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Abstract: - A new fault tolerant model predictive control (FTMPC) strategy is proposed for three-phase 
magnetically isotropic permanent magnet synchronous motor (PMSM) with complete loss of one phase (LOP) 
or loss of one leg (LOL) of the inverter. The dynamic model of PMSM with LOP or LOL is derived in abc-
System. The principle of FTMPC is investigated, its predictive model for remaining two stator phase currents is 
established after LOP or LOL occurs, and the flux estimator based on current model is employed in order to 
calculate the stator flux & its corresponding torque. Extra-leg extra-switch inverter is used as power unit. The 
PI controller is put to use for regulating rotor speed and generating reference torque. Dynamic responses of 
healthy MPC and unhealthy FTMPC for PMSM systems are given to compare their performance via simulation 
and some analysis is presented. The simulation results show that the proposed FTMPC strategy not only allows 
for continuous and disturbance-free operation of the unhealthy PMSM with LOP or LOL but also preserves 
satisfactory torque and speed control. And then the effectiveness of the proposed schemes in this paper is 
demonstrated. 
 
 
Key-Words: - Fault tolerant control; Model predictive control; Permanent magnet synchronous motor; Motor 
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1 Introduction 
The electrical drive systems in electric vehicle,  
aerospace as well as other important fields must be 
required to be high reliable and safe. Due to a 
variety of complex factors, potential failures are 
often inevitable. Once the electric drive system is 
out of order, if repairs and maintenance cannot be 
completed on the spot, this will result in the system 
to stop working, may cause great financial losses, 
and even result in enormous human and property 
losses. Therefore, there is an urgent need to research 
fault control for electrical motor. 

One of the most common types of potential faults 
in electrical motor is the loss of one phase (LOP) of 
the motor, or alternatively, the loss of one leg of the 
inverter (LOL). If LOP or LOL happens suddenly, 
the corresponding phase is open-circuited, the drive 
system supply and load currents are significantly 
distorted and the load phase current in which the 
failure occurred has large zero periods resulting in a 

loss of torque control and in high pulsating 
unacceptably torques. Consequently, the drive 
system’s operation has to be interrupted [1, 2]. So it 
is indispensable to solve the problem such that 
motor system can be controlled to be disturbance-
free. 

As for the aforementioned fault, nowadays there 
are two modulation techniques, one being based-on 
hardware techniques and the other based-on 
software (i.e. control method). By means of some 
different approaches such as using  matrix converter 
structure[3,4], adding redundant switch [1,5-7], 
introducing phase-redundant topology [8-10], 
proposing cascaded two-level converter [11] as well 
as giving redundant converter[12,13], etc., the 
effective fault tolerant results have been achieved. 
However, these methods are less preferable in some 
applications because of their complicated hardware 
and high operation cost.  Therefore the fault tolerant 
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method using software with low-cost 
reconfiguration has been highly praising [14-17].  

Over the past years, as for unhealthy electrical 
motor, making use of field oriented control strategy 
(FOC) [18], the performance of  faulty electric drive 
systems can be maintained via controlling current 
[2,10,19-21]. Due to the inherent bandwidth of inner 
current loop, the dynamic response of FOC drive 
systems is limited. To improve the dynamic 
performance, direct torque control (DTC) has 
recently begun to be applied for unhealthy electrical 
motor [22-24].Compared to FOC, DTC directly 
manipulates the inverter’s output voltage vector, 
hence eliminates the inherent delay caused by 
current loops, then features comparatively good 
dynamic response. Despite the above merits, 
switching-table-based DTC presents some 
unavoidable drawbacks [25], such as high torque 
and flux ripples, variable switching frequency along 
with acoustic noise. 

Apart from FOC and DTC methods, model 
predictive torque control (MPTC) is an emerging 
control concept and is received significant attention 
from three-phase electrical drives community [26-
32], which adopts the principles of model predictive 
control (MPC) [33]. Compared with state-of the art 
schemes, such as DTC and FOC, MPTC achieves a 
reduction of the torque and flux ripples [34]. 
Furthermore, switching losses can be reduced [35].It 
is the abovementioned advantages of MPTC that 
motivates this paper.  

