
Forecasting Stock Market Trend using Prototype Generation Classifiers

PETR HÁJEK
Institute of System Engineering and Informatics

Faculty of Economics and Administration
University of Pardubice

Studentská 84, 532 10 Pardubice
CZECH REPUBLIC
petr.hajek@upce.cz

Abstract: - Currently, stock price forecasting is carried out using either time series prediction methods or trend
classifiers. The trend classifiers are designed to predict the behaviour of stock price’s movement. Recently, soft
computing methods, like support vector machines, have shown promising results in the realization of this particular
problem. In this paper, we apply several prototype generation classifiers to predict the trend of the NASDAQ
Composite index. We demonstrate that prototype generation classifiers outperform support vector machines and neural
networks considering the hit ratio of correctly predicted trend directions.

Key-Words: - Stock price, stock market index, forecasting, prediction, learning vector quantization, prototype
generation, support vector machines, neural networks, particle swarm optimization.

1 Introduction
Most of the studies dealing with stock price forecasting
have been focused on the accurate prediction of the
value of the underlying stock / stock market index and
low attention is paid to the prediction of the trend
(direction) of stock market index movement [1].

As shown in preceding literature, this problem has to
be perceived as complex since stock market index time
series are highly non-linear with a changing volatility
and many micro- and macroeconomic determinants.
Therefore, several soft computing methods have been
applied to address these issues. Especially, support
vector machines (SVMs) [2] and related hybrid models
have shown promising results due to its good
generalization performance. Using soft computing
methods such as SVMs and neural networks (NNs), it is
possible to model the noise and non-linearity in the stock
price time series.

In this paper we will demonstrate that the behaviour
of stock price’s movement can be effectively predicted
using prototype generation classifiers. These methods
are based on building new artificial prototypes from the
training data set. In this way the performance of nearest
neighbour based classification is improved. We
hypothesise that the prediction of the stock market index
trend can be derived from a set of prototypes generated
from training patterns. We will show that these methods
are significantly more accurate in the prediction of the
NASDAQ Composite index movement compared to

other soft computing and machine learning approaches
such as NNs or SVMs.

The remainder of the article is organized as follows.
First, we present a brief review of related literature.
Then, input variables based on technical analysis will be
designed for the prediction model. Further, basic notions
of prototype generation methods will be introduced. In
the experimental results’ section, the performance of
these methods is compared to selected models of NNs
and SVMs.

2 Literature Review
The prevailing literature has dealt with the prediction of
the value of the underlying stock so far. It has been
proven that non-linear predictors from the fields of soft
computing and machine learning are more accurate in
forecasting stock prices, see e.g. [3]. For example, the
capability of predicting power of multi-layer perceptron
NN (MLP) compared to multivariate statistical methods
was examined by Yoon and Swales [4]. In a similar
manner, MLPs have been employed to predict Malaysian
[5], Japanese [6] or American indexes [7]. The other
architectures of NNs applied to stock price forecasting
include generalized regression NNs [8], radial basis
function (RBF) NNs [9, 10] and related SVMs [11].

The advantages of individual soft computing methods
have further been examined in hybrid systems. Tsaih et
al. [12] combined NNs with rule-based systems, Armano
et al. [13] merged the advantages of NNs and genetic

WSEAS TRANSACTIONS on SYSTEMS Petr Hájek

E-ISSN: 2224-2678 671 Issue 12, Volume 11, December 2012

algorithms, and Kuo et al. [14] employed genetic
algorithm based fuzzy NN to formulate the knowledge
base of fuzzy inference rules for Taiwan stock market.
For similar reasons, traditional methods for time series
analysis like ARIMA were combined with soft
computing methods [15].

The other approach to stock market forecasting is
represented by the prediction of the trend (direction) of
stock market index movement. Contrary to the above
mentioned studies this approach is a classification task
where the target classes stand for positive / negative
trend or buy / sell (buy / hold / sell) decision. The
movement of the stock market index is calculated as
(Pt+d - Pt)/Pt) for a d-day forecast.

The classification problem requires different methods
to be used compared to prediction (regression) one.
Chang et al. [1] employed fuzzy decision trees to predict
the trend in S&P 500 index. They found that this
approach is significantly more accurate (with the hit
ratio of 91.95%) compared to random walk (51.06%),
ARIMA (56.13%) and MLP (69.78%). Moreover, it is
reported that previous studies using SVMs [2], [16], and
[17] were outperformed as well. Concretely, Kim [2]
achieved the hit ratio of 78.65%, Yu et al. [17] 82.66%
and Yu et al. [16] 84.57%. In a similar manner, evolving
fuzzy decision trees were used to predict the trend of
several stocks in Taiwan Stock Exchange Corporation
[18].

