the  desired  granularity  of  information  required.  Prognosis  is  concerned  with 
incipient failure detection, margin prediction, or overall performance prediction. The latter can be prediction of 
efficiency, current system status, etc. The outcome of diagnosis and prognosis processes drives planning and 
execution. 
Fault isolation task can only be realized if the fault to be isolated has been previously taken into account in the 
model. There are different approaches for the design of diagnostic observers: the geometric methods, algebraic 
methods, spectral theory-based methods and frequency domain solutions. 
In  our  paper  a  two-step  procedure  is  commonly  employed  for  data-driven  fault  detection.  A  model  that 
represents the normal operation conditions is first developed; then fault detection is carried out according to the 
residual information or according the differences in the quality parameters of the transient process.
The data-based models, usually black-box models, lie in the core of a modular diagnosis system concept which 
has been chosen as separate fault detection systems. Each of these systems is handling only partial information 
on the process. This is similar to different persons analyzing the same situation with different methods and/or 
different sources of information. 
In the paper are presented the studied industrial mill fan, models of the studied systems and corresponding 
controller  design  by  implementing  conventional  and  fuzzy  logic-based  approaches.  Simulation  results  – 
transient processes in the closed loop are implemented for the knowledge-based fault detection and prognosis.

Key-Words:  Knowledge-based  Fault  Detection,  Fault  Diagnostic,  Fault  prognosis,  Mill  fan,  Fuzzy  Logic 
Controller design

1 Introduction
The mill fans are a main part of the fuel preparation 
in the coal fired power plants. They are a part of the 
power  units’  equipment  which  is  most  often 
repaired due to intensive erosion of the wheel blades 
in  the  grinding  of  low-calorific  lignite  coal  with 
high percentage of dust.  The possibility to predict 
eventual damage or wearing out without switching 
off the device is significant for providing faultless 
and  reliable  work  avoiding  the  losses  caused  by 
planned maintenance [16].

The mill fans are used to mill, dry and feed the 
coal to the burners of the furnace chamber. They are 
together milling and transporting devices. Mill fans 
are most often used for power plants’ burning brown 
and  lignite  coal.  The  mill  fans  are  of  critical 
importance  for  the  automation  of  the  power  unit 
supply, so their technical state is an object of strict 
monitoring, repair and on-line duty according to the 

operative dispatcher schedule. The control range of 
the mill  fan is small,  therefore the primary power 
control and especially the secondary power control 
is realized by stopping and starting some of the mill 
fans. The principal graph of a MF is shown in Fig. 1 
and in detail is described in paper [14].  

In the presented paper we have chosen to analyze 
a  mill  fan  device  from  Maritsa  East  2  Thermal 
Power  Plant  (TPP).  After  reconstructions  and 
modernizations installed capacity in this TPP at the 
moment reaches 1556 MW as in the end of 2009 
block 6 was cut off for the purpose of modernization 
and increasing its capacity to 230 MW. The Maritsa 
East 2 TPP being the largest thermal power plant on 
the  Balkan Peninsula  and the  choice  of  the  given 
power  plant  is  not  occasional.  There  are  8  power 
units in the complex - four units of 175MW and four 
units  of  210MW each.  The  boiler,  which  milling 
system  is  studied,  is  a  Benson  type  once-though 
sub-critical  boiler.  There are four mills  per boiler, 
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[16]. Each mill fan system has four radial bearings – 
two in the mill and two in the motor.
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Fig.  1.  Structure  scheme,  where  1  − Row  fuel 
bunker, 2 − Row fuel feeder, 3 − Controller of row 
fuel feeder, 4 − Upper side of the furnace chamber, 
5 − Gas intake shaft, 6 − Added cold air, 7 − Mill 
fan, 8  − Electric motor, 9  − Separator, 10  − Dust 
concentrator,  11  − Hot secondary air,  12  − Main 
burners, 13 − Discharge burner, 14 − Synchronized 
valves of discharge burners,  af − Temperature of 
air-fuel  mixture,  gis − Temperature  of  intake 
drying gases,  V − Vibration,  е − Relative electric 
energy consumption,  B − Throughput capacity of 
fuel,  GCA − Flow  rate  of  added  cold  air,  nd − 
Position of discharge duct valve,  W

LQ  − Low fuel 
caloricity of working mass.