Permanent magnet synchronous motor (PMSM) 
drive is nowadays widely used in the industry 
applications due to their high efficiency and high 
power/torque density. For healthy three-phase 
PMSM inverter, Fig.1 is its topology. For unhealthy 
three-phase PMSM with LOP or LOL, there are 
mainly three solving schemes at present: the first is 
called the extra-leg split capacitor control strategy 
[2, 36], which adds a redundant switch to connect 
the source’s neutral to the load’s neutral. The 
second is known as split capacitor scheme for 
isolating the phase with a faulty switching device of 
motor drive system and connecting to the midpoint 
of DC link [37]. The disadvantage of 
aforementioned two reconfiguration topologies lies 
in that the maximum speed in the post-fault 
operation is half of its nominal value due to the 
applied voltage on the machine terminals is 
decreased to half of its original value. Then appears 
the third termed as extra-leg extra-switch (ELES) 
scheme shown in Fig.2. In the scheme, the added 
switch connects the motor neutral point to an extra 
inverter leg, which provides the current path during 
the fault operation.  

Based-on the third scheme, employing voltage & 
current model flux estimator, [22-24] discussed fault 
tolerant DTC for PM AC motor with one phase 
open-circuit fault. However, MPC has never been 
applied to fault tolerant control for electrical motor.  
Using the merits of MPC, this paper investigates 
fault tolerant control for PMSM. It will be shown 
that utilizing the method developed in this paper, the 
reliability and satisfactory performance can be 
achieved for the drive system under LOP or LOL 
operating condition.  

 

Sa

bS cSaS

Sb Sc

cVbVaV

 
     Fig. 1 Healthy three phase inverter   
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Fig.2 ELES three phase inverter 

 
The structure of the paper is as follows: 

modeling of PMSM with LOP or LOL is established 
in section two. In section three, the principle of 
FTMPC is described and its corresponding 
predictive model for remaining two stator phase 
currents is established, and the flux & torque 
estimator based on current model is given. The 
numerical simulation results & analysis and 
conclusion are reported in section four and five, 
respectively.    
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2 Dynamic Model of PMSM with LOP 
or LOL in abc-System 

In this paper, as for three-phase magnetically 
isotropic PMSM, schematic diagram of the motor-
inverter is shown in Fig. 2. In the event that any one 
phase is open-circuited or any one transistor fails 
open in the inverter, then switch K is on. In the 
following analysis, suppose phase a or its 
corresponding one leg in the inverter is off. In this 
case, the current in phase a suddenly drops to zero. 
Like the process of building the model [38] for 
healthy motor, modeling of unhealthy motor 
includes three equations. They are flux linkage, 
voltage and torque equations as follows.  
 
 
2.1 Stator flux linkage expression in abc-

system 
Suppose three-phase stator self-inductances La Lb 
and Lc are same, i.e. La=Lb=Lc=L and three-phase 
stator mutual-inductances Mab, Mbc and Mca are same, 
i.e. Mab=Mbc=Mca=M (neglecting stator self-
inductance’s and mutual-inductance’s second 
harmonics). And ib and ic are stator phase currents. 
When phase a is off, stator flux-linkages Ψsa, Ψsb 
and Ψsc produced only by the stator currents  in  
abc-system (that means three-phase stationary 
coordinate) are shown as in Fig. 3 and can be 
expressed as follows:  

 
Fig. 3 Flux-linkages of three phases produced by 

stator currents in abc-system 
 

ψ⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥ψ = ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥ψ⎣ ⎦ ⎣ ⎦
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b
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c
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Considering the rotor magnet, the stator flux-linkage 
vector in abc-system can be expressed as follows: 

cos
2cos( )
3

2cos( )
3

⎡ ⎤
⎢ ⎥ψ θ

ψ ψ⎡ ⎤ ⎡ ⎤ ⎢ ⎥π⎢ ⎥ ⎢ ⎥ ⎢ ⎥ψ = ψ + ψ θ −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ψ ψ ⎢ ⎥⎣ ⎦ ⎣ ⎦ π⎢ ⎥ψ θ +

⎣ ⎦

m r
a sa

b sb m r

c sc

m r

              (2) 

Where Ψa,Ψb and Ψc are resultant of stator flux-
linkages  produced both by the stator currents and 
by the rotor magnetic along a-axis, b-axis and c-axis, 
respectively. rθ  and mψ  are electrical angular rotor 
position with reference to phase a and permanent 
magnet flux, respectively. 

