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Abstract: The input current stimulating a neuron is not directly measurable without inference with the cell’s activ-
ities. In this paper we consider two electrically coupled neurons. We present an approach to reconstruct the input
current into one of the neurons using concepts from control theory. More precisely, we employ an unknown input
observer to reconstruct the internal states of the neuron’s model. A crucial part of this approach is the transfor-
mation of the nonlinear model into an appropriate normal form. Additional filtering yields the desired excitation
current.
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1 Introduction
The development of an electro-physiological model of
a neuron, published in 1952 by Hodgkin and Huxley,
was a milestone in neuroscience. Some authors sim-
plified the Hodgkin-Huxley model [12, 29] for analog
as well as fast digital simulations, where other authors
extended it in order to obtain a more realistic mod-
eling [8, 48, 49]. Even sixty years after its publica-
tion, the Hodgkin-Huxley model is still widely used
in computational neuroscience [43].

In living organisms, neurons are connected to
each other in a complex fashion. As a first step to
understand networked neurons, several researchers in-
vestigated the dynamics of two interconnected neu-
rons [32, 34, 42, 48]. In particular, the problem of
synchronization of two neurons draw significant at-
tention [21, 46].

The stimulation of a neuron from another neuron
is transmitted via ionic currents. The standard tech-
nique to measure ionic currents across the cell’s mem-
brane is known as voltage clamping [11]. This ap-
proach was developed in [7] and has been extended
in [30]. Unfortunately, these approaches interfere
with the cell’s activity, limiting the applicability in
vivo.

In control theory, the problem of reconstruction
of not directly measurable quantities using the dy-
namics of the underlying system is known as filter or
observer design [19, 23]. Starting with linear time-
invariant systems, this work has been extended into
several directions such as filter or observer design for
time-varying and nonlinear systems [22,25,31,35,36,

41, 45, 51, 52], or the design of unknown input ob-
servers [4, 9, 16, 26].

For bio-systems, estimators based on observers or
filters are also known as software sensors or software
analyzers [3, 50]. Observer and filter technqiues can
be used to reconstruct the input current into a single
neuron using voltage measurement [37–39]. In this
paper we want to extend these approaches to the case
of two electrically coupled neurons.

This paper is structured as follows: In Section 2
we remind the reader of the Hodgkin-Huxley model.
Moreover, we discuss possible scenarios for the cou-
pling of two neurons. The required concepts from
control theory are introduced in Section 3. Ap-
proaches to the observer based current estimation are
explained in Section 4. Finally, we draw some con-
clusions in Section 5.

2 Neuron Models
2.1 Hodgkin-Huxley Model
The Hodgkin-Huxley model is a set of nonlinear or-
dinary differential equations (ODEs) describing the
mechanisms of the initiation and propagation of action
potentials in the squid giant axon [15]. It is a widely
used standard model of neurons. More advanced neu-
ron models such as the Connor-Steven model [8] or
the Traub model [48] still use the same concept of
modeling. Furthermore, this kind of modeling has
also been extended to other cell and issue types such
as muscle fibers [28], or pancreatic beta cells [6].
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Figure 1: Measurement scheme for the membrane
voltage

The Hodgkin-Huxley model describes the
electro-physiological behaviour of a neuron. An
important quantity of this model is the membrane
voltage V , which is defined as the difference be-
tween potentials of the intracellular and extracellular
medium. The measurement of the membrane voltage
is sketched in Fig. 1. The cell’s membrane acts
mainly as an insulator having the capacitance C.
However, the membrane acts also as a conductor.
Let I be the current injected into the cell, e.g. by
an electrode or from coupling with other cells. The
Hodgkin-Huxley model takes also ionic currents into
account. Let INa and IK denote the currents resulting
from sodium ions (Na+) and potassium ions (K+)
passing through the cell’s membrane. Additionally,
the model contains a leak current IL accounting for
the natural permeability of the membrane. The prin-
ciple of conservation of electric charge (Krichhoff’s
first law) yields the ODE

CV̇ = I − LNa − IK − IL. (1)

The ionic currents INa, IK , and the leak current IL
are given by

INa = gNam
3h(V − VNa)

IK = gKn
4(V − VK)

IL = gL(V − VL)
(2)

with constant conductances gNa, gK , gL and the re-
versal potentials VNa, VK , VL. The reversal potential
of an ion is the membrane potential at which there is
on average no flow of that ion from one side of the
membrane to the other.

