
Methods and Tools for Structural Information Visualization

V. N. KASYANOV

Laboratory for Program Construction and Optimization
Institute of Informatics Systems

Lavrentiev pr. 6, Novosibirsk, 630090
RUSSIA

kvn@iis.nsk.su http://pco.iis.nsk.su/~kvn

Abstract: - In the paper, we consider a practical and general graph formalism called hierarchical graphs and
graph models. It is suited for visual processing and can be used in many areas where the strong structuring of
information is needed. We present also the Higres, Visual Graph and ALVIS systems that are aimed at
supporting of structural information visualization on the base hierarchical graph modes.

Key-Words: - Information visualization, Hierarchical graphs, Hierarchical graph models, Graph algorithm
animation, Graph editor, Graph drawing, Graph visualization, Visualization system

1 Introduction
Visualization is a process of transformation of
large and complex abstract forms of information
into visual form, strengthening user’s cognitive
abilities and allowing them to take the most
optimal decisions.

Graphs are the most common abstract structure
encountered in computer science and are widely
used for structural information representation [11,
21]. Many graph visualization systems, graph
editors and libraries of graph algorithms have been
developed in recent years. Examples of these tools
include VCG [30], daVinci [7], Graphlet [13],
GLT&GET [27], yEd [34] and aiSee [1].

In some application areas the organization of
information is too complex to be modeled by a
classical graph. To represent a hierarchical kind of
diagramming objects, some more powerful graph
formalisms have been introduced, e.g. higraphs [9]
and compound digraphs [31]. The higraphs are an
extension of hypergraphs and can represent complex
relations, using multilevel "blobs" that can enclose
or intersect each other. The compound digraphs are
an extension of directed graphs and allow both
inclusion relations and adjacency relations between
vertices, but they are less general then the higraph
formalism. One of the recent non-classical graph
formalisms is the clustered graphs [6]. A clustered
graph consists of an undirected graph and its
recursive partitioning into subgraphs. It is a
relatively general graph formalism that can handle
many applications with hierarchical information,
and is amenable to graph drawing.

Hence, there is a need for tools capable of
visualization of such structures. Although some
general-purpose graph visualization systems provide
recursive folding of subgraphs, this feature is used
only to hide a part of information and cannot help us
to visualize hierarchically structural information.
Another weak point is that usual graph editors do
not have a support for attributed graphs. Though the
GML file format, used by Graphlet, can store an
arbitrary number of labels associated with graph
elements, it is impossible to edit and visualize these
labels in the Graphlet graph editor. The standard
situation for graph editors is to have one text label
for each vertex and, optionally, for each edge.

The size of the graph model to view is a key
issue in graph visualization [11]. Large graphs pose
several difficult problems. If the number of graph
elements is large it can compromise performance or
even reach the limits of the viewing platform. Even
if it is possible to layout and display all the graph
elements, the issue of viewability or usability arises,
because it will become impossible to discern
between nodes and edges of graph model. It is well
known that comprehension and detailed analysis of
data in graph structures is easiest when the size of
the displayed graph is small. Since none of the static
layouts can overcome the problems caused by large
graphs, hierarchical presentation, interaction and
navigation are essential complements in information
visualization.

An algorithm animation visualizes the behavior
of an algorithm by producing an abstraction of both
the data and the operations of the algorithm [26].
Initially it maps the current state of the algorithm

WSEAS TRANSACTIONS on SYSTEMS V. N. Kasyanov

E-ISSN: 2224-2678 349 Issue 7, Volume 12, July 2013

into an image, which then is animated based on the
operations between two succeeding states in the
algorithm execution. Animating an algorithm allows
for better understanding of the inner workings of the
algorithm, furthermore it makes apparent its
deficiencies and advantages thus allowing for
further optimization.

Applications of graph algorithm visualization
can be divided into two types according to the
method they implement: interesting events and the
data-driven method [4]. Methods of the first type
are based on selection of events that occur during
execution of an algorithm, for example, comparing
the vertex attribute value or removing an edge.
Methods of this type create some visual effects
for each interesting event. Methods of the second
type are based on data changing. During an
operation, the memory status is changed, for
example, the values of variables. Further these
changes are visualized in some understandable
way. In the simplest case such changes can be
displayed in a form of a table of variable values.
This approach is used in debuggers of integrated
development environments.

The existing algorithm visualizers have several
disadvantages. One of the major drawbacks is that if
there is a need to build visualization of an algorithm
arbitrarily close to the original algorithm, then it is
necessary to build a new visualizer. As a rule,
visualizers also do not show the correspondence
between the algorithm instructions and the
generated visual effects or do not allow
reassignment of visual effects to the corresponding
events.