Leung et al. [19] compared the performance of
probabilistic NN (PRNN) against traditional statistical
classifiers on several stock market indexes. PRNN
outperformed discriminant analysis, Probit and Logit in
the case of S&P 500 (63%) and FTSE 100 (61%) while
discriminant analysis was more accurate for Nikkei 225
stock market index (68%).

By combining several methods including SVMs and
MLPs, Huang et al. [20] achieved a higher accuracy of
75% compared to individual classifiers (random walk
50%, linear discriminant analysis 55%, quadratic
discriminant analysis 69%, MLP 69% and SVM 73%).

3 Data Set
The original time series used in this study is depicted in
Fig. 1. It represents the closing values of the NASDAQ
Composite Index (IXIC) from 1.1.2007 to 31.12.2010,
i.e. 4 years and 992 datum points. The stock market
index IXIC experienced both slight and substantial
increased and decreases during this time period.

The indicators of technical analysis represent
commonly used predictors of stock market movement.
They are based on previous patterns drawn from stock
price time series. In prior literature it has been shown
that suitable combinations of technical indicators can

relatively accurately detect the turns in stock price
movement [21].

Fig. 1 NASDAQ Composite Index for the period 2007-

2010

Therefore, we develop a set of technical indicators to
predict the sign of the stock market index movement.
We use the following technical indicators:

• Simple moving average (SMA);
• Weighted moving average (WMA);
• Momentum (MOM);
• Standard deviation (STD).

They are defined in this way:

∑=
=

n

t
ntnt P

n
SMA

1
,,

1
, (1)

where n is the number of the datum points (period) and
Pt,n is the closing price in the t-th day.

)31217123(
35
1

21125, ++−
+

−
−++−= tttttt PPPPPWMA .

 (2)

Moving averages emphasize the direction of a trend
by smoothing out (eliminating) the price and volume
fluctuations. The WMA indicator represents a
convolution of values using the chosen weighting
function. Here a central weighting function is used for
n=5, where the weights decrease symmetrically in both
directions from the central datum point.

100)(, ×=
−

− nttnt PPMOM . (3)

The indicator MOM is developed to monitor and

indentify cyclical fluctuations and short-term trends in
the movement of stock prices. It is used to estimate the
change the direction of the movement.

WSEAS TRANSACTIONS on SYSTEMS Petr Hájek

E-ISSN: 2224-2678 672 Issue 12, Volume 11, December 2012

n

SMAP
STD

n

t
ntt

nt

∑
=

−

= 1
,

,

2)(
. (4)

The indicator STD measures the difference between

the closing price and SMA. Thus, the stock price nature
of returning back to average price is analyzed. The
technical indicators used in this study are presented in
Fig. 2 – Fig. 5. The length of the period was set to n=5
due to using working days’ values and to address related
issues (the Monday Effect).

Fig. 2 Simple moving average for n=5

Fig. 3 Weighted moving average for n=5

Thus, the forecasting model has the following form:

yt+5 = f(Pt, SMAt,5,WMAt,5, MOMt,5, STDt,5), (5)

where

yt+5 = (Pt+5 – Pt) / Pt (6)

and the target classes are defined as c1 if yt+5 > 0 (the
positive sign of the trend) and c2 if yt+5 ≤ 0 (the negative
sign of the trend).

Fig. 4 Momentum for n=5

Fig. 5 Standard deviation for n=5

The aim of the developed model is to achieve the

highest hit ratio (classification accuracy). Out of the total
992 data samples, 559 were with a positive sign (class
c1) and 433 with a negative sign (class c2). The output
classes for the underlying time series is presented in
Appendix A.

3 Prototype Generation Methods
The prototype generation models used in this study are
based on nearest neighbour algorithm and its derivatives,
for their overview see [22]. They are represented by the
set of methods that predicts the target class from training
data only and does not develop learning models. A wide
range of problems have been modelled using the nearest
neighbour based methods in the field of finance [23-26]
and other research fields [27, 28].

WSEAS TRANSACTIONS on SYSTEMS Petr Hájek

E-ISSN: 2224-2678 673 Issue 12, Volume 11, December 2012

In the 1-nearest neighbour classification, the most
similar (with the lowest distance) neighbour is used to
classify data samples. In the k-nearest neighbours (k-
NN), the predicted class is set to the most frequent true
class among the k nearest training samples.

To mention the drawbacks of the k-NN classifiers,
they often suffer from high computational cost and low
tolerance to noise.

A successful approach to tackle the mentioned
drawbacks is based on data reduction [29]. These
techniques aim to obtain a representative training set
with a lower size compared to the original one and with
a similar or even higher classification accuracy [22].
This reduction can be realized using either prototype
selection or prototype generation methods. In contrast to
prototype selection methods, prototype generation
methods aim at creating new artificial data which allows
filling regions in the domain of the problem, which have
no representative examples in original data.