An important part of the Hodgkin-Huxley model
is the introduction of ion channels. More precisely,
the model consists of three ion channels. The chan-
nel describing the leak current has an constant con-
ductance gL. The other ionic currents are described
by voltage-gated ion channels with the gating vari-
ables m,h, n. The Na+ channel is gated in a com-
bined fashion by the variables m and h, whereas the

K+ channel is controlled by the gating variable n, see
Eq. (2). The dynamics of the gating variables is de-
scribed by a Markov model as a set of nonlinear ODEs

ṁ = αm(V )(1−m)− βm(V )m
ḣ = αh(V )(1− h)− βh(V )h
ṅ = αn(V )(1− n)− βn(V )n

(3)

with the normalized functions

αm(V ) = 0.1(V+40)
1−exp(−(V+40)/10)

βm(V ) = 4 exp(−(V + 65)/18)

αh(V ) = 0.07 exp(−V + 65)/20

βh(V ) = 1
1+exp(−(V+35)/10)

αn(V ) = 0.01(V+55)
1−exp(−(V+55)/10)

βn(V ) = 0.125 exp(−(V + 65)/80).

(4)

The gating variables are dimensionless since they de-
scribe the probability for the appropriate gate to be
open. Therefore, they take values between 0 and 1,
where 0 means that the gate is closed, and 1 means
that the gate is open. The functions in (4) are tran-
sition rates for the opening and closing of the gate,
respectively. They have been determined empirically
by Hodgkin and Huxley [15].

The simulation result for a single neuron based
on the Hodgkin-Huxley model is shown in Fig. 2. We
used the parameters Cm = 1 µF

cm2 , gNa = 120 mS
cm2 ,

VNa = 115 mV , gK = 36 mS
cm2 , VK = −12 mV ,

gL = 0.3 mS
cm2 as found in [15]. Furthermore, we used

the initial values Vm(0) = 0mV , h(0) = 0.5961 und
m(0) = 0.0529, n(0) = 0.3177. The model (1)-(4)
was stimulated by a time-dependent (but piecewise
constant) input current I shown in the top of Fig. 2.
For I = 10µA/cm2 and I = 30µA/cm2 the model
generates periodic spikes. This regular spiking occurs
for I ' 6µA/cm2. More details on the excitability
and the dynamics of neurons can found in [20, 34].

2.2 Coupled Neurons
The dynamical behaviour of coupled neurons is re-
garded as highly interesting from the viewpoint of
neuroscience. The coupling of neurons allows the
transmission of stimuli, where the excitation of one
neuron is inducted by an other neuron via a synapse.
There are two forms of synaptic coupling found in
living organisms [42], namely chemical and electrical
coupling.

Chemical synaptic coupling of neurons is often
described by highly complex models. To allow the
analysis and simulation of a large collection of net-
worked or coupled neurons, simpler models have been
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Figure 2: Simulation of a single neuron stimulated by
a piece-wise constant input current I

derived. However, even very simple models should
contain at least a lag element to describe the delay of
the transmission, resulting in one or more differential
equations [1, pp. 393-395].

In contrast to chemical coupling, the electrical
synaptic coupling is essentially undelayed. In terms
of an equivalent network description, electrical cou-
pling between two neurons can be modeled by a resis-
tors connecting the two membrane voltages V1 and V2,
see [1, p. 393]. The resulting coupling current IC is
given by

IC = gC(V1 − V2), (5)

where gC is the conductance of the coupling resistor.

In this paper we consider two electrically coupled
neurons. More precisely, two Hodgkin-Huxley mod-
els are interconnected by linear terms (5) in the first

equations (1), that is

C1V̇1 = I1 − gNa,1m3
1h1(V1 − VNa)

−gK,1n4
1(V1 − VK)

−gL,1(V1 − VL)− gc(V1 − V2)
C2V̇2 = I2 − gNa,2m3

2h2(V2 − VNa)
−gK,2n4

2(V2 − VK)
−gL,2(V2 − VL)− gc(V2 − V1).