In the paper, we consider a practical and general
graph formalism called hierarchical graphs and
graph models [14]. It is suited for visual processing
and can be used in many areas where the strong
structuring of information is needed [3, 15, 16, 17,
20, 21, 22, 23, 24, 25, 28, 29]. We present also the
Higres, Visual Graph and ALVIS systems that are
aimed at supporting of information visualization on
the base hierarchical graph modes. The Higres
system is a visualization tool and an editor for
attributed hierarchical graphs and a platform for
execution and animation of graph algorithms [12].
The Visual Graph system was developed to
visualize and explore large hierarchical graphs that
present the internal structured information typically
found in compilers [32]. The ALVIS system was
developed to build the algorithm visualization with
the help of a flexible system of visual effects and
using a visualized graph algorithm as an input
parameter.

2 Hierarchical graphs and graph
models

2.1 Hierarchical graphs
Let G be a graph of some type, e.g. G can be an
undirected graph, a digraph or a hypergraph. A
graph C is called a fragment of G, denoted by C G,
if C includes only elements (vertices and edges) of
G. A set of fragments F is called a hierarchy of
nested fragments of the graph G, if GF and
C1C2, C2C1 or C1 C2= for any C1, C2 F.

A hierarchical graph H = (G,T) consists of a
graph G and a rooted tree T that represents an
immediate inclusion relation between fragments of a
hierarchy F of nested fragments of G. G is called the
underlying graph of H. T is called the inclusion tree
of H.

A hierarchical graph H is called a connected one,
if each fragment of H is connected graph, and a
simple one, if all fragments of H are induced
subgraphs of G.

Fig. 1. A simple hierarchical graph H=(G, T) and its drawing D

It should be noted that any clustered graph H can
be considered as a simple hierarchical graph H=(G,
T), such that G is an undirected graph and the leaves
of T are exactly the trivial subgraphs of G (See
Fig. 1)

2.2 Hierarchical graph drawing
A drawing (or layout) D of a hierarchical graph H =
(G,T) is a representation of H in the plane such that
the following properties hold (See Fig. 1).

WSEAS TRANSACTIONS on SYSTEMS V. N. Kasyanov

E-ISSN: 2224-2678 350 Issue 7, Volume 12, July 2013

 Each vertex of G is represented either by a
point or by a simple closed region. The
region is defined by its boundary - a simple
closed curve in the plane.

 Each fragment of G is drawn as a simple
closed region which include all vertices and
subfragments of the fragment.

 Each edge of G is represented by a simple
curve between the drawings of its
endpoints.

D is a structural drawing of H if all edges of any
fragment of H are located inside the region of the
fragment. A hierarchical graph is called a planar
one if it has such a structural drawing that there are
no crossing between distinct edges and the
boundaries of distinct fragments. The following
properties hold.

Theorem 1. There are nonplanar hierarchical
graphs H=(G,T) with planar underlying graphs G.

Theorem 2. There are nonplanar hierarchical
graphs H=(G,T) having nonstructural planar
drawing.

Theorem 3. A simple connected hierarchical
graph H=(G,T) is a planar graph if and only if there
is such a planar drawing D of G that for any vertex p
of T all vertices and edges of G-G(p) are in the outer
face of the drawing of G(p).

2.3 Hierarchical graph models
Let V be a set of objects called simple labels (e.g. V
can include some numbers, strings, terms and
graphs). Let W be a set of label types of graph
elements and let a label set V(w)= V1 V2 … Vs,
where s1 and for any i, 1 i s, Vi V, be
associated with each w W.

A labelled hierarchical graph is a triple (H,M,L),
where H is a hierarchical graph, M is a type function
which assigns to each element (vertex, edge and
fragment) h of H its type M(h) W, and L is a label
function, which assigns to each element h of H its
label L(h)V(M(h)).

The semantics of a hierarchical graph model is
provided by an equivalence relation which can be
specified in different ways, e.g. it can be defined via
invariants (i.e. properties being inherent in
equivalent labelled graphs) or by means of so-called
equivalent transformations that preserve the
invariants.

2.4 Hierarchical control flow graphs
Many problems in program optimization have been
solved by applying a technique called interval

analysis to the control flow graph of the program
[10, 18]. A control flow graph which is susceptible
to this type of analysis is called reducible.

Let F be a minimal set which includes G and is
closed under the following property: if CF and p is
such an entry vertix of C that subgraph {p} does not
belong to F then F contains all maximum strongly
connected subgraphs of graph which is obtained
from C by removing of all edges which are ingoing
in p. Let HF=(G,T) be such a simple hierarchical
graph that T represents an immediate inclusion
relation between fragments of the hierarchy F.

The following properties hold.
Theorem 4. A control flow graph G is reducible

if and only if for the simple hierarchical graph
HF=(G,T) the set of all fragments corresponding
vertices pT is a hierarchy of nested single-entry
strongly connected regions.

Theorem 5. A control flow graph G is reducible
if and only if that for any pT of the simple
hierarchical graph HF=(G,T) the fragment which is
obtained from fragment corresponding to p by
reducing all its inner fragments from F into their
entry vertices is an interval.

