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Abstract: - Currently, stock price forecasting is carried out using either time series prediction methods or trend 
classifiers. The trend classifiers are designed to predict the behaviour of stock price’s movement. Recently, soft 
computing methods, like support vector machines, have shown promising results in the realization of this particular 
problem. In this paper, we apply several prototype generation classifiers to predict the trend of the NASDAQ 
Composite index. We demonstrate that prototype generation classifiers outperform support vector machines and neural 
networks considering the hit ratio of correctly predicted trend directions.    
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1   Introduction 
Most of the studies dealing with stock price forecasting 
have been focused on the accurate prediction of the 
value of the underlying stock / stock market index and 
low attention is paid to the prediction of the trend 
(direction) of stock market index movement [1].  

As shown in preceding literature, this problem has to 
be perceived as complex since stock market index time 
series are highly non-linear with a changing volatility 
and many micro- and macroeconomic determinants. 
Therefore, several soft computing methods have been 
applied to address these issues. Especially, support 
vector machines (SVMs) [2] and related hybrid models 
have shown promising results due to its good 
generalization performance. Using soft computing 
methods such as SVMs and neural networks (NNs), it is 
possible to model the noise and non-linearity in the stock 
price time series. 

In this paper we will demonstrate that the behaviour 
of stock price’s movement can be effectively predicted 
using prototype generation classifiers. These methods 
are based on building new artificial prototypes from the 
training data set. In this way the performance of nearest 
neighbour based classification is improved. We 
hypothesise that the prediction of the stock market index 
trend can be derived from a set of prototypes generated 
from training patterns. We will show that these methods 
are significantly more accurate in the prediction of the 
NASDAQ Composite index movement compared to 

other soft computing and machine learning approaches 
such as NNs or SVMs. 

The remainder of the article is organized as follows. 
First, we present a brief review of related literature. 
Then, input variables based on technical analysis will be 
designed for the prediction model. Further, basic notions 
of prototype generation methods will be introduced. In 
the experimental results’ section, the performance of 
these methods is compared to selected models of NNs 
and SVMs. 

 
 

2   Literature Review 
The prevailing literature has dealt with the prediction of 
the value of the underlying stock so far. It has been 
proven that non-linear predictors from the fields of soft 
computing and machine learning are more accurate in 
forecasting stock prices, see e.g. [3]. For example, the 
capability of predicting power of multi-layer perceptron 
NN (MLP) compared to multivariate statistical methods 
was examined by Yoon and Swales [4]. In a similar 
manner, MLPs have been employed to predict Malaysian 
[5], Japanese [6] or American indexes [7]. The other 
architectures of NNs applied to stock price forecasting 
include generalized regression NNs [8], radial basis 
function (RBF) NNs [9, 10] and related SVMs [11]. 

The advantages of individual soft computing methods 
have further been examined in hybrid systems. Tsaih et 
al. [12] combined NNs with rule-based systems, Armano 
et al. [13] merged the advantages of NNs and genetic 
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algorithms, and Kuo et al. [14] employed genetic 
algorithm based fuzzy NN to formulate the knowledge 
base of fuzzy inference rules for Taiwan stock market. 
For similar reasons, traditional methods for time series 
analysis like ARIMA were combined with soft 
computing methods [15]. 

The other approach to stock market forecasting is 
represented by the prediction of the trend (direction) of 
stock market index movement. Contrary to the above 
mentioned studies this approach is a classification task 
where the target classes stand for positive / negative 
trend or buy / sell (buy / hold / sell) decision. The 
movement of the stock market index is calculated as 
(Pt+d - Pt)/Pt) for a d-day forecast.  