(6)

The gating variables are governed by two sets of three
ODEs

ṁi = am(Vi)(1−mi)− bm(Vi)mi

ḣi = ah(Vi)(1− hi)− bh(Vi)hi
ṅi = an(Vi)(1− ni)− bn(Vi)ni

(7)

for i = 1, 2. If both neurons are identical (i.e., have
the same parameters), we omit the numbering in the
parameters (e.g., C1 = C2 =: C etc.).

In this paper we consider the case where these
coupled neurons are stimulated only by the input cur-
rent into a single neuron, i.e., the second neuron is
stimulated through its interconnection to the first neu-
ron. Without loss of generality we use I1 as an input
current and set I2 = 0.

First, we carry out the simulation using the same
parameters and initial values for both neurons as given
in Section 2.1. It can be seen in Fig. 3 that there
is a synchronization between the two neurons, i.e.,
V1 ≈ V2. The slightly different behaviour is due to
the fact that only neuron 1 is stimulated externally.
Nevertheless, the synchronization is achieved via the
coupling current (5). From equilibrium considerations
of Eq. (6) we see that the synchronization occurs at
IC = I1/2, which is confirmed by the numerical re-
sults shown in Fig. 3.

Next, we carry out the simulation using different
parameters for the second neuron: C2 = 1.2 µF

cm2 ,
gNa,2 = 175 mS

cm2 , VNa,2 = 115 mV , gK,2 = 40 mS
cm2 ,

VNa,2 = −12 mV , gL,2 = 0.25 mS
cm2 , VL,2 =

12.44 mV . The simulation result is shown in Fig. 4.
The neurons still synchronize. However, the synchro-
nization results in a strong coupling current IC be-
tween the neurons. For more details on the synchro-
nization of coupled neurons we refer to [21] and ref-
erences cited there.

System (6)-(7) is a multi-input multi-output sys-
tem. We focus on two scenarios, where only one cur-
rent excites the system and only one voltage is mea-
sured:

Scenario A I1 is the input, V1 is the output,

Scenario B I1 is the input, V2 is the output.

The resulting system is a single-input single-output
system having an 8-dimensional state-space.
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Figure 3: Simulation of coupled neurons with identical parameters

Figure 4: Simulation of coupled neurons with slightly different parameters
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3 Control Theoretic Background
3.1 Relative Degree
Both scenarios introduced in Section 2.2 yield a
single-input single-output system

ẋ = f(x) + g(x)u, y = h(x) (8)

with two vector fields f, g : Ω → Rn and a scalar
field h : Ω→ R, which are defined on an open subset
Ω ⊆ Rn. All maps are assumed to be sufficiently
smooth. The Lie derivative of h along f is defined
by Lfh(x) = dh(x) · f(x), where dh(x) = h′(x)
denotes the gradient of h(x). The Lie derivative of the
scalar field h is a scalar field itself. We can recursively
define iterated Lie derivatives Lkfh(x) = dLk−1

f h(x)·
f(x) with L0

fh(x) = h(x). Mixed Lie derivatives
are Lie derivatives along different vector fields, e.g.
LgLfh(x) = dLfh(x) · g(x).

We recall the following definition [18, 44]. Sys-
tem (8) is said to have relative degree r at x0 ∈ Ω
if

1. LgLkfh(x) = 0 for k = 0, . . . , r − 2 in a neigh-
bourhood of x0 ,

2. LgLr−1
f h(x0) 6= 0.

Consider the time derivative of the output y along the
dynamics of system (8):

ẏ = ∂h(x)
∂x

dx
d t

= dh(x) (f(x) + g(x)u)
= Lfh(x) + Lgh(x)u.

If Lgh(x0) 6= 0, the relative degree is r = 1. In this
case, the first time derivative of the output depends
explicitly on the input u. If Lgh(x) ≡ 0, we consider
the next time derivative

ÿ = ∂Lfh(x)
∂x

dx
d t

= dLfh(x) (f(x) + g(x)u)
= L2

fh(x) + LgLfh(x)u.

If LgLfh(x0) 6= 0, the relative degree is r = 2. Then,
the second time derivative of y depends explicitly on
the input u. More generally, the relative degree is the
minimum order of a time derivative of the output that
depends directly on the input.

3.2 Normal Form
If system (8) has a relative degree r < n, there exists
a diffeomorphic change of coordinates (ξ, η) = Φ(x)

such that system (8) is decomposed into two subsys-
tems. 1 The first subsystem has the form

ξ̇1 = ξ2
...