3 The Higres system

3.1 Graph models in Higres
A hierarchical graph supported by the Higres
consists of vertices, fragments and edges which we
call objects (See Fig. 2). Vertices and edges form an
underlying graph. This graph can be directed or
undirected. Multiple edges and loops are also
allowed.

The semantics of a hierarchical graph is
represented in Higres by means of object types and
external modules (see below). Each object in the
graph belongs to an object type with a defined set of
labels. Each label has its data type, name and
several other parameters. A set of values is
associated with each object according to the set of
labels defined for the object type to which this
object belongs. These values, along with
partitioning of objects to types, represent the
semantics of the graph. New object types and labels
can be created by the user.

3.2 Visualization
In the Higres system each fragment is represented
by a rectangle. All vertices of this fragment and all
subfragments are located inside this rectangle.

WSEAS TRANSACTIONS on SYSTEMS V. N. Kasyanov

E-ISSN: 2224-2678 351 Issue 7, Volume 12, July 2013

Fragments, as well as vertices, never overlap each
other. Each fragment can be closed or open (See
Fig. 2). When a fragment is open, its content is
visible; when it is closed, it is drawn as an empty
rectangle with only label text inside it. A separate
window can be opened to observe each fragment.
Only content of this fragment is shown in this
window, though it is possible to see this content
inside windows of parent fragments if the fragment
is open.

Most part of visual attributes of an object is
defined by its type. This means that semantically
relative objects have similar visual representation.
The Higres system uses a flexible technique to
visualize object labels. The user specifies a text
template for each object type. This template is used
to create the label text of objects of the given type
by inserting labels' values of an object.

Fig. 2. The Higres system

Other visualization features include the

following:
 various shapes and styles for vertices;
 polyline and smooth curved edges;
 various styles for edge lines and arrows;
 the possibility to scale graph image to an

arbitrary size;
 edge text movable along the edge line;

colour selection for all graph components;
 external vertex text movable around the

vertex; font selection for labels text;
 two graphical output formats;
 a number of options to control the graph

visualization.
Now Higres uses three graph drawing algorithms

for automatic graph allocation. The first one is a
force method, which is very close to original

algorithm from [5]. The second one is our
improvement of the first. The third one allocates
rooted trees on layers.

3.3 The user interface
The comfortable and intuitive user interface was one
of our main objectives in developing Higres. The
system's main window contains a toolbar that
provides a quick access to frequently used menu
commands and object type selection for creation of
new objects. The status bar displays menu and
toolbar hints and other useful information on current
edit operation.

The system uses two basic modes: view and edit.
In the view mode it is possible only to open/close
fragments and fragment windows, but the scrolling
operations are extended with mouse scrolling. In the
edit mode the left mouse button is used to select
objects and the right mouse button displays the
popup menu, in which the user can choose the
operation he/she wants to perform. It is also possible
to create new objects by selecting commands in this
menu. The left mouse button can be also used to
move vertices, fragments, labels texts and edge
bends, and resize vertices and fragments. All edit
operations are gathered in a single edit mode. To our
opinion, it is more useful approach (especially for
inexperienced users) than division into several
modes. However, for adherents of the last case we
provide two additional modes. Their usage is
optional but in some cases they may be useful: the
"creation" mode for object creation and "labels"
mode for labels editing.

Other interface features include the following:
 almost unlimited number of undo levels;
 optimized screen update; automatic

elimination of objects overlapping;
 automatic vertex size adjusting;
 grid with several parameters;
 a number of options that configure the user

interface;
 online help available for each menu, dialog

box and editor mode.

3.4 Algorithm animation
To run an algorithm in the Higres system, the user
should select an external module in the dialog box.
The system starts this module and opens the process
window that is used to control the algorithm
execution. Higres provides the run-time animation
of algorithms. It also caches samples for the
repeated and backward animation. A set of

WSEAS TRANSACTIONS on SYSTEMS V. N. Kasyanov

E-ISSN: 2224-2678 352 Issue 7, Volume 12, July 2013

parameters is defined inside a module. These
parameters can be changed by the user at any
execution step. The module can ask user to input
strings and numbers. It can also send any textual
information to the protocol that is shown in the
process window.

Fig. 3. Simulation of block-scheme representation of a program

A wide range of semantic and graph drawing
algorithms can be implemented as external modules.
As examples now we have modules that simulate
finite automata, Petry nets and imperative program
schemes (See Fig.3). The animation feature can be
used for algorithm debugging, educational purposes
and exploration of iteration processes such as force
methods in graph drawing.

A special C++ API that can be used to create
external modules is provided. This API includes
functions for graph modification and functions that
provide interaction with the Higres system. It is
unnecessary for programmer, who uses this API, to
know the details of the internal representation of
graphs and system/module communication
interface. Hence, the creation of new modules in the
Higres system is a rather simple work.