 
 

2.2 Stator voltage equation in abc-system 
Suppose that as soon as phase a is detected being off, 
switch K is on as shown in Fig.2. When phase a is 
off, the remaining stator phase voltage vector of 
PMSM is given by: 

0 d
0 d

bn b b b

cn c c c

v R i
v R i t

ψ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ψ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

             (3) 

Where Rb and Rc are stator phase resistances, vbn 
and vcn  stator phase voltages which are defined as 
follows 

               bn b n

cn c n

v V V
v V V

= −
= −

                                 (4) 

Vb and Vc in (4) are shown in Fig. 2. 

Substituting (2) into (3), the following expression 
can be obtained, 

0
0
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d 3
d 2sin( )

3d

bn b b

cn c c

b
m r r

c
m r r

v R i
v R i

i
L M t
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t

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
π⎡ ⎤ ⎡ ⎤ψ ω θ −⎢ ⎥ ⎢ ⎥⎡ ⎤

−⎢ ⎥ ⎢ ⎥⎢ ⎥ π⎣ ⎦ ⎢ ⎥ ⎢ ⎥ψ ω θ +⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

   (5) 

where ωr is rotor speed, the phase currents ib, ic and 
neutral line current in in Fig. 2 meet following 
mathematical relationship 

= +n b ci i i                             (6) 
Remark 1 :  Suppose that motor parameters, such 
as stator phase resistances, inductances, etc., are 
time-invariant in this paper.   
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Remark 2: Here it is necessary to mention of how 
to obtain phase inductance L and phase mutual 
inductance M. 

Suppose mutual inductance M  is one half of  
phase inductance L. Neglecting the second 
harmonics of stator self-inductance and mutual-
inductance, we have, 

     
1 3
2 2d qL L L M L L L= ≈ + = + =                 (7) 

Thus 

                       
2
3 dL L=                                         (8) 

 
 
2.3 Electromagnetic torque equation 
The electromagnetic torque equation of PMSM with 
LOP or LOL fault is as follows, 

d
d

r
e l m r fJ T T B T

t
ω

= − − ω −                 (9) 

where J, Te , Tl , Bm  and Tf  are respectively inertia 
of moment, electromagnetic torque, load torque, 
viscous friction coefficient and coulomb friction 
torque.  

Combination of the above-given flux-linkage 
vector equation, phase voltage vector equation and 
electromagnetic torque equation is the model for 
PMSM with LOP or LOL.   

 
 

3 Fault Tolerant MPC for PMSM with 
LOP or LOL 
The objective of FTMPC for PMSM is that when 
LOP or LOL happens, the motor control system not 
only is still stable, but also its speed and torque can 
be controlled to meet given requirements. The 
system in Fig.4 shows block diagram for 
implementing FTMPC scheme by modifying 
conventional MPC strategy. Suppose that as soon as 
LOP or LOL happens, it can be detected and the 
system can be switched from conventional MPC to 
FTMPC scheme immediately.  

Besides PMSM with LOP or LOL, FTMPC 
system mainly comprises of four components. They 
are FTMPC, Calculator for reference stator flux 
linkage, Power unit and PI controller, respectively. 
FTMPC includes three parts: Cost function 
minimization, Predictive model as well as Flux & 
torque estimators.  

*
rω

k
nS
k
bS
k
aS

,k k
b ci i

1k
eT +

*
sϕ

*
eT

1k
sϕ +

k
rθ k

rω
1k

bi +

1k
ci +

k
su

               
Fig. 4 FTMPC system for PMSM with LOP or LOL 

 
3.1 FTMPC 
 
3.1.1 Basic principle of FTMPC 
A. Conventional MPC for healthy motor drives 
The basic idea of MPC is to predict the future 
behavior of the variables over a time frame (integer 
multiple of the sample time) based on the model of 
the system. MPC has several merits such as easy 
inclusion of nonlinearities and constraints [26]. In 
fact, MPC is an extension of DTC, as it replaces 
the look-up table of DTC with an online 
optimization process in the control of machine 
torque and flux. Different from the employments 
of hysteresis comparators and switching table in 

conventional DTC, the principle of vector selection 
in MPC is based on evaluating a defined cost 
function. The selected voltage vector from 
conventional switching table in DTC is not 
necessarily the best one in terms of reducing torque 
and flux ripples.  There are limited discrete voltage 
vectors in the two-level inverter-fed PMSM drives, 
as a result, it is possible to evaluate the effects of 
each voltage vector and select the one minimizing 
the cost function. 