In  general  mill  fans  are  large  centrifugal  fans 
which suck flue gases with temperature around 800-
1000°C from the top of the furnace chamber. In the 
same  pipe  the  coal  is  feed,  thus  diminishing  the 
drying agent temperature and drying the coal prior 
entering the fan. The coal is being milled by the fast 
rotating rotor of the fan and turn into coal dust. This 
dust  is  transferred  to  separator  which  returns  the 
bigger  particles  to  the  fan.  The  separator  can  be 
tuned for a desired dust granulometric size. One of 
the  most  important  parameters  to  control  is  the 
discharge temperature  of  the  dust-air  mixture.  For 
the considered mill-fan it  should be between 145-

195°C. Lower than 145  °C may cause clogging of 
the mill and higher than 195°C may cause the dust to 
be  fired  in  the  ducts  prior  the  burners.  This 
temperature is also a measurement for the load of 
the mill. The lower the temperature the higher the 
load is – more coal is fed to the mill. The part which 
suffers the most and should be taken care of is the 
rotor of the mill fan. Because of the abrasive effect 
of the coal it wears out and should be repaired by 
welding to add more metal to the worn out blades.

In spite of the constructive measures to use steels 
with high resistance index in critical  parts of MF, 
their interval between two successive repairs equals 
to 2-2.5 months. The MF are of critical importance 
for the automation of the power-unit (PU) supply, so 
their technical state is an object of strict monitoring, 
repair  and on-line duty according to the operative 
dispatcher time-table. The control range of mill fan 
is  small,  therefore  the  primary  power  control  and 
especially  the secondary power control  is  realized 
by stopping and starting some of the mill fan. Out of 
totally 8 grinding systems (two on a wall) in the 210 
MW  mono-blocks  in  the  Maritsa  East  2  thermal 
power plant, 5-7 ones usually operate, 1 is ready and 
one/two  of  them  are  under  repair.  In  this 
presentation the object of interest comprise fan MF 
with a horizontal axis of the operating wheel.

All  the  data  used  in  the  present  research  are 
obtained from the Distributed Control System (DCS) 
historian  system.  The DCS installed  on  the  site  is 
Honeywell  Experion R301 Process. This is  a  cost-
effective open control and safety system that expands 
the  role  of  distributed  control.  It  addresses  critical 
manufacturing  objectives  to  facilitate  sharing 
knowledge  and  managing  workflow.  Experion 
provides a safe, robust,  scalable, plant-wide system 
with unprecedented connectivity through all levels of 
the  plant  as  illustrated.  The  Experion  unified 
architecture combines DCS functionality and a plant-
wide infrastructure that unifies business, process, and 
asset  management  to:  facilitate  knowledge  capture, 
promote knowledge sharing, optimize work processes 
and accelerate improvement and innovation.

The traditional approaches to fault detection and 
diagnosis (FDD) involve the limit checking of some 
variables  or  the  application  of  redundant  sensors. 
More advanced approaches are based on data-driven 
multi-factorial processes monitoring, mostly used in 
chemical  and  manufacturing  industries  [3,6,14-
16,26,32,35-40,42,43]. 

The  data-based  models,  usually  black-box 
models,  lie  in  the  core  of  a  modular  diagnosis 
system concept which has been chosen as separate 
fault  detection  systems.  Each  of  these  systems  is 
handling  only  partial  information  on  the  process. 

WSEAS TRANSACTIONS on SYSTEMS Lyubka Doukovska, Svetla Vassileva

E-ISSN: 2224-2678 399 Issue 8, Volume 12, August 2013



This  is  similar  to  different  persons  analyzing  the 
same  situation  with  different  methods  and/or 
different sources of information [26]. 

Other  methods  use  comparison  of  the  actual 
plant  behavior  to  that  expected  on  the  basis  of  a 
mathematical  model.  These  methods  implements 
correctly  trained  ANN-dynamic  model  of  the 
detected system. Often, further insights is required 
as to the explicit behavior of the model involved and 
is  here  that  fuzzy  and  hybrid  intelligent  methods 
come into their own in FDD application [24].