The classification problem requires different methods 
to be used compared to prediction (regression) one. 
Chang et al. [1] employed fuzzy decision trees to predict 
the trend in S&P 500 index. They found that this 
approach is significantly more accurate (with the hit 
ratio of 91.95%) compared to random walk (51.06%), 
ARIMA (56.13%) and MLP (69.78%). Moreover, it is 
reported that previous studies using SVMs [2], [16], and 
[17] were outperformed as well. Concretely, Kim [2] 
achieved the hit ratio of 78.65%, Yu et al. [17] 82.66% 
and Yu et al. [16] 84.57%. In a similar manner, evolving 
fuzzy decision trees were used to predict the trend of 
several stocks in Taiwan Stock Exchange Corporation 
[18]. 

Leung et al. [19] compared the performance of 
probabilistic NN (PRNN) against traditional statistical 
classifiers on several stock market indexes. PRNN 
outperformed discriminant analysis, Probit and Logit in 
the case of S&P 500 (63%) and FTSE 100 (61%) while 
discriminant analysis was more accurate for Nikkei 225 
stock market index (68%). 

By combining several methods including SVMs and 
MLPs, Huang et al. [20] achieved a higher accuracy of 
75% compared to individual classifiers (random walk 
50%, linear discriminant analysis 55%, quadratic 
discriminant analysis 69%, MLP 69% and SVM 73%).  
 
 

3   Data Set 
The original time series used in this study is depicted in 
Fig. 1. It represents the closing values of the NASDAQ 
Composite Index (IXIC) from 1.1.2007 to 31.12.2010, 
i.e. 4 years and 992 datum points. The stock market 
index IXIC experienced both slight and substantial 
increased and decreases during this time period. 

The indicators of technical analysis represent 
commonly used predictors of stock market movement. 
They are based on previous patterns drawn from stock 
price time series. In prior literature it has been shown 
that suitable combinations of technical indicators can 

relatively accurately detect the turns in stock price 
movement [21]. 
 

 
Fig. 1 NASDAQ Composite Index for the period 2007-

2010 
 

Therefore, we develop a set of technical indicators to 
predict the sign of the stock market index movement. 
We use the following technical indicators: 
 

• Simple moving average (SMA); 
• Weighted moving average (WMA); 
• Momentum (MOM); 
• Standard deviation (STD). 

    
They are defined in this way: 
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Moving averages emphasize the direction of a trend 
by smoothing out (eliminating) the price and volume 
fluctuations. The WMA indicator represents a 
convolution of values using the chosen weighting 
function. Here a central weighting function is used for 
n=5, where the weights decrease symmetrically in both 
directions from the central datum point. 
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The indicator MOM is developed to monitor and 

indentify cyclical fluctuations and short-term trends in 
the movement of stock prices. It is used to estimate the 
change the direction of the movement.  
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The indicator STD measures the difference between 

the closing price and SMA. Thus, the stock price nature 
of returning back to average price is analyzed. The 
technical indicators used in this study are presented in 
Fig. 2 – Fig. 5. The length of the period was set to n=5 
due to using working days’ values and to address related 
issues (the Monday Effect). 
 

 
Fig. 2 Simple moving average for n=5 

 

 
Fig. 3 Weighted moving average for n=5 

 
Thus, the forecasting model has the following form: 

 
yt+5 = f(Pt, SMAt,5,WMAt,5, MOMt,5, STDt,5),  (5) 
 
where  
 
yt+5 = (Pt+5 – Pt) / Pt     (6) 
 
and the target classes are defined as c1 if yt+5 > 0 (the 
positive sign of the trend) and c2 if yt+5 ≤ 0 (the negative 
sign of the trend). 

 
Fig. 4 Momentum for n=5 

 

 
Fig. 5 Standard deviation for n=5 

 
The aim of the developed model is to achieve the 

highest hit ratio (classification accuracy). Out of the total 
992 data samples, 559 were with a positive sign (class 
c1) and 433 with a negative sign (class c2). The output 
classes for the underlying time series is presented in 
Appendix A. 
 