4 The Visual Graph system

4.1 Visual Graph
Visual Graph is a tool that automatically calculates a
customizable multi-aspect layout of hierarchical
graph models specified in GraphML (see below).
This layout is then displayed, and can be
interactively explored, extended and analyzed.

Visual Graph was developed to visualize and
explore large graphs that present the internal
structured information typically found in compilers.

Visual Graph reads a textual and human-readable
GraphML-specification and visualizes the
hierarchical graph models specified (See Fig. 4). Its
design has been optimized to handle large graphs
automatically generated by compilers and other
applications.

Visual Graph provides tools for analyzing graph
structures. Structural analysis means solving
advanced questions that relate to a graph structure,
for instance, determining a shortest path between
two nodes.

Simple possibilities to extend the functionality of
Visual Graph (for example, to add a new layout,
search, analysis or navigating algorithm, a new tool
for processing information associated with elements
of graph models and so on) are provided.

4.2 GraphML
GraphML (Graph Markup Language) [2] is a
comprehensive and easy-to-use file format for
graphs. It consists of a language core (known as the
Structual Layer) to describe structural properties of
one or more graphs and a flexible extension
mechanism, e.g. to add application-specific data. Its
main features include support of directed,
undirected, mixed multigraphs, hypergraphs,
hierarchical graphs, multiple graphs in a single file,
application-specific data, and references to external
data.

Two extensions, adding support of meta-
information for light-weight parsers (Parse
Extension) and typed attribute data (Attributes
Extension) are currently part of the GraphML
specification.

Unlike many other file formats for graphs,
GraphML does not use a custom syntax. Instead, it
is defined as an XML (Extensible Markup
Language) sublanguage and hence ideally suited as
an exchange format for all kinds of services
generating or processing graphs

4.3 Reducing layout time
Visual Graph was designed to explore large graphs
that consist of many hundreds of thousands of
elements. However, the layout of large graphs may
require considerable time. Thus, there are two main
ways to speed up the layout algorithm: multi-aspect
layout of graph and control of layout algorithms.

The first way in visualizing a large graph is
aimed at avoiding computing the layout of parts of
the graph that are currently not of interest.
Interactive exploring of graph is based on step by
step construction of so-called multi-aspect layout of

WSEAS TRANSACTIONS on SYSTEMS V. N. Kasyanov

E-ISSN: 2224-2678 353 Issue 7, Volume 12, July 2013

graph being a set of drawings of some subgraphs of
the graph. For presentation of multi-aspects layout a
set of windows which includes a separate window
for visualization of each considered subgraph is
used. At each step of the construction a layout
algorithm is applied to a subgraph being interested
to user at this step. To indicate the interested
subgraph the user can select its elements in the
active window or in the navigator (see below). The
user can also define some condition in the filter or in
the search panel (see below). Then the condition
will be used for searching of graph elements which
will form the interested subgraph. The search can be
performed both locally (in some part of graph, e.g.
through a subgraph presented in the active window)
or globally (around the entire graph). Multi-aspect
drawing of graph models makes every visible part of
the graph smaller, thus enabling the layout to be
calculated faster and the quality of the layout to be
improved.

Fig. 4. The Visual Graph system

In order to further reduce layout time, it is
possible to control the layout algorithms, e.g. some
layout phases can be omitted or the maximum
number of iterations of some layout phases can be
limited. However, this usually decreases the quality
of the layout. The user can improve the layout by
hand, e.g. by moving of nodes or changing of their
sizes or forms.

4.4 Navigating through a graph
Visual Graph offers several tools for navigating
through a graph model: minimap, navigator,
attribute panel, filter, search panel, notebook.

The minimap visualizes a working region of the
graph model explored (See Fig. 4). It shows both the
whole subgraph from the active windows and its
visible part (i.e. such a subgraph part that is

allocated in the active window). It is possible to
change both the visible part of the subgraph from
the working region and scale of its drawing.

The navigator visualizes inclusion trees of
hierarchical graph models as hierarchies of their
vertices. It is possible to open in the active window
any vertex of any group of vertices.

The attribute panel allows for elements of graph
model in the working region choose attributes which
should be visualized and ways of their visualization.

The filter is used for searching such elements of
graph in the working region which satisfy given
conditions (See Fig. 5).

The search panel is intended to search such
elements of either whole graph model or its given
part which satisfy given conditions.

The notebook can load files with additional
information (e.g. with a source program being
compiled) and associate it with graph elements.

5 The ALVIS system

5.1 Interactive visualization model

A new algorithm visualization model based on the
dynamic approach and hierarchical graph models
has been created. The main point of the suggested
model is that the given algorithm is formulated in
some programming language that allows us to use
instructions operating with graphs and to execute the
program derived from the text of the algorithm after
a set of transformations. More details about the
model can be found in [8]. The result of the
program execution is information which is to be
used in creation of the underlying algorithm
visualization. An example of such instruction can
be adding an edge or a change in the attributes of
vertices. The following example shows the breadth-
first search algorithm for any graph. In the given
case, Get and Set instructions are used for reading
and changing the graph element’s attribute values.
These instructions have formats Get(Vertex,
AttributeName) and Set(Vertex, AttributeName,
A ttributeValue), respectively. To construct a
visualization of the breadth-first search algorithm,
the state attribute is appointed to each graph
vertex. The value of the state attribute reflects
whether the vertex was visited during graph
traversal.