The overview of the prototype generation methods is
presented in Appendix B.

This taxonomy is based on several criteria. The first
is type reduction. We can start with an empty set and add
new prototypes (incremental) or start with an original set
and reduce (modify) it (decremental). A mixed approach
combines the two methods. Finally, fixed reduction is
based on setting the final number of prototypes (usually
as percentage retention of original data set).

The resulting generation set may retain border
(condensation), central (edition) or both types of points
(hybrid). The generation mechanism may also be based
on several approaches. Class relabeling approach aims to
change the class labels of suspicious samples from the
original data set. Centroid based technique merges
similar samples into new artificial prototypes. Space
splitting uses heuristics to partition the feature space.
Finally, positioning adjustment aims to correct the
position of a subset of prototypes. The search criterion
depends on the use or non-use of k-NN in the evaluation
process. In filter approach, the k-NN is not used at all,
while in wrapper approach the k-NN fully guides the
search process.

The list of the applied prototype generation methods
is presented in Table 1.

4 Experimental Results
For the experiments, data were divided into 10 parts of
the same size and then trained with 9 parts and tested
with 1 remaining part. This procedure was repeated 10
times for all parts. In the results, we refer to mean
classification accuracy (hit ratio) and standard deviation
of this estimation.

In Table 2, we present the results for the methods
using positioning adjustment generation mechanism. In
Table 3, there are resulting hit ratios and standard

deviations for the remaining prototype generation
methods. For the fixed reduction technique we tested
percentage retention pr [%] for pr={10,40,70,100}.

Table 1: The list of the used prototype generation

methods with references
Name Abbr. Ref.
Learning vector quantization 1 LVQ1 [30]
Learning vector quantization 2 LVQ2 [30]
Learning vector quantization 3 LVQ3 [30]
Decision support mapping DSM [31]
Vector quantization VQ [32]
Gradient descent and
deterministic annealing

MSE [33]

Evolutionary nearest prototype ENPC [34]
Prototype selection – clonal
selection algorithm

PSCSA [35]

Particle swarm optimization PSO [36]
Adaptive Michigan PSO AMPSO [37]
Adaptive vector quantization AVQ [38]
Modified Chang’s algorithm MCA [39]
Chen algorithm Chen [40]
Bootstrap technique for
nearest neighbour

BTS3 [41]

Generalized editing using
nearest neighbour

GENN [42]

Generalized modified
Chang’s algorithm

GMCA [43]

Integrated concept prototype
learner 2

ICPL2 [44]

Adaptive condensing algorithm
based on mixtures of
Gaussians

MixtGauss [45]

Prototype nearest neighbour PNN [46]
Pairwise opposite class
nearest neighbour

POC [47]

Reduction by space
partitioning 3

RSP3 [48]

Self-generating prototypes SGP [49]

The methods using positioning adjustment were
trained with the following setting of learning parameters.
LVQ1: # iterations = 100, learning rate = 0.1; LVQ2: #
iterations = 100, learning rate = 0.1, window width =
0.2; LVQ3: # iterations = 100, learning rate = 0.1,
window width = 0.2, stabilizing factor = 0.1; DSM: #
iterations = 100, learning rate = 0.1; VQ: # iterations =
100, learning rate = 0.1, size of neighbourhood for the k-
NN k = 1; MSE: k = 3, # initial centroids = 10, gradient
step = 0.5, initial temperature = 100; ENPC: k = 3,
maximum # iterations = 250; PSCSA: hypermutation
rate = 2, clonal rate = 10, mutation rate = 0.01,
stimulation threshold = 0.89, learning rate = 0.4; PSO: k
= 1, swarm size = 20, particle size = 5%, maximum #
iterations = 250, acceleration constant C1 = 1,

WSEAS TRANSACTIONS on SYSTEMS Petr Hájek

E-ISSN: 2224-2678 674 Issue 12, Volume 11, December 2012

acceleration constant C2 = 3, maximum velocity of
particles = 0.25, starting inertia weight = 1.5, ending
inertia weight = 0.5; AMPSO: k = 1, swarm size = 10,
maximum # iterations = 300, acceleration constant C1 =
1, acceleration constant C2 = 1, acceleration constant
C3 = 0.5, maximum velocity of particles = 1, inertia
weight = 0.1, constriction factor = 0.1, probability of
reproduction = 0.1, probability of deletion = 0.0; AVQ: #
iterations = 100, epsilon in the LBG algorithm = 0.1.

Table 2: Hit ratios for positioning adjustment generation

methods

Method Hit ratio ± Std. Dev.