ξ̇r−1 = ξr
ξ̇r = α(ξ, η) + β(ξ, η)u

(9)

with ξ = (ξ1, . . . , ξr)T . Moreover, we have the
maps α(ξ, η) = Lrfh(Φ−1(ξ, η)) and β(ξ, η) =
LgL

r−1
f h(Φ−1(ξ, η)), where Φ−1 denotes the inverse

map of the diffeomorphism Φ. The new coordi-
nates are chosen by ξi = φi(x) = Li−1

f h(x) for
i = 1, . . . , r. The remaining coordinates ηi =
φr+i(x) can be chosen such that Lgφr+i(x) ≡ 0
for i = 1, . . . , n − r. Then, the right hand side
q = (q1, . . . , qn−r)T of the second system

η̇1 = q1(ξ, η)
...

η̇n−r = qn−r(ξ, η)
(10)

does not depend explicitly on the input. More pre-
cisely, we have qi(ξ, η) = Lfφr+i(Φ−1(ξ, η)) for
i = 1, . . . , n− r. The form (9)-(10) is called Byrnes-
Isidori normal form [5, 18].

In case of r = 1, we have ξ1 = h(x) = y. The
normal form (9)-(10) reads as

ẏ = α(y, η) + β(y, η)u
η̇1 = q1(y, η)

...
η̇n−1 = qn−1(y, η)

(11)

with α(y, η) = Lfh(Φ−1(y, η)) and β(y, η) =
Lgh(Φ−1(y, η)).

In case of r = 2, we additionally have ξ2 =
Lfh(x) = ẏ, i.e., ξ = (y, ẏ)T . Writing the two-
dimensional first subsystem (9) as one second order
ODE, the transformed system becomes

ÿ = α(y, ẏ, η) + β(y, ẏ, η)u
η̇1 = q1(y, ẏ, η)

...
η̇n−2 = qn−2(y, ẏ, η)

(12)

with α(y, ẏ, η) = L2
fh(Φ−1(y, ẏ, η)) and

β(y, ẏ, η) = LgLfh(Φ−1(y, ẏ, η)).

1Formally, the diffeomorphism Φ : Ω→ Rn is a map between
open subsets of Rn. To simplify the notation, we write (ξ, η) =
Φ(x), where the point x ∈ Ω is mapped into the pair (ξ, η) ∈
Rr × Rn−r , which is isomorphic to the vector space Rn.
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3.3 Unknown Input Observer
The usage of the Byrnes-Isidori normal form (9)-(10)
to design an unknown input observer has been sug-
gested in [26, 27, 40]. The design procedure is appli-
cable if system (8) has the relative degree r = 1, i.e.,
if it is transformable into (11). The observer consists
of a copy of the (n − 1)-dimensional second subsys-
tem of (11). The original state is recovered using the
output and the inverse change of coordinates. More
precisely, the observer reads as

˙̂η = q(y, η̂), η̂(0) = η̂0 ∈ Rn−1

x̂ = Φ−1(y, η̂).
(13)

For the observer (13) to converge we have to en-
sure that η̂(t) → η(t) for t → ∞ independent of
the initial value η̂(0) = η̂0. The observation error
η̃ = η − η̂ of (11) and (13) is governed by the error
dynamics

˙̃η = q(y, η)− q(y, η̂), η̃(0) = η(0)− η̂(0). (14)

We have to investigate the stability of the equilibrium
point η̃ = 0. Since we have no observer gain, the sec-
ond subsystem must exhibit an intrisic stability prop-
erty. Let S be a continuously differentiable, positive
definite and radially unbounded function defined on
the state space of (14). We assume that

∂S

∂η̃
(q(y, η)− q(y, η̂)) < 0 for all η̃ 6= 0 (15)

and all admissibe y. This means that S is a global
Lyapunov function of (14), i.e., the equilibrium η̃ = 0
is globally asymptotically stable. As a matter of fact,
Ineq. (15) can be interpreted as a nonlinear detectabil-
ity condition [2].