For conventional MPC, the cost function for 
healthy motor drives is such chosen that both torque 
and flux at the end of the cycle is as close as 
possible to the reference value. Generally, the 
minimum value of cost function is defined as 
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{ }

* 1 * 1
1

1 2 5 6

min .

. . , , ,

k k
e e s s

k
s

g T T k

s t u V V V V

+ += − + ψ − ψ

∈
          (10) 

 
Where Te

*and Ψs
* are reference values for torque 

and stator flux, respectively. Te
k+1 and Ψ s

k+1 
predictions for torque and stator flux at (k+1)th 
instant, respectively. V1, V2, V3, V4,, V5 and V6 
are six nonzero voltage space vectors and can be 
generated by healthy three phase inverter with 
respect to the different switches states. Voltage 
space vector us

k at kth instant is defined as 

         ( )22 3 2 32
3

k k i k i k
s dc a b cu V S e S e Sπ π⎡ ⎤= + +⎢ ⎥⎣ ⎦

 

Where Sx
k (x=a,b,c) at kth instant is upper power 

switch state of one of three legs as shown in Fig. 4. 
Sx

k =1 or Sx
k  =0 when upper power switch of one 

leg is on or off. k1 is the weighting factor. The 
selection of k1 is still an open problem for answer 
[26]. In this paper k1 is selected to be Tn/Ψn in order 
to give torque and flux the same weight, where Tn 
and Ψn are the rated value for torque and stator flux, 
respectively.  
 
 
B. FTMPC for unhealthy motor drives 
For FTMPC algorithm, in the evaluating cost 
function, the stator phase voltages (vbn, vcn) are 
directly employed instead of voltage space vector.  
Therefore, the minimum value of cost function for 
FTMPC of unhealthy motor drives should be 
modified as  

{
}

* 1 * 1
1

1_ 1 2 _ 21

5_ 5 6_ 6

min.

. . , , ,

,

k k
e e s s

k
sn bn cn bn cn

bn cn bn cn

g T T k

s t u V V

V V

+ += − + ψ − ψ

∈              (11) 

Where Vbni_cni (i=1,2, … ,5,6), mapping to 
Vi.(i=1,2, … ,5,6), represents two stator phase 
voltages vbn, vcn. ELES three phase inverter in Fig.2 
generates six nonzero voltage space vectors V1, V2, 
V3, V4, V5 and V6 , the same as what healthy three 
phase inverter does.  

For ELES three phase inverter, the mapping 
relationship between Vi and Vbni_cni  is as shown in 
table 1. 

Similar to conventional MPC, the inputs in 
FTMPC are the reference and predicted torque & 
flux. After evaluating the cost function in (9) for 
every possible group of vbn, vcn, one and only one 
group vbn, vcn is selected, so is one and only one 
voltage space vector accordingly. 

Table 1 The mapping relationship between voltage 
space vector and stator phase voltages 

 
                                   vbn                    vcn 
 
           V1                   -Vdc                 -Vdc 

V2                     0                    -Vdc 
V3                    Vdc                    0 
V4                    Vdc                   Vdc 
V5                    0                      Vdc 
V6                   -Vdc                    0 

 
 
 
3.1.2 Predictive model for stator currents 
Similar to MPC, the basic idea of FTMPC is also to 
predict the future behavior of the variables. The 
predictions for FTMPC are phase currents in abc-
system instead of the currents in dq-system. In 
order to obtain the predictions, (5) can be rewritten 
as following,   

[2 2

d 1
d

2 2sin( ) sin( )
3 3

b
bn cn c c b b

m r r m r r

i Lv Mv R Mi R Li
t L M

L M

= − + − +
−

π π ⎤ψ ω θ − − ψ ω θ + ⎥⎦

  

(12) 

[2 2

d 1
d

2 2sin( ) sin( )
3 3

c
cn bn b b c c

m r r m r r

i Lv Mv MR i LR i
t L M

L M

= − + − +
−

π π ⎤ψ ω θ + − ψ ω θ − ⎥⎦

 