In our paper a two-step procedure is commonly 
employed for data-driven fault  detection. A model 
that  represents  the  normal  operation  conditions  is 
first developed in part 3; then controller design and 
comparison  is  presented  in  part  5  and  after  that 
intelligent fault detection system is presented in part 
6  by  the  structure,  functions  and  some  results, 
obtained according to the residual information [18] 
or  differences  in  the  quality  parameters  of  the 
transient process.

2 Specific Features of the Mill Fan 
System Process Control 

The mill fans are basic part of the boiler and have a 
direct  influence  on  its  behavior  as  a  part  of  the 
power  grid.  Due  to  the  specifics  of  the  milling 
system it is always difficult to develop an optimal 
and  effective  control  strategy.  It  is  a  system 
containing few similar devices with a big number of 
mutual links, so each device influences the dynamic 
behavior of the others.

Worldwide  mill  fans  are  not  commonly  used 
because  there  are  more  efficient  ways  for  pre-
paration of high quality coal – roller, hammer, ball 
mills, which are studied in details and there are a lot 
of publications on the topic. At the other hand low 
caloric lignite coal happen to be effectively milled 
only in mills of centrifugal fan type, but unfortun-
ately there are too less studies related to modeling of 
these devices. The coal mined in Maritsa East basin 
has too variable characteristics - different content of 
ash  and  non  burnable  particles.  The  common 
practice  shows that  there  is  a  correlation between 
the  moisture  and  ash  content,  which  allows  the 
quality  disturbance  to  be  a  function  of  a  single 
variable only – the moisture [33].

The  classic  papers  [2,4,5,43]  are  further 
developed  in  [1,4]  where  analytical  approach  in 
description of the separate elements is used creating 
a very complicated structure. In papers [41,42] are 
included  more  than  70  separate  elements  each 
containing three or higher number of parameters. It 

is  plain  to  see  that  experimental  approach  to 
estimate more than 200 constants is not an easy task 
and  due  to  this  the  analytical  approach  is  not 
popular.  Recently  in  papers  [9,12]  instead  of 
analytical,  an  experimental  approach  for  mill-fans 
dynamic characteristics estimation is proposed. The 
paper  [9]  shows  that  depending  on  the  current 
condition  the  mill-fan  can  have  up  to  300% 
deviation in its dynamic behavior, so there is a huge 
parameter ambiguity area which makes the control 
more difficult.

The  coal  mined  in  Maritsa  East  basin  has  too 
variable characteristics - different content of ash and 
non burnable particles. The common practice shows 
that there is a correlation between the moisture and 
ash content, which allows the quality disturbance to 
be a function of a single variable only – the moisture 
[33]. 

The lack of  serious  studies  on mill-fan system 
modeling  leads  to  a  significant  in  volume 
experimental  research  for  obtaining  input 
information  necessary  for  designing  an  efficient 
control  strategy.  This  has  to  be  done  during  the 
normal operation of the mills in their full load range 
and during the whole period - just after maintenance 
and before it.

Among  the  variety  of  techniques  and  methods 
available in the contemporary control achievements, 
for  that  particular  case  the  most  suitable  are  the 
multi-connected  control  system  approaches  in 
conditions  of  nonlinearity  and  high  level  of 
ambiguity. Belonging to this group on the first place 
are  the  methods  for  controlling  similar  multi-
connected objects [23]. On the second place is the 
multi-connected diagonal dominant control. 

3 Description of the Experimental
Set-up and Measurements 

Mill-fan system control is a kind of a task which is 
determined by the specifics of the separate devices 
which build it. Presented paper contains the results 
of the analysis of two control techniques. In the first 
one the interconnection are not taken into account. 
In this case we just determine the set point values 
for the temperature of the coal air mixture after the 
mill. The responses of each mill are shown on the 
next figure. 

As it  is  shown on the figure the responses for 
each mill  are  different,  which is  due to:  different 
running time of each mill  rotor;  disturbances over 
the control channel – different coal moisture.

Another input disturbance is the torch center in 
the furnace chamber. If it is not in the middle the 
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temperature of the drying agent for the mills will be 
different thus the mills having higher drying agent 
temperature will have a bigger milling capacity. At 
the other hand having the torch close to the walls 
leads  to  slag  formation  which  is  lead  to  a  plug 
formed  on  the  gas  shaft  and  thus  disabling  the 
milling process of the given mill. 