VertexQueue.Enqueue(Graph.Vertices[0]);
while (VertexQueue.Count > 0)

WSEAS TRANSACTIONS on SYSTEMS V. N. Kasyanov

E-ISSN: 2224-2678 354 Issue 7, Volume 12, July 2013

{
Vertex v = VertexQueue.Dequeue();
Set(v, ”state”, ”visited”);
foreach(Edge e in v.InEdges)
{
Vertex t =e.PortFrom.Owner;
string c = Get(t, “state”);
if(c != ”visited”)
{
Set(t, ”state”, ”visited”);
VertexQueue.Enqueue(t);
}
}
foreach(Edge e in v.OutEdges)
{
Vertex t = e.PortTo.Owner;
string c = Get(t, “state”);
if(c != ”visited”)
{
Set(t, ”state”, ”visited”);
VertexQueue.Enqueue(t);
}
}
}
VertexQueue.Clear();

Fig. 5. The filter of the Visual Graph system

Each instruction of the algorithm generates one

or more images of the current state of the graph
model. The graph model is an annotated
hierarchical marked graph. It is useful to highlight
the current executing instruction in each image
because it allows a user to keep attention on
valuable events at this moment. To solve the
problem of highlighting the current executing
instruction in the image, the following approach is
used. Each text line of an algorithm can be

interpreted as a function. Also, each text line has a
numeric index in all text lines. So that order value
is added to arguments of the function corresponding
to the text line. This additional parameter is the
number of the current executing algorithm
instruction. After this transformation, the text of
the breadth- first search algorithm from the above
example looks like this:

VertexQueue.Enqueue(Graph.Vertices[0]);
while (WhileCondition(2, VertexQueue.Count >
0))
{
Vertex v = VertexQueue.Dequeue(3);
Set(4, v.ID, “state”, “visited”);
foreach(Edge e in ForeachCollection(5,
v.InEdges))
{
Vertex t = e.PortFrom.Owner;
string c = Get(7, t, ”state”);
if(If Condition(8, c != ”visited”))
{
Set(10, t, ”state”, ”visited”);
VertexQueue.Enqueue(11, t);
}
}
foreach(Edge e in ForeachCollection(13,
v.OutEdges))
{
Vertex t = e.PortTo.Owner;
string c = Get(16, t, ”state”);
if(If Condition(17, c != ”visited”))
{Set(19, t, ”state”, ”visited”);
VertexQueue.Enqueue(20, t);
}
}
}
VertexQueue.Clear();

The above example shows changes in the

attributes of the graph elements, too. This is a
typical situation for algorithms implementing only
traversal of a graph - a method when all graph
vertices are visited one by one. For example, the
Prüfer sequence of a given tree is generated by
iteratively removing vertices from the tree until only
two vertices remain. To perform this operation, the
RemoveVertex() instruction should be used, which
leads to generation of a visual effect of the
corresponding vertex disappearing. Here is an
example of the Prüfer encoding algorithm, how it
can be formulated as a parameter of the graph
algorithm visualization system:

WSEAS TRANSACTIONS on SYSTEMS V. N. Kasyanov

E-ISSN: 2224-2678 355 Issue 7, Volume 12, July 2013

int i = 0;
List<Vertex> Leafs = new List<Vertex>();
int n = Graph.Vertices.Count;
while(i++ <= n-2)
{
Leafs.Clear();
foreach(Vertex v in Graph.Vertices)
if(v.OutEdges.Count == 0) Leafs.Add(v);
Vertex codeItem =
Leafs[0].InEdges[0].PortFrom.Owner;
Output.Add(codeItem);RemoveVertex(Leafs[0]);
}

Each algorithm instruction generates some

information during execution of the transformed text
of the original algorithm. This information describes
the number of the current instruction, the name of
an attribute of a graph element, the previous value
of the attribute, a new value of the attribute and
the identifier of the graph element. This
information allows us to get the full log of
operations executed over graph elements. This
operation log contains the detailed information on
the state of the graph model during the algorithm
running. Further the log of operations, the input
graph and the original text of the algorithm can
be used to generate the algorithm visualization.
Each operation log entry corresponds to some
graphical effect over visual representation of graph
elements. The simplest example of the visual effect
for the breadth-first search algorithm is to change
the color of the graph vertex representation when a
state attribute of the vertex has been changed and to
change the color of the text of the corresponding
instruction.

5.2 Algorithm visualization system
The ALVIS system for graph algorithm
visualization on the base of the described model has
been constructed.