In case of relative degree r = 2, it is tempting to
proceed similar as above. One might use a copy of the
(n− 2)-dimensional subsystem of (12):

˙̂η = q(y, ẏ, η̂), η̂(0) = η̂0 ∈ Rn−2

x̂ = Φ−1(y, ẏ, η̂).
(16)

Eq. (14) and Ineq. (15) can easily be modified accord-
ingly. However, we encounter two difficulties. First,
we measure y but not ẏ. A numerically reliable recon-
struction ˙̂y of ẏ from discrete points of y is not easy.
Second, the observer (16) might not converge. In par-
ticular, high frequency output signals increase the dif-
ficulties to reconstruct ẏ. As for asymptotic consid-
erations, we get ˙̂y(t) 6→ ẏ(t) for t → ∞, by which
the observer (16) cannot converge. In fact, it has been
pointed out in [26, 40] that the relative degree r = 1
is a necessary condition for the convergence of an un-
known input observer. In case of r > 1 we have to
accept a non-asymptotic estimation [33].

3.4 Observer Based Input Reconstruction

The unknown input observers (13) and (16) recon-
struct the state vector x without measurement of the
input u. The unknown input observers use only the
dynamics (10) of the second subsystem of the Byrnes-
Isidori normal form. Now, we want to estimate the
input u. To achieve this, we also take of the first sub-
system (9) into account.

In case of r = 1, we solve the first equation
of (11) w.r.t. u. Since the relative degree is assumed
to be well-defined we have β 6= 0. This results in

u =
ẏ − α(y, η)
β(y, η)

. (17)

The internal state vector η is not directly mea-
sured, but reconstructed with the unknown input ob-
server (13). Under the assumption that the ob-
server (13) converges we can replace the exact state η
of the second subsystem (10) by its estimate η̂ and ob-
tain an estimate û of the exact input u by

û =
ẏ − α(y, η̂)
β(y, η̂)

. (18)

Obviously, the convergence η̂ → η for t → ∞ of the
observer (13) implies û → u, provided y and ẏ are
known.

We can proceed similarly for r = 2. Using the
first equation of (12) and replacing η by η̂ from the
observer (16) yields

û =
ÿ − α(y, ẏ, η̂)
β(y, ẏ, η̂)

. (19)

The estimated input û in (18) and (19) depends
explicitly on the measured output y and its time
derivatives. Therefore, the estimation û of u is di-
rectly affected by measurement noise. To suppress
this noise we suggest the use of a low order low-pass
filter having the continuous time transfer function

T (s) =
a0

a0 + a1s+ · · ·+ am−1sm−1 + sm
. (20)

The coefficients a0, . . . , am−1 > 0 have to be cho-
sen such that all poles of (20) have negative real parts.
There are several standard methods available from fil-
ter design such as Bessel or Butterworth filter [47].

In the time domain, the low-pass filter (20) is ap-
plied to the estimates (18) or (19) via

ū(t) = T ( d
d t) ◦ û(t) (21)

resulting in the filtered estimate ū of the input cur-
rent u. From the viewpoint of implementation, we
would realize (20) with (21) as a discrete time state-
space system. By an appropriate implementation of
the filter (20), the explicit differentiation of y in (18)
can be circumvented [39].
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3.5 Derivative Estimation

Only the scalar-valued output y of our system (8) is
available for measurement. More precisely, the out-
put is measured at discrete sample points ti, i.e., we
have the values y(t0), y(t1), . . . as a series, but not
y : [0,∞) → R as a function. For a practical imple-
mentation, we assume equidistant sampling with the
period ∆t = ti+1 − ti for all integers i ≥ 0.

As shown in Eqs. (18) and (19), the reconstruc-
tion of the input u requires the knowledge of first and
second order time derivatives ẏ and ÿ, respectively,
of the measured output y. A simple way to obtain
derivative values from sampled data are finite differ-
ence schemes such as the backward difference

ẏ(ti) ≈
y(ti)− y(ti−1)

∆t
.

This so-called numeric differentiation is not reliable
due to cancellation and truncation errors [14, Chap-
ter 1]. In the following, we introduce two alternatives
in order to avoid these problems.

3.5.1 State-Variable Filter

The idea behind the state-variable filter can be ex-
plained as follows [17,53]: We apply a low-pass filter
with a transfer function of the form (20) to the sig-
nal y, that is

ȳ(t) = T ( d
d t) ◦ y(t). (22)

The filter is implemented as a state-space system in
such a manner, that the states are derivatives of the
filter output. Although the filter distorts the measured
signal, we obtain at least exact derivative values of this
filtered signal ȳ.