Fig. 2. Responses, 1 − Set points, 2 − process values 
– coal air mixture temperature, 3 − Estimated initial 
coal caloricity, 4  − Coal quantity – output of each 
mill controller.

As it  is  shown on the  figure  the  responses  for 
each  mill  are  different,  which  is  due  to:  different 
running time of each mill  rotor;  disturbances over 
the control channel – different coal moisture.

Another input disturbance is the torch center in 
the furnace chamber. If it is not in the middle the 
temperature of the drying agent for the mills will be 
different thus the mills having higher drying agent 
temperature will have a bigger milling capacity. At 
the other hand having the torch close to the walls 
leads  to  slag  formation  which  is  lead  to  a  plug 
formed  on  the  gas  shaft  and  thus  disabling  the 
milling process of the given mill. 

The  torch  position  in  the  furnace  chamber  is 
shown on the next figure.  In this case there is no 
danger of slag formation.

The second approach is based on similar multi-
connected  objects  control.  In  this  strategy  the 
systems is considered as and aggregation of several 
equal  separate  systems  connected  with  links 
between  each  other.  So  the  main  feature  that 
distinguishes these systems of the multi-connected 
ones is that the main control channels are the same. 
This  happens  when  we  have  same  aggregates 
working in parallel, but having different parameters.

The links between the separate systems can act 
inside  the  whole  object,  as  well  as  in  the  multi-

connected controller. In the first case they express 
the  existing  mutual  influence  among  the  separate 
systems.  In  the  second  case  they  coordinate  the 
performance of the separate aggregates. 

Fig. 3. Torch position in the furnace chamber

The  structure  of  the  milling  system allows  for 
considering it as an aggregation of multi-connected 
similar systems. Based on Sobolev’s results [23] in 
the present paper the system of 8 mills is presented 
as 4 groups, each containing 2 mills. Each group is 
presented  by  the  transfer  function  of  each  2 
diametrically opposite mills. 

The responses obtained using the reduced models 
are shown on the next figure.

Fig. 4. Responses, 1  − Set points, 2  − process 
values  –  coal  air  mixture  temperature,  3  − 
Estimated  initial  coal  caloricity,  4  − Coal 
quantity – output of each mill controller.

The  torch  position  in  the  furnace  chamber  is 
shown on the next figure.
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The difference in the responses using the whole 
and the reduced models in insignificant and can be 
ignored. The torch position using the reduced model 
deviate about 0.25 m compared to the whole model, 
which also can be ignored. 

Fig. 5. Torch position in the furnace chamber

Based  on  the  above,  we  can  accept  that  the 
reduced model is very close the real one and can be 
successfully used to control the mill system. 

4 Intelligent Mill Fan Control 
Systems 

In order to achieve high performance and efficiency 
of coal-fired power plants, it is highly important to 
control  the  coal  flow into the boiler  in  the  power 
plant.  This means suppression of disturbances and 
forces the coal mill to deliver the required coal flow, 
as well as monitor the coal mill in order to detect 
faults in the coal mill when they emerge. This paper 
deals with the second objective. Based on a simple 
dynamic model of the energy balance a residual is 
formed for the coal mill. An optimal unknown input 
observer is designed to estimate this residual.  The 
estimated residual is following tested by measured 
data  of  a  fault  in  a  coal  mill,  it  can  hereby  be 
concluded  that  this  residual  is  very  useful  for 
detecting faults in the coal mill, [27].

Stochastic  distribution  control  systems  (SDC 
systems), defined in Wang [6], aims to control the 
shape  of  the  output  probability  density  functions 
(PDFs)  for  non-Gaussian  and  dynamic  stochastic 
systems.  This  differs  from  traditional  stochastic 
control where only the output mean and variance are 
considered. Specific feature of the recent stochastic 
distribution control methodologies is that the control 
objective is concerned with the PDF and in addition 
the driven information for feedback control is also 
characterized by PDF or the statistical information. 

The objective of  FDD is to use the input  and the 
output PDF to detect and diagnose the faults.