The system includes two main components: an
algorithm execution module and a graph algorithm
visualizer. It i s assumed that data are passed
between these and other components of the system
in a text form. It means that components of the
system can be implemented on different platforms
and with different tools.

The purpose of the algorithm execution module
is to generate the execution log. The algorithm
running is separated from its visualization. This
allows us to perform the algorithm once and after that
the operation log can be used to visualize and
refine the visualization many times. This can be
useful when computationally-intensive algorithms

are visualized. In such cases the second cycle of
execution of the algorithm is complex.

To provide correct work of the algorithm
execution module, it is necessary to meet a
significant condition. Since any existing compiler
or interpreter can be used to create this module, the
algorithm must be formulated in the language
supported by the selected compiler or interpreter.
Actually this is not a restriction on the algorithm
implementation language since many programming
languages allow graph structures to be used in the
program source code. So, the given algorithm text
can be considered as a ready program source code.
Also this allows us to transmit the input graph in
this compiled program and to generate the log of
operations.

Another significant restriction relates to the
algorithmic complexity. In this approach, it is
reasonable to visualize only efficient algorithms,
because it will take much time to build the operation
log of execution of an efficient algorithm. We can
use a small input graph for this case. This
assumption allows us to construct visualization for
a reasonable time.

The algorithm execution module takes the
given algorithm text in an appropriate
programming language, executes it and returns the
log of operations generated during the algorithm
run on a particular graph. The log of executed
operations contains information about all changed
attributes of graph elements and about graph
elements added or removed during the execution.
Further this information is used to generate the
algorithm visualization.

Another main component of the ALVIS system
is the graph algorithm visualizer. At its input, this
component receives the algorithm text, the input
graph, the log of operations and additional
graphical options. A log information item is added
by special instructions created at the stage of
preparation of the algorithm text. For example,
these special instructions are the functions: Set(),
Get(), IfCondition(), WhileCondition() and
ForeachCollection(). Their first argument is the
number of the corresponding text line.
IfCondition() and WhileCondition() do not
perform any changes in the graph model state but
at least allow us to make a visual selection of the
text line where it was inserted. ForeachCollection()
is to be used to generate information which allows
highlighting a set of vertices before they will be
actually enumerated. To add these functions into
appropriate places of the original algorithm, it is
sufficient to use a contextual replacement. The
purpose of the preparation stage is to eliminate the

WSEAS TRANSACTIONS on SYSTEMS V. N. Kasyanov

E-ISSN: 2224-2678 356 Issue 7, Volume 12, July 2013

need for declarative structures, which have no
relation to the actual nature of the algorithm.

A log item may also contain information about
the value of an attribute of a graph element. A
graph element is a vertex, an edge or a port. If
there is a vertex with its incident edge, then a
port is a point where the edge enters the vertex.
When rendering, it can be useful that the points
are allocated for these additional objects. Ports
simplify calculation of coordinates of graphical
primitives which represent the edge elements.
Strictly mathematically, it is possible to simulate a
port with a labeled vertex. So the class of graphs
with ports is isomorphic to the class of all graphs.

An attribute of a vertex, an edge or a port can
have a string name and a string value. The log of
operations stores the previous value of the attribute
for a particular graph element. This information is
also useful for building the visualization, since it is
possible to make a smooth visual effect from a
previous value of an attribute to its new value.

It is not obvious how to bind information from
a log item to the visual effect. In this case, a user
needs to interfere in order to set an explicit binding
between the set of attributes in the text of the
algorithm and the desired visual effects. For
example, if the operation of a log item is about
changing the coordinates of the graph element
reflected with the use of the attribute “position”,
then it is reasonable to bind the attribute with the
visual effect, which leads to a shift of the graph
element. Another user example is to bind all log
items to the effect of a color mark of a current
graph element under processing. It can be a
current vertex visited in the algorithm of depth-
first search or in any other graph traversal. In this
aspect the suggested approach is close to the
interesting events approach, where an algorithm
instruction is an interesting event.

Fig. 6. Visualization of the depth-first search algorithm

Fig. 6 shows an example of visualization of the
depth-first search algorithm on the graph, which is
actually a binary tree. It is one of the screenshots
taken during the process of visualization of the
depth-first search algorithm. The left side of the
figure displays the text of the algorithm
formulated in terms of graph operations. The
attribute of a graph vertex state indicates the fact
that the vertex has already been visited during the
process of the graph traversal. A line of the
algorithm text has one of the following states: dark
thin, light thin and thick. The first state means that
the instruction has been executed at least once.
The second state means that the current image and
the last shown visual effect is the result of this
instruction. The last state means that the
instruction has not been executed yet. The right
part of the figure displays the graph model, which
is a hierarchical graph with attributes. Only if this
attribute is set, the corresponding attribute will be
created during visualization. In this example, the
visited vertices get the state attribute that changes
the color of a vertex. Also, this attribute’s value
corresponds to the increase of line width showing
the graph vertex circle. Vertices shown in a thin
line have not been visited yet.