LVQ1, pr=10% 60.66 ± 2.00
LVQ1, pr=40% 65.29 ± 1.37
LVQ1, pr=70% 66.23 ± 0.86
LVQ1, pr=100% 68.14 ± 1.10
LVQ2, pr=10% 63.22 ± 2.45
LVQ2, pr=40% 62.90 ± 1.85
LVQ2, pr=70% 63.34 ± 1.32
LVQ2, pr=100% 63.64 ± 0.93
LVQ3, pr=10% 62.13 ± 2.01
LVQ3, pr=40% 66.30 ± 1.77
LVQ3, pr=70% 67.78 ± 1.00
LVQ3, pr=100% 69.04 ± 1.07
DSM, pr=10% 63.81 ± 2.42
DSM, pr=40% 66.79 ± 0.66
DSM, pr=70% 69.06 ± 1.03
DSM, pr=100% 69.69 ± 1.00
VQ, pr=10% 61.02 ± 1.04
VQ, pr=40% 62.01 ± 1.27
VQ, pr=70% 63.19 ± 0.94
VQ, pr=100% 64.45 ± 0.99
MSE 64.82 ± 1.42
ENPC 79.96 ± 1.07

PSCSA 66.07 ± 1.84
PSO 72.33 ± 1.04
AMPSO 63.25 ± 1.47
AVQ, pr=10% 55.77 ± 3.48
AVQ, pr=40% 56.32 ± 6.49
AVQ, pr=70% 56.48 ± 6.05
AVQ, pr=100% 57.58 ± 6.53

The prototype generation with positioning adjustment

did not show good results compared to previous studies
with regard to average hit ratio. This measure ranges
from 55.77% (AVQ, pr=10%) to 79.96 (ENPC).

The ENPC method outperformed the remaining
positioning adjustment methods significantly (paired t-

test at p=0.05). This method uses five different operators
of genetic algorithms to adjust the positions of the
generated prototypes. These operators define regions in
the search space. Then, in a mutation phase prototypes
are re-labelled with the most populate class in each
region of the search space. In order to refine the set of
generated prototypes a reproduction operator is
introduced to generate new prototypes. The move
operator relocates each prototype in the best expected
place, i.e. it is moved to the centroid of its region.
Finally, a die operator is used to remove prototypes that
are not relevant. In this process the k-NN algorithm is
used to classify the data samples.

Considering the percentage retention pr [%], it
appears that highly complex models (with pr=70% or
pr=100%) have to be constructed to predict the stock
market index movement accurately. This implies that
there are no sparse patterns presented in the data by
which stock market index behaviour could be modelled
effectively. Further, evolutionary based prototype
generation methods such as ENPC and PSO
outperformed the remaining positioning adjustment
methods.

Table 3: Hit ratios for the rest of prototype generation

methods

Method Hit ratio ± Std. Dev.

MCA 92.05 ± 0.52

Chen, pr=10% 69.02 ± 0.75
Chen, pr=40% 74.44 ± 0.99
Chen, pr=70% 66.67 ± 1.31
Chen, pr=100% 64.42 ± 0.86
BTS3, pr=10% 62.50 ± 1.38
BTS3, pr=40% 64.08 ± 1.03
BTS3, pr=70% 65.85 ± 0.72
BTS3, pr=100% 65.24 ± 0.75
GENN 73.44 ± 0.93
GMCA 81.03 ± 1.14
ICPL2 71.07 ± 0.75
MixtGauss 60.29 ± 0.44
PNN 62.33 ± 1.59
POC 50.04 ± 1.48
RSP3 76.95 ± 0.77
SGP 52.86 ± 3.22

The methods using other generation mechanisms

were trained with the following setting of learning
parameters. MCA: no parameters; Chen: no parameters;
BTS3: k = 1, random trials = 3; GENN: k = 2; GMCA:
no parameters; ICPL2: # algorithms = 4, k = 3, filtering
method = ENN, threshold for ACC filtering = 1;

WSEAS TRANSACTIONS on SYSTEMS Petr Hájek

E-ISSN: 2224-2678 675 Issue 12, Volume 11, December 2012

MixtGauss: particle size = 5%; PNN: no parameters;
POC: replacing method, learning rate = 0.2; RSP3:
diameter subsets choice; SGP: pruning model.

The best results were provided by the MCA method
with the average hit ratio of 92.05%. Both modified
Chang’s algorithms MCA and GMCA performed better
than the best positioning adjustment method ENPC.
These algorithms are centroid based techniques and
work decrementally. The PNN and MCA share the same
idea, concretely initialize resulting set with original set,
and merge prototypes while classification accuracy does
not decrease. The MCA method uses a distance matrix
by classes to merge prototypes of the same class.

Finally, we compared the results obtained using
prototype generation methods with selected models of
NNs (MLP, RBF and probabilistic neural network
(PRNN)) and SVMs [50-52]. Since the results of NNs
and SVMs are sensitive to the setting of learning
parameters we automatically determined their values in
the following way.