(13) 
(12) and (13) can be used to obtain prediction of the 
stator currents at the next sampling instant based on 
given stator voltages vbn

k and vcn
k as well as 

measured currents ib
k and ic

k at current sampling 
instant. The prediction can be expressed as 

1
2 2

2 2sin( ) sin( )
3 3

k k k k k ks
b b bn cn c c b b

k k k k k k
m r r m r r

Ti i Lv Mv R Mi R Li
L M

L M

+ ⎡= + − + − +⎣−
π π ⎤ψ ω θ − − ψ ω θ + ⎥⎦

 

(14) 
1

2 2

2 2sin( ) sin( )
3 3

k k k k k ks
c c cn bn b b c c

k k k k k k
m r r m r r

Ti i Lv Mv MR i LR i
L M

L M

+ ⎡= + − + − +⎣−
π π ⎤ψ ω θ + − ψ ω θ − ⎥⎦

 

(15) 
Where  ib

k+1 and ic
k+1  are predicted values of stator 

currents for the next sampling period, Ts is the 
sampling period. 

After obtaining  ib
k+1 and ic

k+1, both the torque and 
flux at the (k+1)th  instant can be estimated. 
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3.1.3 Torque & flux estimators 
Generally, two flux estimators can be employed. 
One is voltage-based model, the other current-based 
one. The former involves integrator which is 
sensitive to not only DC offset but also initial value 
[39], and bigger DC offset along with improper 
initial value easily leads to the saturation problem, 
which consequently results in the whole system 
being unstable. Nevertheless, the latter is able to 
avoid the troublesome problem. The currents 
involved in the latter can be calculated from 
measuring phase currents. Therefore this paper 
concentrates on the latter. By current-based model, 
the flux estimator will be discussed in dq-system 
(that means two-phase rotary coordinate). Obviously, 
the estimator used for healthy PMSM cannot be 
directly applied to unhealthy one. So the modified 
flux estimator suitable for FTMPC is established as 
following.  
 
 
A. Flux estimator in dq-system 
In dq-system, the flux-linkage Ψd and Ψq can be 
expressed as following vector: 

1 1 1

1 1

0
0 0

k k k
dd d m

k k
qq q

L i
L i

+ + +

+ +

⎡ ⎤ ⎡ ⎤ψ ⎡ ⎤ ⎡ ⎤ψ
= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ψ⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦ ⎣ ⎦

       (16) 

 
Where Ld and Lq are inductances in dq- system, id 
and iq are currents in dq-system. 

By Park and Clarke transformations, id and iq 
can be yielded from phase current vector as follows 

1 1 1

1 1 1

1

1

cos sin
sin cos

1 2 1 2

3 2 3 2

k k k
d r r
k k k
q r r

k
b
k
c

i
i

i
i

+ + +

+ + +

+

+

⎡ ⎤ ⎡ ⎤θ − θ
= ⋅⎢ ⎥ ⎢ ⎥θ θ⎢ ⎥ ⎣ ⎦⎣ ⎦

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

− ⎣ ⎦⎣ ⎦

             (17) 

The magnitude of stator flux linkage sψ  is 

                  ( ) ( )2 2k 1 k 1 k 1
s d q
+ + +ψ = ψ + ψ               (18) 

 
 
B. Torque estimator in dq-system 
Electromagnetic torque developed in dq-system can 
be estimated s following  

( )1 1 1 1 13 p
2

k k k k k
e m q d q d qT i L L i i+ + + + +⎡ ⎤= ψ + −⎣ ⎦  (19) 

where p is number of pole pairs. 
Substituting (17) into (19), torque can be 

estimated. 
 
 

3.2 Power unit 
The power unit adopts ELES inverter structure as 
shown in Fig.2. Then a voltage space vector  Vi 

(i=1,2,…,6) is output of ELES inverter, which is 
controlled by the switching states Si (i=1,2,…,6). 
Fig.5 shows the symmetrical layout of six nonzero 
voltage vectors V1-V6 and its corresponding six 
switching states S1-S6.  