Displaying of additional data structures can
also be used to improve understanding of
visualization of a graph algorithm. For example, the
depth-first search algorithm uses a stack and the
breadth-first search algorithm visualization uses a
queue. The content of a stack or a queue can be
represented as a graph. Since the visualization
system allows us to use the hierarchical graphs, a
stack graph or a queue graph can be included
into a graph model for a particular visualization.
So the working graph model consists of a graph
with two vertices. The first vertex contains a stack
graph and the second contains an input graph. Such
graph model can be visualized with the created
module of the system of graph algorithm
visualization. The queue or stack size is changed
during execution of the given algorithm and the
corresponding vertices are added or removed from
the stack graph. Hierarchical graphs are helpful for
this purpose. If there is no stack or queue, then a
tree of fragments only consists of one fragment, the
input graph. For a stack the graph model consists of
three fragments: a root and two children. The first
child is the input graph and the second is a graph
representation of the stack. So, if the given
algorithm uses an input graph and N additional
structures, then the tree of fragments contains N+2
elements. It is a root element and its N+1 children,

WSEAS TRANSACTIONS on SYSTEMS V. N. Kasyanov

E-ISSN: 2224-2678 357 Issue 7, Volume 12, July 2013

one of which is the input graph and others are
graph representations of additional data structures.

6 Conclusion
In the paper, a practical and general graph
formalism of hierarchical graphs and graph models
was considered. It is suited for visual processing and
can be used in many areas where the visualization of
structural information is needed

The Higres system being a visualization tool and
an editor for attributed hierarchical graphs and a
platform for execution and animation of graph
algorithms was presented. The Visual Graph system
intended to visualize and explore large hierarchical
graphs that present the internal structured
information typically found in compilers was
considered. The ALVIS system which builds the
algorithm visualization with the help of a flexible
system of visual effects and using a visualized
graph algorithm as an input parameter was
described.

The described methods and systems will be used
in Web-Encyclopedia of Graph Algorithms
(WEGA) [33] which is under development on the
basis of our book [19] and is aimed to be not only a
reference manual on graph algorithms but also an
introduction to the graph theory and its applications
to computer science.

In contrast to Donald Knuth who used the
assembly language of the so-called MIX computer
in his fundamental books “The art of computer
programming”, we decided to use a high-level and
language-independent representation of graph
algorithms in our book and system. In our view,
such an approach is preferential, as it allows us to
describe algorithms in a form that admits direct
analysis of their correctness and complexity, as well
as a simple translation of algorithms to high-level
programming languages without disturbance of their
correctness and complexity. Besides, the described
approach allows the readers to understand an
algorithm at the informative level, to evaluate its
applicability to a specific problem, and to make all
its modifications needed for correct application of
the algorithm.

We also believe that visualization could be very
helpful for readers in understanding graph
algorithms, and we plan to embed capabilities of
interactive animation of graph algorithms which will
be described into the WEGA system.

The author is thankful to all colleagues taking
part in the projects described. The work was

partially supported by the Russian Foundation for
Basic Research (grant N 12-07-0091).

References:
[1] aiSee http://www.absint.com/aisee/
[2] U. Brandes, M.S. Marshall, and S.C. North,

Graph data format workshop report, Lecture
Notes in Computer Science, Vol. 1984, 2001,
pp. 410–418.

[3] F. Colas, J.-Y. Dieulot, P-J. Barre, P. Borne,
Dynamics modeling and causal ordering graph
representation of a non minimum phase flexible
arm fixed on a cart, WSEAS Transactions on
Computers, Vol. 5, Issue 1, 2006, p 225-232.

[4] C. Demetrescu, I. Finocchi, J.T. Stasko,
Specifying algorithm visualizations: interesting
events or state mapping? Lecture Notes in
Computer Science, Vol. 2269, 2002, pp.16–30.

[5] P. Eades, A heuristic for graph drawing,
Congressus Numerantium, Vol. 42, 1984,
pp. 149-160.

[6] Q.W. Feng, R.F. Cohen, P. Eades, Planarity for
clustered graphs, Lecture Notes in Computer
Science, Vol. 979, 1995, pp. 213-226.

[7] M. Fröhlich, M. Werner, Demonstration of the
interactive graph visualization system daVinci,
Lecture Notes in Computer Science, Vol. 959,
1995, pp. 266-269.

[8] D.S. Gordeev, Graph algorithm visualization:
interpretation of algorithm as a program,
Informatics in Research and Education,
Novosibirsk, 2012, pp. 149-160. (In Russian).

[9] D. Harel, On visual formalism, Comm. ACM,
Vol. 31, No. 5, 1988, pp. 514-530.

[10] M.S. Hecht, Flow Analysis of Computer
Programs, New York, Elsevier, 1977.