The MLP model was trained using conjugate gradient
method with 10000 maximum iterations. Logistic
activation functions were used in both hidden and output
layer. The number of neurons (showing on the
complexity of the MLP model) in one hidden layer was
set from the set {2, 3, … , 20}.

The parameters of the RBF model was determined
automatically using a genetic algorithm. The number of
neurons in the hidden layer was chosen from the set
{1, 2, … , 100}, the radius of RBF from <0.01, 400> and
lambda from <0.001, 10>. The employed genetic
algorithm worked with the population size of 200 and
the maximum number of generations = 20.

In the PRNN, Gaussian kernel function was used with
radius set for each variable individually from the set
<0.0001, 10>.

The C-SVM algorithm was employed with linear,
polynomial (degree = 3) and RBF kernel functions to
predict the trend of the IXIC stock market index. The
RBF kernel function proved to be the most appropriate
for the prediction. Complexity parameter C was chosen
from the interval <0.1, 50000> and gamma from <0.01,
20> using pattern search algorithm [53].

The results presented in Table 4 show that there is no
significant difference in the performance across NNs and
SVMs. The hit ratio of 71.27% for the MLP was
achieved with only 4 neurons in the hidden layer. Thus,
there is no need to develop highly complex MLPs for the
prediction of stock market index movement. However,
the performance of NNs and SVMs is significantly
worse compared to the MCA and several other prototype
generation methods.

Table 4: Comparison of prediction performance across
NNs and SVMs

Method Hit ratio ± Std. Dev.
MLP
(# neurons = 4)

71.27 ± 0.93

RBF
(# neurons = 36)

69.96 ± 1.71

PRNN 71.17 ± 0.81
SVM
(C = 967, gamma = 0.14,
support vectors = 646)

70.87 ± 0.88

5 Conclusion
The article presents a forecasting model based on
prototype generation classifiers. We examined the hit
ratio of selected methods on the NASDAQ Composite
stock market index.

Based on the obtained results we draw the following
conclusions.

(1) Forecasting stock market index trend represents a
complex and nonlinear problem (see e.g. [54]) where at
least 70% of original data samples (or their
modifications) has to be retained to achieve a high hit
ratio.

(2) Decremental reduction of the set of prototypes is
more effective than the incremental type of reduction.
That implies that patterns necessary for stock market
index movement prediction are present in the original
data set. It is only necessary to merge the data samples
with the same target class and, thus, generate new
artificial prototypes representing these regions in the
search space.

(3) Prototype generation classifiers were significantly
more accurate compared to NNs and SVMs. The
comparison with previous studies is difficult to assess
since different time series were used (different time
horizon, stock market index, inputs, etc.). However, our
results are in line with [1], [16] and [17] since similar hit
ratios were obtained for MLPs and SVMs. From this fact
we may infer that the complexity of the stock market
index trend forecasting is similar in an international
scale. Moreover, using prototype generation methods
seem to be a promising tool for this particular problem
since they provided equal or better performance
compared to the methods used in the mentioned prior
studies such as random walk, SVMs, fuzzy decision
trees or psychological line [1, 55].

The hit ratio (buy or sell) of the historical stock
market index data could be detected with a high
accuracy (92.05%) using the MCA method especially.
Thus, this system might help investors to make better
decision in trading stocks.

WSEAS TRANSACTIONS on SYSTEMS Petr Hájek

E-ISSN: 2224-2678 676 Issue 12, Volume 11, December 2012

In the future, the proposed methods can be further
investigated in several directions: more stock market
indexes should be examined to verify the results;
combinations (ensembles) of patterns obtained by
individual prototype generation methods can be applied
to get a more accurate forecasting system (see e.g. [56]);
more diverse set of inputs can be examined taking into
account also macroeconomic determinants of stock
market indexes (see e.g. [57-59]); and, finally, the
forecasting system may be combined with an agent
based model to simulate the financial market more
effectively [60, 61]. The two-class classification problem
addressed in this paper can also be easily extended to a
multi-class problem where buy / hold / sell may
represent the target classes.

The experiments in this study were carried out in
Keel 2.0 and DTREG in MS Windows 7 operation
system.

References:

 [1] P.Ch. Chang, Ch.Y. Fan, J.L. Lin, Trend
Discovery in Financial Time series Data using a
Case based Fuzzy Decision Tree, Expert Systems
with Applications, Issue 5, Vol.38, 2011,
pp.6070–6080.

 [2] K.J. Kim, Financial Time Series Forecasting using
Support Vector Machines, Neurocomputing,
Vol.55, 2003, pp.307–319.

 [3] G. Zhang, B.E. Patuwo, M.Y. Hu, Forecasting
with Artificial Neural Networks: The State of the
Art, International Journal of Forecasting, Vol.
14, 1998, pp.35–62.