Process Equipment Service can be optimized to 
prevent  failures  and  maximize  uptime  while 
avoiding  superfluous  maintenance.  Some  of  these 
objectives can be accomplished by using tools that 
measure  the  system  state  and  indicate  arising 
failures.  Such  tools  ask  for  high  level  of 
sophistication  and  incorporate  monitoring,  fault 
detection,  decision  making,  possible  preventive  or 
corrective  actions  and  execution  monitoring  [8]. 
Support service of equipment requires generating of 
models  that  can  analyze  the  equipment  data, 
interpreting their past behavior and predicting their 
future  one.  These  problems  pose  a  challenge  to 
traditional  modeling  techniques  and  represent  a 
great  opportunity  for  the  application  of  AI-based 
methodologies. 

Because  of  the  complexity  of  these  tasks,  AI-
methods have been forced in the implementation of 
fault detection and isolation tools. Some application 
of AI-based techniques in support of service tasks, 
such  as  anomaly  detection  and  identification, 
diagnostics,  prognostics,  estimation  and  control, 
have been reported in [25,26,31]. 

Approaches based on regression or AI-models of 
input-output  relations  of  multifactor  objects  are 
nowadays very popular. For example, a correlation 
between  mill  energy  consumption  and  mill 
performance  characteristics  may  help  in  the 
prediction of mill malfunctions, such as pulverized 
coal too coarse or too fine, grinding pieces wearing 
higher than expected and bad adjustment of spring 
loading  system  [7].  In  coal  flow–air  flow 
coordinates,  the  operating  window  represents  the 
mill  performance  limits,  which  can  vary  with 
heating  value  and  composition  of  raw  coal, 
temperature  and  relative  humidity  of  ambient  air, 
leakage  in  air-gas  pre-heaters  and  number  of 
operating  mills.  The  diagnosis  system  checks  the 
current  coal  flow-air  flow  point  of  each  mill, 
therefore allowing an effective evaluation of present 
conditions, present drifts and future problems.
During  the  last  two  years  are  published  series  of 
papers that offer alternative approaches to mill fan 
system  diagnostics  and  predictive  maintenance, 
which used different intelligent approaches. In paper 
[28], fuzzy rule-based classifier of a mill fan system 
working regimes was created based on analysis of 
data available from its control system. Analysis of 
the available on-line monitoring data from the mill 
fan  system  is  revealed  the  tendencies  of  key 
observed variables are presented in [11]. In [38] is 
studied  online  monitoring  system  for  predictive 
maintenance based on sensor automated inputs. The 
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main sensor information is based on the vibration of 
the nearest to the mill rotor bearing block. In paper 
[29] the aim is to compare newly developed kind of 
Recurrent  Neural  Networks  with  historical  Elman 
Recurrent  Neural  Networks  architecture.  Two 
Sugeno-type  fuzzy  rule  bases  –  one  with  linear 
function  of  input  mill  fan  variables  and  one  with 
constant consecutive part of the rules are trained in 
[28]. Several types of intelligent mill fan diagnostics 
approaches with different structures are considered 
in [20]. In paper [18], it is described initial results 
on  applying  the  Case  Based  Reasoning  (CBR) 
approach for  intelligent  diagnostic  of  the  mill  fan 
working capacity using its  vibration state.  Also in 
paper [17], the problem of using the CBR designed 
to operate in field of technical mill fan diagnostics is 
considered.  The  obtained  results  may  be 
successfully applied for development of diagnostics 
model aimed at fault mill fan system detection. 

5 Mill fan controller design

5.1. Validating the Estimated Model to 
Experimental Output

The step response of the model estimated may also 
be compared with a  step  response that  is  directly 
computed from the data in a  non-parametric way. 
The  simplest  way  to  get  started  on  a  parametric 
estimation  routine  is  to  build  a  state-space  model 
where the model-order is automatically determined, 
using a prediction error method.

The connected in series closed mill  fan control 
system  and  steam  generating  system  are  approx-
imated with the following transfer function:

( )
( ) rTp

k
pW

1+
=

where: 4,4.105,/7.0 === rsTkgkWk
To  determine  its  parameters  optimization 

procedure  based  on  the  Nelder-Mead  simplex 
algorithm is used, [28].