β

α 1V

2V3V

4V

5V 6V

1 (1,0,0)S =

2 (1,1,0)S =3 (0,1,0)S =

4 (0,1,1)S =

5 (0,0,1)S = 6 (1,0,1)S =

 

Fig.5 Layout of voltage space vectors and its 
corresponding switching states 

 
 
3.3 PI controller 
PI controller is used to regulate the rotor speed. The 
PI controller compares the reference speed with the 
motor real-time speed and generates a torque 
command (or reference value), i.e., Te

*. Properly 
selecting proportional & integral parameter could 
keep the speed and torque ripple small. 
 
 
3.4 Calculator for reference stator flux 

linkage 
In accordance with reference torque Te

*, the desired 
reference stator flux linkage Ψs

* as shown in Fig. 4 
can be obtained by means of the following  
algorithm  which is called MTPA (maximum torque 
per ampere), 

( )
2

2* * 3
2s e q m d d mT L p i L⎛ ⎞ψ = ψ + +ψ⎜ ⎟

⎝ ⎠
    (20) 

Where  id
* is assumed to be zero, i.e., 

* 0di =  
As a result, the corresponding reference stator flux 
linkageΨs

* is written as 
2

* * 23
2s e q m mT L p⎛ ⎞ψ = ψ +ψ⎜ ⎟

⎝ ⎠
                  (21) 
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4 Simulation Results of FTMPTC for 
PMSM with LOP or LOL 

4.1 PMSM parameters and other control 
parameters selection  

We take a PMSM as an example to validate the 
effective of proposed FTMPC scheme, parameters 
of which are given in Table 2 [22-24]. The computer 
model of FTMPC system for unhealthy PMSM is 
established. In order to comparatively investigate 
the performance of healthy MPC and unhealthy 
FTMPC motors, the computer model of 
conventional MPC system for healthy PMSM is also 
built. These models are based on 
MATLAB/SIMULINK/SIMSCAPE platform. 
 

Table 2 Parameters of PMSM 

Symbol        Quantity                           Value 

      , ,a b cR R R     Phase resistance                         0.466Ω 

,d qL L           dq-coordinate inductance           3.19mH 

mψ                  Rotor magnetic flux                   92.8mWb 

p                    Number of pole pairs                   1 

dcV                   DC bus voltage                           70V 

nω                   Rated speed                               3000rpm 

nT               Rated torque                               0.3Nm 

J                    Moment of inertia                    0.0002Kg.m2 

Bm                Viscous friction coefficient        0 

Tf             Coulomb friction torque             0 

 
The reference speed ωr

*is set to 2000 rpm and 
the external load of 0.3Nm is applied at t=0.2s. The 
sampling period is 100μs, the value k1 is selected to 
be 60. The proportional & integral parameters for 
MPC and FTMPC systems are same. They are 
selected as follows. 

0.01, 0.005p iK K= =  
 
 

4.2 Simulation and its analysis  
The numerical simulation results are given from Fig. 
6 to Fig.8 in terms of torque, rotor speed, stator 

currents, trajectory of stator flux linkage, stator flux 
linkages, etc. 
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(b) Torque response 
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  (c)  Stator currents ia,ib and ic
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(d)  Trajectory of stator flux linkage 
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    Fig.6 Dynamic responses of conventional                     
MPC for healthy PMSM 
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(b)  Torque response 
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(d)  Trajectory of stator flux linkage 
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(e) Stator flux linkageΨs 

  Fig. 7 Dynamic responses of FTMPC for unhealthy 
PMSM 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

time(s)

sp
ee

d(
rp

m
)

 

 
ωr of healthy motor

ωr of unhealthy motor

 
(a) Speed ωr of healthy and unhealthy motor
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(b) Torque Te of healthy and unhealthy motor 
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 (c) Current ib of healthy and unhealthy motor 
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(e) Trajectory of stator flux linkage  

for healthy and unhealthy motor 
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(f) Stator flux linkageΨs 

of healthy and unhealthy motor 
Fig.8 Comparison between MPC for healthy PMSM 

and FTMPC for unhealthy PMSM  
 

Fig. 6 presents dynamic responses of 
conventional MPC for healthy PMSM and Fig. 7 
shows corresponding dynamic responses of FTMPC 
for unhealthy PMSM. Fig. 8 illustrates the 
performance comparison between conventional 
MPC for healthy and FTMPC for unhealthy PMSM. 
Ψα,Ψβ as shown in Figs. 6, 7 and 8  are stator 
flux-linkages  in αβ-system. Appendix gives its 
detailed solving procedure. 