 [4] Y. Yoon, J. Swales, Prediction Stock Price
Performance: A Neural Network Approach,
Proceedings of the 24th Annual Hawaii

International Conference on System Science,
pp.156–162.

 [5] J. Yao, H.L. Poh, Forecasting the KLSE Index
using Neural Networks, IEEE International

Conference on Neural Networks, Vol.2, 1995,
pp.1012–1017.

 [6] N. Baba, M. Kozaki, An Intelligent Forecasting
System of Stock Price using Neural Networks,
International Joint Conference on Neural

Networks, Vol.1, 1992, pp.371–377.
 [7] J.H. Choi, M.K. Lee, M.W. Rhee, Trading S&P

500 Stock Index Futures using a Neural Network,
Proceedings of the Annual International

Conference on Artificial Intelligence Applications

on Wall Street, New York, 1995, pp.63–72.
 [8] D. Enke, S. Thawornwong, The Use of Data

Mining and Neural Networks for Forecasting
Stock Market Returns, Expert Systems with
Applications, Issue 4, Vol.29, 2005, pp.927–940.

 [9] X.B. Yan, Z. Wang, S. Yu, Y. Li, Time Series
Forecasting with RBF Neural Network,
Proceedings of the Fourth International

Conference on Machine Learning and

Cybernetics, Guangzhou, Vol.8, 2005 pp.4680–
4683.

[10] K. Chen, H. Lin, T. Huang, The Prediction of
Taiwan 10-year Government Bond Yield, WSEAS
Transactions on Systems, Issue 9, Vol.8, 2009,
pp.1051–1060.

[11] L.J. Cao , F.E.H. Tay, Support Vector Machine
with Adaptive Parameters in Financial Time
Series Forecasting, IEEE Transactions on Neural
Networks, Issue 6, Vol.14, 2003, pp.1506–1518.

[12] R. Tsaih, Y. Hsu, C.C. Lai, Forecasting S&P 500
Stock Index Futures with a Hybrid AI System,
Decision Support Systems, Issue 2, Vol.23, 1998,
pp.161–174.

[13] G. Armano, M. Marchesi, A. Murru, A Hybrid
Genetic-Neural Architecture for Stock Indexes
Forecasting, Information Science, Issue 1,
Vol.170, 2005, pp.3–33.

[14] R.J. Kuo, C.H. Chen, Y.C. Hwang, An Intelligent
Stock Trading Decision Support System through
Integration of Genetic Algorithm based Fuzzy
Neural Network and Artificial Neural Network,
Fuzzy Sets and Systems, Issue 1, Vol.118, 2001,
pp.21–45.

[15] P.F. Pai, CH.S. Lin, A hybrid ARIMA and
Support Vector Machines Model in Stock Price
Forecasting, Omega, Issue 6, Vol.33, 2005,
pp.497–505.

[16] L. Yu, S.Y. Wang, K.K. Lai, Mining Stock
Market Tendency using GA based Support Vector
Machines, Lecture Notes in Computer Science,
Vol.3828, 2005, pp.336–345.

[17] L. Yu, H. Chen, S. Wang, K.K. Lai, Evolving
Least Squares Support Vector Machines for Stock
Market Trend Mining, IEEE Transactions on
Evolutionary Computation, Issue 1, Vol.13, 2009,
pp.87–102.

[18] R.K. Lai, Ch.Y. Fan, W.H. Huang, P.Ch. Chang,
Evolving and Clustering Fuzzy Decision Tree for
Financial Time Series Data Forecasting, Expert
Systems with Applications, Vol.36, 2009,
pp.3761–3773.

[19] M.T. Leung, H. Daouk, A.S. Chen, Forecasting
Stock Indices: A Comparison of Classification
and Level Estimation Models, International

Journal of Forecasting, Vol.16, 2000, pp.173–
190.

[20] W. Huang, Y. Nakamori, S. Wang, Forecasting
Stock Market Movement Direction with Support
Vector Machine, Computers and Operations
Research, Issue 10, Vol.32, 2005, pp.2513–2522.

WSEAS TRANSACTIONS on SYSTEMS Petr Hájek

E-ISSN: 2224-2678 677 Issue 12, Volume 11, December 2012

[21] S.W. Pruitt, R.E. White, The CRISMA Trading
System: Who Says Technical Analysis Can’t Beat
the Market?, Journal of Portfolio Management,
Issue 3, Vol.14, 1988, pp.55–58.

[22] I. Triguero, J. Derrac, S. Garcia, F. Herrera, A
Taxonomy and Experimental Study on Prototype
Generation for Nearest Neighbor Classification,
IEEE Transactions on Systems, Man, and

Cybernetics – Part C: Applications and Reviews,
Issue 1, Vol.42, 2012, pp.86–100.