The model structure of the mill fan systems is as 
follows:

System 1:

( )( )( )
τse

sss
sW −

+++
=

2001601301

7.0
)( ,

System 2:

( )
τsK e

sT
sW −

+
= .

1
)(

1

where τ = 0 [ms], s-Laplace transformation symbol, 
time constants of System 1 are T1 = 30, T2 = 60 and 
T3 = 200 [s].

5.2. Conventional controller design 
Parameters  of  controller  are  determined  by  the 
execution  of  procedure  for  optimal  tuning  with 
implementation of four known methods of Naslin, 
Optimal  magnitude,  Graham-Lathrop  and 
Butterworth.  The  aim  of  optimization  process  is 
achieving a minimal diversion from the given value. 
Obtained parameters of the controller  for the both 
models  are  shown  in  Table  1  and  Table  2. 
Corresponding transient processes for System 1 with 
PID-controllers  according  Naslin  and  Optimal 
magnitude are shown in Fig.6. 

Table 1. Controllers design about the System 1 

№
Design 
Method

sr
s

r
rsR o .2

1
)( ++= 





++= sT

sT
PsR d

i

1
1)(

1 Naslin
r0 = 9.2669

r1 = 7.3532E-002
r2 = 363.57

P = 9.2669
Ti = 126.0266
Td = 39.233

2
Graham-
Lathrop

r0 = 23.5173
r1 = 0.24198

r2 = 785.1313

P = 23.5173
Ti = 97.1872
Td = 33.3853

3
Optimal 

magnitude

r0 = 7.4417
r1 = 2.8124E-002

r2 = 363.5714

P = 7.4417
Ti = 264.6024
Td = 48.8558

4

Butter-
w
or
th

r0 = 11.2289
r1 = 0.10298

r2 = 368.17419

P = 11.2289
Ti = 109.038
Td = 32.7882

Table 2. Controllers design about the System 2

№
Design 
Method

sr
s

r
rsR o .2

1
)( ++= 





++= sT

sT
PsR d

i

1
1)(

1 Naslin
r0 = 1

r1 = 1.9585E-002
r2 = 0

P = 1
Ti = 51.0588

Td = 0

2
Graham-
Lathrop

r0 = 19.6514
r1 = 1.5057

r2 = 0

P = 19.65
Ti = 13.051

Td = 0

3

Butter-
w
or
th

r0 = 19.6514
r1 = 1.5057

r2 = 0

P = 19.65
Ti = 13.051

Td = 0
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Fig.6.  Simulation  results:  Transient  processes  for 
System 1 with PID-controllers designed according 
Naslin and Optimal magnitude

5.3. Fuzzy logic controller design
Fuzzy  logic control  is  a  control  strategy based on 
linguistic  knowledge processing [23,  34,36,37,40]. 
In  a  fuzzy  controller  (Fig.7a)  the  data  passes 
through  a  preprocessing  block,  a  controller  (with 
fuzzyfier,  inference  engine,  rule  base  and 
defuzzyfier),  and  a  post-processing  block. 
Preprocessing  consists  of  a  linear  or  non-linear 
scaling  as  well  as  a  quantization  in  case  the 
membership  functions  are  discretised;  if  not,  the 
membership of the input can just be looked up in an 
appropriate function. When designing the rule base, 
the designer needs to consider the number of term 
sets,  their  shape,  and  their  overlap.  The  rules 
themselves  must  be  determined  by  the  designer, 
unless more advanced means like self-organization 
or neural networks are available. There is a choice 
between  multiplication  and  minimum  in  the 
activation.  There  is  also  a  choice  regarding 
defuzzification; centre of gravity (COG) is probably 
most widely used. The post-processing consists in a 
scaling  of  the  output.  In  case  the  controller  is 
incremental,  post-processing  also  includes 
integration. The following is  a checklist  of design 
choices that have to be made:
 Rule Base related choices. Number of inputs and 
outputs, universes, continuous/discrete, the number 
of  membership functions,  their  overlap and width, 
singleton output;
 Inference  Engine  related  choices.  Connectives, 
modifiers,  activation  operation,  aggregation 
operation, and accumulation operation.
 Defuzzyfication  method.  COG,  COGS,  BOA, 
MOM, LM, and RM.
 Pre-  and Post-processing.  Scaling,  gain factors, 
quantization, and sampling time.