 

3   Prototype Generation Methods 
The prototype generation models used in this study are 
based on nearest neighbour algorithm and its derivatives, 
for their overview see [22]. They are represented by the 
set of methods that predicts the target class from training 
data only and does not develop learning models. A wide 
range of problems have been modelled using the nearest 
neighbour based methods in the field of finance [23-26] 
and other research fields [27, 28].  
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In the 1-nearest neighbour classification, the most 
similar (with the lowest distance) neighbour is used to 
classify data samples. In the k-nearest neighbours (k-
NN), the predicted class is set to the most frequent true 
class among the k nearest training samples.  

To mention the drawbacks of the k-NN classifiers, 
they often suffer from high computational cost and low 
tolerance to noise. 

A successful approach to tackle the mentioned 
drawbacks is based on data reduction [29]. These 
techniques aim to obtain a representative training set 
with a lower size compared to the original one and with 
a similar or even higher classification accuracy [22]. 
This reduction can be realized using either prototype 
selection or prototype generation methods. In contrast to 
prototype selection methods, prototype generation 
methods aim at creating new artificial data which allows 
filling regions in the domain of the problem, which have 
no representative examples in original data.  

The overview of the prototype generation methods is 
presented in Appendix B. 

This taxonomy is based on several criteria. The first 
is type reduction. We can start with an empty set and add 
new prototypes (incremental) or start with an original set 
and reduce (modify) it (decremental). A mixed approach 
combines the two methods. Finally, fixed reduction is 
based on setting the final number of prototypes (usually 
as percentage retention of original data set). 

The resulting generation set may retain border 
(condensation), central (edition) or both types of points 
(hybrid). The generation mechanism may also be based 
on several approaches. Class relabeling approach aims to 
change the class labels of suspicious samples from the 
original data set. Centroid based technique merges 
similar samples into new artificial prototypes. Space 
splitting uses heuristics to partition the feature space. 
Finally, positioning adjustment aims to correct the 
position of a subset of prototypes. The search criterion 
depends on the use or non-use of k-NN in the evaluation 
process. In filter approach, the k-NN is not used at all, 
while in wrapper approach the k-NN fully guides the 
search process. 

The list of the applied prototype generation methods 
is presented in Table 1. 
 

4   Experimental Results 
For the experiments, data were divided into 10 parts of 
the same size and then trained with 9 parts and tested 
with 1 remaining part. This procedure was repeated 10 
times for all parts. In the results, we refer to mean 
classification accuracy (hit ratio) and standard deviation 
of this estimation.  

In Table 2, we present the results for the methods 
using positioning adjustment generation mechanism. In 
Table 3, there are resulting hit ratios and standard 

deviations for the remaining prototype generation 
methods. For the fixed reduction technique we tested 
percentage retention pr [%] for pr={10,40,70,100}. 
 
Table 1: The list of the used prototype generation 

methods with references 
Name Abbr. Ref. 
Learning vector quantization 1 LVQ1 [30] 
Learning vector quantization 2 LVQ2 [30] 
Learning vector quantization 3 LVQ3 [30] 
Decision support mapping DSM [31] 
Vector quantization VQ [32] 
Gradient descent and  
deterministic annealing 

MSE [33] 

Evolutionary nearest prototype ENPC [34] 
Prototype selection – clonal  
selection algorithm 

PSCSA [35] 

Particle swarm optimization PSO [36] 
Adaptive Michigan PSO AMPSO [37] 
Adaptive vector quantization AVQ [38] 
Modified Chang’s algorithm MCA [39] 
Chen algorithm Chen  [40] 
Bootstrap technique for 
nearest neighbour 

BTS3 [41] 

Generalized editing using 
nearest neighbour 

GENN [42] 

Generalized modified  
Chang’s algorithm 

GMCA [43] 

Integrated concept prototype 
learner 2 

ICPL2 [44] 

Adaptive condensing algorithm 
based on mixtures of  
Gaussians 

MixtGauss [45] 

Prototype nearest neighbour PNN [46] 
Pairwise opposite class  
nearest neighbour 