Analyzing these simulations, the following 
consequence could be obtained: 

• Comparing Fig.6 and 7, it can be seen that 
the proposed FTMPC system is still stable 
and allows for continuous operation when 
one phase of PMSM is open-circuited. 

• As far as the dynamic responses of rotor 
speed and torque are concerned, comparing 
red with blue (represent healthy and 

unhealthy PMSM, respectively) curves in 
Fig.8 (a) and 8(b) demonstrates that the 
performance of proposed FTMPC strategy 
is satisfactory and meets given requirements.   

• Figs. 8(c),8(d) and Figs. 8(e),8(f) show 
phase currents and stator flux relationship 
between MPC for healthy and FTMPC for 
unhealthy, respectively. It can be clearly 
seen that in order to maintain the same 
torque as its previous value after LOP or 
LOL occurs, phase b and phase c currents 
are regulated to dramatically increase and 
accordingly stator flux is increased 
simultaneously, which is consistent with the 
theoretical analysis [2]. 

• Although the torque Te and stator fluxψs 
ripple of the unsymmetrical two-phase 
machine are larger than that of symmetrical  
three-phase machine as shown in Fig. 8, 
FTMPC strategy can manage to get constant 
torque and circular stator flux, and then 
make two-phase machine to complete 
normal operation before shutting down for 
repair.  

To sum up, proposed FTMPC strategy for 
unhealthy PMSM with LOP or LOL can make 
electrical drive system to tolerate fault and therefore 
are effective and correct.

  
 

Remark: When LOP or LOL happens, FTMPC can 
be used to replace MPC. In order to guarantee 
smoothness transition from MPC  to FTMPC, the 
control transition strategy should be studied or else a 
braking torque will occur, which may result in  
mechanical damage[40-42]. In addition, the cost 
function  in (11) assumes that all calculations and 
judgment are implemented at kth instant  and the 
selected vector will be applied immediately. 
However, in practical digital implementation, the 
assumption is not true and the applied voltage vector 
is not applied until the (k+1)th instant,  which results 
in one step delay. To eliminate such adverse effect, 
the delay compensation should taken action [43].  
The above-mentioned problems are our next work to 
be done. 
 
 
5 Conclusion 
This paper has puts forward a new FTMPC strategy. 
The model of three-phase PMSM with LOP or LOL 
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is first built. Then based on conventional MPC, the 
cost function of FTMPC is modified. In order to 
realize predictive control, the predictive model for 
stator phase currents is derived, and the flux 
estimator based-current is built. The motor control 
system uses ELES inverter as power unit in the 
post-fault operation. Numerical simulation is 
performed to check the feasibility of the new 
FTMPC strategy. The results show that the proposed 
FTMPC system is still stable and allows for 
continuous operation when one phase of PMSM is 
open-circuited. In comparison with the conventional 
MPC strategy for healthy motor system, the 
proposed FTMPC strategy for unhealthy motor 
system preserves satisfactory torque & speed control 
and could meet given requirements and therefore is 
effective and correct. Taking real motor parameters 
variation (like stator resistance, etc.) into 
consideration, we will study FTMPC strategy with 
adaptive observer in the next work.   
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Appendix 
 
In αβ-system, the flux-linkages Ψsα and Ψsβ, which 
is produced only by the stator current, can be 
expressed as following vector 

1 1

1 1

1 1( ) ( )
2 2
3 3( ) ( )

2 2
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s b
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L M L M
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(1) 
Since stator currents iα and iβ in αβ-system can be 
expressed as following vector: 
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            (2) 

Taking (2) into account, (1) can be rewritten as  
1 1

1 1

0
0

k k
s
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s

iL M
iL M

+ +
α α
+ +
β β

⎡ ⎤ ⎡ ⎤ψ −⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥ψ −⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

        (3) 

Considering the rotor magnet, the stator flux-
linkages Ψα and Ψβ in αβ-system can be expressed 
as following vector 
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1 1
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2 cos
3
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            (4) 

In addition, the magnitude of stator flux linkage sψ

 
can be given by following formula. 

( ) ( )2 2k 1 k 1 k 1
s
+ + +

α βψ = ψ + ψ                   (5) 
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