[23] N. Chen, B. Ribeiro, A. Vieira, J. Duarte, J.C.
Neves, Extension of Learning Vector
Quantization to Cost-sensitive Learning,
International Journal of Computer Theory and

Engineering, Issue 3, Vol.3, 2011, pp.352–359.
[24] P. Hajek, V. Olej, Municipal Creditworthiness

Modelling by Kohonen´s Self-organizing Feature
Maps and LVQ Neural Networks, Proceedings of
the 9th International Conference on Artificial

Intelligence and Soft Computing, Zakopane,
Poland, 2008, pp.52–61.

[25] P. Hajek, Municipal Credit Rating Modelling by
Neural Networks, Decision Support Systems,
Issue 1, Vol. 51, 2011, pp.108–118.

[26] P. Hajek, Probabilistic Neural Networks for Credit
Rating Modelling, Proceedings of International
Conference on Neural Computation, Valencia,
2010, pp.289–294.

[27] M. Govindarajan, R. Chandrasekaran, Evaluation
of K-Nearest Neighbor Classifier Performance for
Direct Marketing, Expert Systems with

Applications, Issue 1, Vol.37, 2009, pp.253–258.
[28] P. Hajek, V. Olej, Air Quality Modelling by

Kohonen’s Self-organizing Feature Maps and
LVQ Neural Networks, WSEAS Transactions on
Environment and Development, Issue 1, Vol.4,
2008, pp.45–55.

[29] D.R. Wilson, T.R. Martinez, Reduction
Techniques for Instance based Learning
Algorithms, Machine Learning, Issue 3, Vol.38,
2000, pp.257–286.

[30] T. Kohonen, Self-Organizing Maps, Springer
Verlag, Berlin, Heidelberg, New York, 2001.

[31] S. Geva, J. Site, Adaptive Nearest Neighbor
Pattern Classifier, IEEE Transactions on Neural
Networks, Issue 2, Vol.2, 1991, pp.318–322.

[32] Q. Xie, C.A. Laszlo, R.K. Ward, Vector
Quantization Technique for Nonparametric
Classifier Design, IEEE Transactions on Pattern
Analysis and Machine Intelligence, Issue 12,
Vol.15, 1993, pp.1326–1330.

[33] C. Decaestecker, Finding Prototypes for Nearest
Neighbour Classification by means of Gradient
Descent and Deterministic Annealing, Pattern
Recognition, Issue 2, Vol.30, 1997, pp.281–288.

[34] F. Fernandez, P. Isaci, Evolutionary Design of
Nearest Prototype Classifiers, Journal of

Heuristics, Issue 4, Vol.10, 2004, pp.431–454.
[35] U. Garain, Prototype Reduction using an Artificial

Immune Model, Pattern Analysis and

Applications, Issues 3-4, Vol.11, 2008, pp.353–
363.

[36] L. Nanni, A. Lumini, Particle Swarm
Optimization for Prototype Reduction.
Neurocomputing, Issues 4-6, Vol.72, 2009, 1092–
1097.

[37] A. Cervantes, I. Galván, P. Isasi, An Adaptive
Michigan Approach PSO for Nearest Prototype
Classification, Lecture Notes in Computer

Science, Vol.4528, 2007, pp.287–296.
[38] C.W. Yen, C.N. Young, M.L. Nagurka, A Vector

Quantization Method for Nearest Neighbor
Classifier Design, Pattern Recognition Letters,
Vol.25, 2004, pp.725–731.

[39] J.C. Bezdek, T.R. Reichherzer, G.S. Lim, Y.
Attikiouzel, Multiple Prototype Classifier Design,
IEEE Transactions on Systems, Man and

Cybernetics – Part C, Issue 1, Vol.28, 1998,
pp.67–79.

[40] C.H. Chen, A. Józwik, A Sample Set
Condensation Algorithm for the Class Sensitive
Artificial Neural Network, Pattern Recognition
Letters, Vol.17, 1996, pp.819–823.

[41] Y. Hamamoto, S. Uchimura, S. Tomita, A
Bootstrap Technique for Nearest Neighbor
Classifier Design, IEEE Transactions on Pattern
Analysis and Machine Intelligence, Issue 1,
Vol.19, 1997, pp.73–79.

[42] J. Koplowitz, T.A. Brown, On the Relation of
Performance to Editing in Nearest Neighbor
Rules, Pattern Recognition, Vol.13, 1981,
pp.251–255.

[43] R.A. Mollineda, F.J.Ferri, E. Vidal, A
Merge‐based Condensing Strategy for Multiple
Prototype Classifiers, IEEE Transactions on
Systems, Man and Cybernetics – Part B, Issue 5,
Vol.32, 2002, pp.662–668.