Some of these items must always be considered 
others may not play a role in the particular design.

The input-output mappings provide an intuitive 
insight which may not be relevant from a theoretical 
viewpoint, but in practice they are well worth using. 

Fig. 7a) Structure of fuzzy logic controller

There are at least four main sources for finding 
control rules:
 Expert  experience  and  control  engineering 
knowledge.  The  most  common  approach  to 
establishing such a collection of rules of thumb is to 
question  experts  or  operators  using  a  carefully 
organized questionnaire.
 Based on the  operators’  control  actions.  Fuzzy 
If-Then rules can be deduced from observations of 
an  operator’s  control  actions  or  a  log  book.  The 
rules express input-output relationships.
 Based  on  a  fuzzy  model  of  the  process.  A 
linguistic Rule Base may be viewed as an inverse 
model  of  the  controlled  process.  Thus  the  fuzzy 
control rules might be obtained by inverting a fuzzy 
model  of  the process.  This method is restricted to 
relatively  low  order  systems,  but  it  provides  an 
explicit solution assuming that fuzzy models of the 
open and closed loop systems are available. Another 
approach  is  fuzzy  identification  or  fuzzy  model-
based control.
 Based on learning. The self-organizing controller 
is  an  example  of  a  controller  that  finds  the  rules 
itself. Neural networks are another possibility.

There  is  no  design  procedure  in  fuzzy  control 
such  as  root-locus  design,  frequency  response 
design, pole placement design, or stability margins, 
because the rules are often nonlinear. 

Therefore we will settle for describing the basic 
components  and  functions  of  fuzzy  controllers,  in 
order  to  recognize  and  understand  the  various 
options in commercial software packages for fuzzy 
controller design.

In  our  case  a  PI-FLC  was  designed.  For  this 
reason in Fig. 7b) a nonlinear PI-like fuzzy control 
rule base is  depicted.  The table shows the rate of 
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change in control action as a function of the error 
and  its  derivative.  The  linguistic  values  are  NL, 
negative  large,  NS,  negative  small,  ZE,  zero,  PS, 
positive small, PL, positive large, which are being 
represented by fuzzy sets. 

Fig. 7b) PI-like fuzzy control rules

In  our  case  different  working  regimes  are 
distinguished  based  on  the  observed  changes  of 
trends  of  vibrations,  dust-air  mixture  temperature, 
load, and control action. Also in our research study 
used  membership  functions  are  simple  triangular 
and singletons. In the first step the fuzzifier converts 
numerical information into a fuzzy set that the fuzzy 
inference mechanism can take as input. Uncertainty 
in the numerical information (such as measurement 
noise)  can  naturally  be  represented.  In  Fig.7c)  is 
shown  fuzzy  classification  of  observed  variables 
with constants in rules consecutive parts [20].

Fig.7c)  Fuzzy  classification  of  observed  variables 
with constants in rules consecutive parts

The control rules in the rule base relate operating 
conditions (or the state) to control actions, such as 
rule IF  e is positive small (PS) AND ė is negative 
large (NL) THEN u is zero (Z). 

The  premise  part  of  such  control  rules 
corresponds to a set of states that can be viewed as 
an operating regime,  and the  knowledge base  can 

often be visualised and interpreted as being based on 
a fuzzy partitioning of the system's operating range.

The inference mechanism combines the fuzzy set 
representation  of  the  measurements  with  the  rule 
base,  and  infers  a  fuzzy  set  representation  of  the 
control  action.  The  defuzzification  converts  this 
fuzzy  set  into  numerical  information  such  as  a 
command to the actuator. 

In Fig.7d) is  presented optimal  PI-FLC surface 
regarding error e and change of the error ∆e.

Fig.7d) optimal PI-FLC surface regarding error e 
and change of the error ∆e

Simulation results  - the transient characteristics 
of  the  system  by implementing designed  FLC for 
the  output  variable  control  of  the  closed  loop for 
preliminary  determined  overregulation  of  5%  and 
20% are depicted in Fig.8.