POC [47] 

Reduction by space  
partitioning 3 

RSP3 [48] 

Self-generating prototypes SGP [49] 
 

The methods using positioning adjustment were 
trained with the following setting of learning parameters. 
LVQ1: # iterations = 100, learning rate = 0.1; LVQ2: # 
iterations = 100, learning rate = 0.1, window width = 
0.2; LVQ3: # iterations = 100, learning rate = 0.1, 
window width = 0.2, stabilizing factor = 0.1; DSM: # 
iterations = 100, learning rate = 0.1; VQ: # iterations = 
100, learning rate = 0.1, size of neighbourhood for the k-
NN k = 1; MSE: k = 3, # initial centroids = 10, gradient 
step = 0.5, initial temperature = 100; ENPC: k = 3, 
maximum # iterations = 250; PSCSA: hypermutation 
rate = 2, clonal rate = 10, mutation rate = 0.01, 
stimulation threshold = 0.89, learning rate = 0.4; PSO: k 
= 1, swarm size = 20, particle size = 5%, maximum # 
iterations = 250, acceleration constant C1  =  1,  
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acceleration constant C2  =  3, maximum velocity of 
particles = 0.25, starting inertia weight = 1.5, ending 
inertia weight = 0.5; AMPSO: k = 1, swarm size = 10, 
maximum # iterations = 300, acceleration constant C1  =  
1,  acceleration constant C2  =  1, acceleration constant 
C3  =  0.5, maximum velocity of particles = 1, inertia 
weight = 0.1, constriction factor = 0.1, probability of 
reproduction = 0.1, probability of deletion = 0.0; AVQ: # 
iterations = 100, epsilon in the LBG algorithm = 0.1. 
 
Table 2: Hit ratios for positioning adjustment generation 

methods 

Method Hit ratio ± Std. Dev. 

LVQ1, pr=10% 60.66 ± 2.00 
LVQ1, pr=40% 65.29 ± 1.37 
LVQ1, pr=70% 66.23 ± 0.86 
LVQ1, pr=100% 68.14 ± 1.10 
LVQ2, pr=10% 63.22 ± 2.45 
LVQ2, pr=40% 62.90 ± 1.85 
LVQ2, pr=70% 63.34 ± 1.32 
LVQ2, pr=100% 63.64 ± 0.93 
LVQ3, pr=10% 62.13 ± 2.01 
LVQ3, pr=40% 66.30 ± 1.77 
LVQ3, pr=70% 67.78 ± 1.00 
LVQ3, pr=100% 69.04 ± 1.07 
DSM, pr=10% 63.81 ± 2.42 
DSM, pr=40% 66.79 ± 0.66 
DSM, pr=70% 69.06 ± 1.03 
DSM, pr=100% 69.69 ± 1.00 
VQ, pr=10% 61.02 ± 1.04 
VQ, pr=40% 62.01 ± 1.27 
VQ, pr=70% 63.19 ± 0.94 
VQ, pr=100% 64.45 ± 0.99 
MSE 64.82 ± 1.42 
ENPC 79.96 ± 1.07 

PSCSA 66.07 ± 1.84 
PSO 72.33 ± 1.04 
AMPSO 63.25 ± 1.47 
AVQ, pr=10% 55.77 ± 3.48 
AVQ, pr=40% 56.32 ± 6.49 
AVQ, pr=70% 56.48 ± 6.05 
AVQ, pr=100% 57.58 ± 6.53 

 
The prototype generation with positioning adjustment 

did not show good results compared to previous studies 
with regard to average hit ratio. This measure ranges 
from 55.77% (AVQ, pr=10%) to 79.96 (ENPC).  