[11] I. Herman, G. Melançon, M.S. Marshall, Graph
visualization and navigation in information
visualization: a survey, IEEE Transactions on
Visualization and Computer Graphics, Vol. 6,
2000, pp. 24-43.

[12] Higres http://pco.iis.nsk.su/higres
[13] M. Himsolt, The Graphlet system (system

demonstration), Lecture Notes in Computer
Science, Vol. 1190, 1997, pp. 233-240.

[14] V.N. Kasyanov, Hierarchical graphs and graph
models: problems of visual processing,
Problems of Informatics Systems and
Programming, Novosibirsk, 1999, pp. 7-32. (In
Russian)

[15] V.N. Kasyanov, Support tools for graphs in
computer science, Proc. of the 15th ACM
SIGCSE Conference on Innovation and

WSEAS TRANSACTIONS on SYSTEMS V. N. Kasyanov

E-ISSN: 2224-2678 358 Issue 7, Volume 12, July 2013

http://www.absint.com/aisee/
http://pco.iis.nsk.su/higres

Technology in Computer Science Education
(ITiCSE 2010), ACM Press, 2010, p.315.

[16] V.N. Kasyanov, Information visualization on
the base of hierarchical graph models,
Advances in Applied Information Science.
Proc. of AIC’12 and BEBI’12, WSEAS Press,
2012, pp. 115-120.

[17] V.N. Kasyanov, Hierarchical graph models and
information visualization, Proceedings of the
2012 Third World Congress on Software
Engineering (WCSE 2012), IEEE Computer
Society, 2012, pp. 79-82.

[18] V.N. Kasyanov, V.A. Evstigneev, Graph
Theory for Programmers. Algorithms for
Processing Trees, Kluwer Academic Publ.,
2000.

[19] V.N. Kasyanov, V.A. Evstigneev, Graphs in
Programming: Processing, Visualization and
Application, St. Petersburg, BHV-Petersburg,
2003, 1104 p. (In Russian).

[20] V.N. Kasyanov, E.V. Kasyanova, A Web-based
system for distance learning of programming,
Lecture Notes in Electrical Engineering,
Vol. 27, 2009, pp. 453-462.

[21] V.N. Kasyanov, E.V. Kasyanova, Visualization
of Graphs and Graph Models, Novosibirsk,
Siberian Scientific Publ., 2010. (In Russian).

[22] V.N. Kasyanov, E.V. Kasyanova, Information
visualization based on graph models,
Enterprise Information Systems, Vol. 7, N 2,
2013, pp. 187-197.

[23] V.N. Kasyanov, I.A. Lisitsyn, Support tools for
hierarchical information visualization, Human-
Computer Interaction: Communication,
Cooperation and Application Design. Vol. 2.
Lawrence Erlbaum Associates Publ., London,
1999, pp.117 - 121.

[24] V.N. Kasyanov, I.A. Lisitsyn, Hierarchical
graph models and visual processing,
Proceedings of Conference on Software:
Theory and Practice. 16th IFIP World
Computer Congress 2000, Beijing, PHEI,
2000, pp. 179-182.

[25] V.N. Kasyanov, A.P. Stasenko, M.P.
Gluhankov, P.A. Dortman, K.A. Pyjov, A.I.
Sinyakov, SFP - an interactive visual
environment for supporting of functional
programming and supercomputing, WSEAS
Transactions on Computers, Vol. 5, Issue 9,
2006, pp. 2063-2069.

[26] A. Kerren and J. Stasko, Algorithm animation -
Introduction, Lecture Notes in Computer
Science, Vol. 2269, 2002, pp. 1-15.

[27] B. Madden, P. Madden, S. Powers, M. Himsolt,
Portable graph layout and editing, Lecture
Notes in Computer Science, Vol. 1027, 1996,
pp. 385-395.

[28] A. Mansoor, A graph based method for faster
display for distribution networks, WSEAS
Transactions on Computers, Vol. 7, Issue 6,
2008, pp. 620-629.

[29] F. Neri, Cooperative evolutive concept
learning: an empirical study, WSEAS
Transactions on Information Science and
Applications, Vol. 2, Issue 5, 2005, pp. 559-
563.

[30] G. Sander, Graph layout through the VCG tool,
Lecture Notes in Computer Science, Vol. 959,
1995, pp.194-205.

[31] K. Sugiyama, K. Misue, Visualization of
structured digraphs, IEEE Transactions on
Systems, Man and Cybernetics, Vol. 21, No. 4,
1999, pp. 876-892.

[32] Visual Graph
http://www.visualgraph.sourceforge.net

[33] WEGA http://pco.iis.nsk.su/WEGA/
[34] yEd http://www.yworks.com/en/

WSEAS TRANSACTIONS on SYSTEMS V. N. Kasyanov

E-ISSN: 2224-2678 359 Issue 7, Volume 12, July 2013

http://www.visualgraph.sourceforge.net/
http://pco.iis.nsk.su/WEGA/
http://www.yworks.com/en/