Fig.8. Simulation  investigations:  Transient 
characteristics of  the  system by using  Fuzzy Logic 
Controllers  for  5%  overregulation  (left)  and  20% 
overregulation (right)

Methods from linear and nonlinear control theory 
can  be  adopted  for  the  Fuzzy  Knowledge-Based 
Controller (FKBC) design if a good crisp model of 
the process exists. System of IF-THEN rules can be 
transformed into a non-linear transfer element with 
scaling factors in a crisp manner. Thus qualitative or 
symbolic  control  design  will  be  completed  by 
qualitative  (numerical)  design  phase.  This  way  a 
FKBS  can  be  identified  as  a  highly  specialized 
knowledge-based  system  for  performing  specific 
tasks for control of multifactor processes.
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6 Structure and Functions of Mill Fan 
Knowledge-based Fault Detection 
and Prognosis System (KBFDPS)

6.1. Structure and function of KBFDPS
KB-FDDP system architecture is presented in Fig.8.
The data from  the plant are preprocessed for Data 
Base  needs,  FNN-model  design  and  FDD.  After 
obtaining  necessary  information  in  Knowledge 
Base, Inference engine is deciding about the faults, 
Interpreter  sends  messages  about  it  and  fault  is 
eliminated  or  minimized  by  using  man-machine 
interface  and  manipulation  procedures,  which  can 
be selected from the KB manipulation in accordance 
with the detected fault.

6.2. Knowledge-Base Formation for Fault 
Symptoms Detection

The data-based models,  usually black-box models, 
lie  in  the  core  of  a  modular  diagnosis  system 
concept  which  has  been  chosen  as  separate  fault 
detection systems. Each of these systems is handling 
only  partial  information  on  the  process.  This  is 
similar  to  different  persons  analyzing  the  same 
situation  with  different  methods  and/or  different 
sources of information. 

Since  the  early  work  of  [8],  system  models 
common  in  control  theory,  which  represent  the 
dynamical behaviour between the system inputs and 
outputs (or states), have been taken for the design of 
FDI  systems, although  it  is  well  known,  that 
different  kinds  of  applications  require  different 
types  of  models.  For  control system analysis  and 
design,  the  system  model  has  to  represent  the 
dynamical input-output behaviour of the system and 
should be as simple as possible. Hence, the model 
used  is  often  simplified or linearized  by  ignoring 
many of the attributes of the physical nature of the 
system  and  only  retaining  the attributes  that  are 
deemed relevant for the behaviour of the resulting 
control  system.  Not  so  in  FDI:  here one  needs  a 
representative  model  of  high fidelity  and in  some 
cases high preciseness which is in general of higher 
complexity  than  the  one  for  control.  But  under 
certain circumstances, models for FDI can also be 
simpler than those for control, which has often been 
overseen in the FDI society [34].

6.3. Inference Engine
Fault isolation task can only be realized if the fault 
to be isolated has been previously taken into account 
in the model. There are different approaches for the 
design  of  diagnostic  observers:  the  geometric 
methods,  algebraic  methods,  spectral  theory-based 
methods and frequency domain solutions. 

In our paper a two-step procedure is commonly 
employed for data-driven fault  detection. A model 
that  represents  the  normal  operation  conditions  is 
first  developed;  then fault  detection is  carried out 
according to the residual information or according 
the  differences  in  the  quality  parameters  of  the 
transient process.

Fig. 8. KB-FDDP system architecture

Obtained results are demonstrated in Fig.9.

Fig.9. Simulation results: Training data matching

7 Results and Discussion
The  knowledge-based  controller’s  application  is  a 
suitable approach for complicated nonlinear plants 
with high level of uncertainty, where mathematical 
models  building  are  difficult  or  impossible.  The 
traditional algorithmic approaches ignore significant 
amount  of  information  necessary  for  the  control. 
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This ends up with very big efforts  for  tuning and 
adapting the originally accepted algorithms for the 
specific cases. 

The  intelligent  control  rationally  makes  use  of 
the  complete  available  information  –  basic  and 
auxiliary, obtained by measuring, literature sources 
or  heuristic.  The  auxiliary  information  related  to 
specific plant features may be obtained during the 
control strategy design. One of the best approaches 
is  to  combine conventional  and intelligent  control 
algorithms.
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