The ENPC method outperformed the remaining 
positioning adjustment methods significantly (paired t-

test at p=0.05). This method uses five different operators 
of genetic algorithms to adjust the positions of the 
generated prototypes. These operators define regions in 
the search space. Then, in a mutation phase prototypes 
are re-labelled with the most populate class in each 
region of the search space. In order to refine the set of 
generated prototypes a reproduction operator is 
introduced to generate new prototypes. The move 
operator relocates each prototype in the best expected 
place, i.e. it is moved to the centroid of its region. 
Finally, a die operator is used to remove prototypes that 
are not relevant. In this process the k-NN algorithm is 
used to classify the data samples. 

Considering the percentage retention pr [%], it 
appears that highly complex models (with pr=70% or 
pr=100%) have to be constructed to predict the stock 
market index movement accurately. This implies that 
there are no sparse patterns presented in the data by 
which stock market index behaviour could be modelled 
effectively. Further, evolutionary based prototype 
generation methods such as ENPC and PSO 
outperformed the remaining positioning adjustment 
methods. 

 
Table 3: Hit ratios for the rest of prototype generation 

methods 

Method Hit ratio ± Std. Dev. 

MCA 92.05 ± 0.52 

Chen, pr=10% 69.02 ± 0.75 
Chen, pr=40% 74.44 ± 0.99 
Chen, pr=70% 66.67 ± 1.31 
Chen, pr=100% 64.42 ± 0.86 
BTS3, pr=10% 62.50 ± 1.38 
BTS3, pr=40% 64.08 ± 1.03 
BTS3, pr=70% 65.85 ± 0.72 
BTS3, pr=100% 65.24 ± 0.75 
GENN 73.44 ± 0.93 
GMCA 81.03 ± 1.14 
ICPL2 71.07 ± 0.75 
MixtGauss 60.29 ± 0.44 
PNN 62.33 ± 1.59 
POC 50.04 ± 1.48 
RSP3 76.95 ± 0.77 
SGP 52.86 ± 3.22 

 
The methods using other generation mechanisms 

were trained with the following setting of learning 
parameters. MCA: no parameters; Chen: no parameters; 
BTS3: k = 1, random trials = 3; GENN: k = 2; GMCA: 
no parameters; ICPL2: # algorithms = 4, k = 3, filtering 
method = ENN, threshold for ACC filtering = 1; 

WSEAS TRANSACTIONS on SYSTEMS Petr Hájek

E-ISSN: 2224-2678 675 Issue 12, Volume 11, December 2012



MixtGauss: particle size = 5%; PNN: no parameters; 
POC: replacing method, learning rate = 0.2; RSP3: 
diameter subsets choice; SGP: pruning model. 

The best results were provided by the MCA method 
with the average hit ratio of 92.05%. Both modified 
Chang’s algorithms MCA and GMCA performed better 
than the best positioning adjustment method ENPC. 
These algorithms are centroid based techniques and 
work decrementally. The PNN and MCA share the same 
idea, concretely initialize resulting set with original set, 
and merge prototypes while classification accuracy does 
not decrease. The MCA method uses a distance matrix 
by classes to merge prototypes of the same class. 

Finally, we compared the results obtained using 
prototype generation methods with selected models of 
NNs (MLP, RBF and probabilistic neural network 
(PRNN)) and SVMs [50-52]. Since the results of NNs 
and SVMs are sensitive to the setting of learning 
parameters we automatically determined their values in 
the following way. 

The MLP model was trained using conjugate gradient 
method with 10000 maximum iterations. Logistic 
activation functions were used in both hidden and output 
layer. The number of neurons (showing on the 
complexity of the MLP model) in one hidden layer was 
set from the set {2, 3, … , 20}.  

The parameters of the RBF model was determined 
automatically using a genetic algorithm. The number of 
neurons in the hidden layer was chosen from the set    
{1, 2, … , 100}, the radius of RBF from <0.01, 400> and 
lambda from <0.001, 10>. The employed genetic 
algorithm worked with the population size of 200 and 
the maximum number of generations = 20.  