[44] W. Lam, C.K. Keung, D. Liu, Discovering Useful
Concept Prototypes for Classification based on
Filtering and Abstraction, IEEE Transactions on
Pattern Analysis and Machine Intelligence, Issue
8, Vol.14, 2002, pp.1075–1090.

[45] M. Lozano, J. M. Sotoca, J. S. Sanchez, F. Pla, E.
Pekalska, R.P.W. Duin, Experimental Study on
Prototype Optimisation Algorithms for Prototype-
based Classification in Vector Spaces, Pattern
Recognition, Issue 10, Vol.39, 2006, pp.1827–
1838.

[46] Ch.L. Chang, Finding Prototypes for Nearest
Neighbor Classifiers, IEEE Transactions on

WSEAS TRANSACTIONS on SYSTEMS Petr Hájek

E-ISSN: 2224-2678 678 Issue 12, Volume 11, December 2012

Computers, Issue 11, Vol.23, 1974, pp.1179–
1184.

[47] T. Raicharoen, C. Lursinsap, A Divide-and-
Conquer Approach to the Pairwise Opposite
Class-Nearest Neighbor (POC-NN) Algorithm,
Pattern Recoginiton Letters, Vol.26, 2005,
pp.1554–1567.

[48] J.S. Sanchez, High Training Set Size Reduction
by Space Partitioning and Prototype Abstraction,
Pattern Recognition, Issue 7, Vol.37, 2004,
pp.1561–1564.

[49] H.A. Fayed, S.R. Hashem, A.F. Atiya, Self-
Generating Prototypes for Pattern Classification,
Pattern Recognition, Issue 5, Vol.40, 2007,
pp.1498–1509.

[50] V. Vapnik, The Nature of Statistical Learning
Theory, Springer-Verlag, New York, 1999.

[51] N. Cristianini, J. Shawe-Taylor, An Introduction
to Support Vector Machines and Other Kernel-

Based Learning Methods, Cambridge University
Press, Cambridge, 2000.

[52] S.S. Haykin, Neural Networks: A Comprehensive
Foundation, Prentice-Hall, Upper Saddle River,
1999.

[53] P. Hajek, V. Olej, Credit Rating Modelling by
Kernel-based Approaches with Supervised and
Semi-Supervised Learning, Neural Computing &
Applications, Issue 6, Vol.20, 2011, pp.761–773.

[54] Ch.K. Volos, I.M. Kyprianidis, S.G. Stavrinides,
I.N. Stouboulos, L. Magafas, A.N.
Anagnostopoulos, Nonlinear Financial Dynamics
from an Engineer’s Point of View, Journal of
Engineering Science and Technology Review,
Vol.4, 2011, pp.281–285.

[55] Y. Zuo, E. Kita, Up/Down Analysis of Stock
Index by Using Bayesian Network, Engineering
Management Research, Issue 2, Vol.1, 2012,
pp.46–52.

[56] P. Hajek, V. Olej, Municipal Revenue Prediction
by Ensembles of Neural Networks and Support
Vector Machines, WSEAS Transactions on

Computers, Issue 11, Vol.9, 2010, pp.1255–1264.
[57] H. Lin, K. Chen, Soft Computing Algorithms in

Price of Taiwan Real Estates, WSEAS

Transactions on Systems, Issue 10, Vol.10, 2011,
pp.342–351.

[58] V. Olej, Prediction of the Index Fund by Takagi-
Sugeno Fuzzy Inference Systems and Feed-
Forward Neural Network, Proceedings of the 5th
WSEAS International Conference on Artificial

Intelligence, Knowledge Engineering and Data
Bases, Madrid, Spain, 2006, pp.7–12.

[59] K. Michalak, P. Lipinski, Prediction of High
Increases in Stock Prices using Neural Networks,
Neural Network World, Vol.15, 2005, pp.359–
366.

[60] F. Neri, Learning Predictive Models for Financial
Time Series by Using Agent Based Simulations,
Lecture Notes in Computer Science, Vol.7190,
2012, pp.202–221.

[61] F. Neri, Agent based Modeling under Partial
and Full Knowledge Learning Settings to
Simulate Financial Markets, AI

Communications, Issue 4, Vol.25, 2012,
pp.295-304.

WSEAS TRANSACTIONS on SYSTEMS Petr Hájek

E-ISSN: 2224-2678 679 Issue 12, Volume 11, December 2012

Appendix A: Target classes of the forecasting model

Legend: stock index trend = 1 stands for a positive trend (class c1) and stock index trend = 0 represents a negative trend
(class c2)

Appendix B: Overview of the used prototype generation classifiers

Source: [22]

WSEAS TRANSACTIONS on SYSTEMS Petr Hájek

E-ISSN: 2224-2678 680 Issue 12, Volume 11, December 2012