In the PRNN, Gaussian kernel function was used with 
radius set for each variable individually from the set 
<0.0001, 10>. 

The C-SVM algorithm was employed with linear, 
polynomial (degree = 3) and RBF kernel functions to 
predict the trend of the IXIC stock market index. The 
RBF kernel function proved to be the most appropriate 
for the prediction. Complexity parameter C was chosen 
from the interval <0.1, 50000> and gamma from <0.01, 
20> using pattern search algorithm [53]. 

The results presented in Table 4 show that there is no 
significant difference in the performance across NNs and 
SVMs. The hit ratio of 71.27% for the MLP was 
achieved with only 4 neurons in the hidden layer. Thus, 
there is no need to develop highly complex MLPs for the 
prediction of stock market index movement. However, 
the performance of NNs and SVMs is significantly 
worse compared to the MCA and several other prototype 
generation methods. 
 
 

Table 4: Comparison of prediction performance across 
NNs and SVMs 

Method Hit ratio ± Std. Dev. 
MLP 
(# neurons = 4) 

71.27 ± 0.93 

RBF 
(# neurons = 36) 

69.96 ± 1.71 

PRNN 71.17 ± 0.81 
SVM 
(C = 967, gamma = 0.14,  
# support vectors = 646) 

70.87 ± 0.88 

 
 
5   Conclusion 
The article presents a forecasting model based on 
prototype generation classifiers. We examined the hit 
ratio of selected methods on the NASDAQ Composite 
stock market index.  

Based on the obtained results we draw the following 
conclusions. 

(1) Forecasting stock market index trend represents a 
complex and nonlinear problem (see e.g. [54]) where at 
least 70% of original data samples (or their 
modifications) has to be retained to achieve a high hit 
ratio. 

(2) Decremental reduction of the set of prototypes is 
more effective than the incremental type of reduction. 
That implies that patterns necessary for stock market 
index movement prediction are present in the original 
data set. It is only necessary to merge the data samples 
with the same target class and, thus, generate new 
artificial prototypes representing these regions in the 
search space. 

(3) Prototype generation classifiers were significantly 
more accurate compared to NNs and SVMs. The 
comparison with previous studies is difficult to assess 
since different time series were used (different time 
horizon, stock market index, inputs, etc.). However, our 
results are in line with [1], [16] and [17] since similar hit 
ratios were obtained for MLPs and SVMs. From this fact 
we may infer that the complexity of the stock market 
index trend forecasting is similar in an international 
scale. Moreover, using prototype generation methods 
seem to be a promising tool for this particular problem 
since they provided equal or better performance 
compared to the methods used in the mentioned prior 
studies such as random walk, SVMs, fuzzy decision 
trees or psychological line [1, 55].  

The hit ratio (buy or sell) of the historical stock 
market index data could be detected with a high 
accuracy (92.05%) using the MCA method especially. 
Thus, this system might help investors to make better 
decision in trading stocks. 
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In the future, the proposed methods can be further 
investigated in several directions: more stock market 
indexes should be examined to verify the results; 
combinations (ensembles) of patterns obtained by 
individual prototype generation methods can be applied 
to get a more accurate forecasting system (see e.g. [56]); 
more diverse set of inputs can be examined taking into 
account also macroeconomic determinants of stock 
market indexes (see e.g. [57-59]); and, finally, the 
forecasting system may be combined with an agent 
based model to simulate the financial market more 
effectively [60, 61]. The two-class classification problem 
addressed in this paper can also be easily extended to a 
multi-class problem where buy / hold / sell may 
represent the target classes.  

The experiments in this study were carried out in 
Keel 2.0 and DTREG in MS Windows 7 operation 
system. 
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Appendix A: Target classes of the forecasting model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Legend: stock index trend = 1 stands for a positive trend (class c1) and stock index trend = 0 represents a negative trend 
(class c2)  

 

Appendix B: Overview of the used prototype generation classifiers 
 

 
Source: [22] 
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