To go into the details, the filter transfer func-
tion (20) is implemented as a state-space system in
observability canonical form

ż =


0 1 0 · · ·
... 0

. . . . . .
...

...
. . . 1

−a0 −a1 · · · −am−1

 z+


0
...

0

a0

 y

ȳ =
(

1 0 · · · 0
)
z

(23)
with the state vector z = (z1, . . . , zm)T . Starting with
the output ȳ = z1, total time derivatives along the

dynamics of (22) result in

ȳ = z1

˙̄y = z2

¨̄y = z3
...

ȳ(m−1) = zm
ȳ(m) = −a0z1 − · · · − am−1zm + a0y.

(24)
The state-variable filter (23) should be implemented
as a discrete time state-space system using zeroth or-
der hold time discretization [10].

3.5.2 Algebraic Derivative Estimation

The concept of algebraic derivative estimation was in-
troduced in [13]. A real-time implementation was re-
ported in [54]. The following derivation is similar
to [24].

The measured output y(t) is given at discrete
sample points t ∈ {t0, t1, . . .}. The signal y is mod-
eled by a smooth signal ŷ, which is locally around ti
represented as a truncated Taylor series

ŷ(t) =
m∑
k=0

yk
k!

(t− ti)k (25)

of order m with the Taylor coefficients y0, . . . , ym.
Clearly, time derivatives of the signal (25) at ti are
related to the Taylor coefficients in the following way:

yk =
dk

d tk
ŷ(t)|ti . (26)

We want to find the Taylor coefficients of (25) such
that the cost functional

J =
1
2

ti∫
ti−∆T

[y(t)− ŷ(t)]2 d t (27)

is minimized over a time frame ∆T . For practical rea-
sons we assume that width of the time frame ∆T is
an integral multiple of the sampling period ∆t, i.e.,
∆T = N ·∆t and ti −∆T = ti−N . The minimim of
the cost functional J is obtained from

∂J
∂yj

= ∂
∂yj

1
2

ti∫
ti−N

[
y(t)−

m∑
k=0

yk
k! (t− ti)k

]2

d t

= 1
2

ti∫
ti−N

∂
∂yj

[
y(t)−

m∑
k=0

yk
k! (t− ti)k

]2

d t

= −
ti∫

ti−N

[
y(t)−

m∑
k=0

yk
k! (t− ti)k

]
(t−ti)j

j! d t

!= 0
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for j = 0, . . . ,m, which yields a system of m + 1
equations in the m+ 1 variables y0, . . . , ym. The sub-
stitution τ = t− ti together with an symbolic integra-
tion of the Taylor series yields

1
j!

0∫
∆T

y(τ + ti)τ j d τ =
m∑
k=0

(−1)j+k
∆T k+j+1

k + j + 1
yk

for j = 0, . . . ,m. Finally, the Taylor coefficients
y0, . . . , ym can be obtained as the solution of the sys-
tem of linear equations

Φ ·

 y0
...
ym

 =



0∫
−∆T

y(τ + ti) d τ

...

1
m!

0∫
−∆T

y(τ + ti)τm d τ

 ,

(28)
where the entries Φij of the matrix Φ ∈
R(m+1)×(m+1) have the form

Φij = (−1)i+j
∆T i+j+1

i+ j + 1
. (29)

The matrix Φ is constant and can be inverted off-line.
The integrals on the right-hand side of (28) are com-
puted numerically using the sample points (e.g. using
the trapezoidal rule). As a matter of fact, these inte-
gration can easily be implemented recursively. Solv-
ing (28) w.r.t. the Taylor coefficients y0, . . . , ym, we
obtain the desired derivatives estimates of the output y
at ti from (26).

4 Current Estimation for Coupled
Neurons

The preceding control theoretic background serves as
basis for the development of the unknown input ob-
servers for each Scenario A and B. Divided by the
scenarios, in the following two subsection each state-
space system will be analyzed regarding relative de-
gree and normal form. Furthermore, the unknown in-
put observers will be derived from the normal forms
and finally, their convergence will be investigated.

For both scenarios the state-space vector is de-
fined as follows:

x = (x1, x2, x3, x4, x5, x6, x7, x8)T

= (V1, h1,m1, n1, V2, h2,m2, n2)T .
(30)

The vector fields f, g : R8 → R8 of system (8) given
by Eqs. (6)-(7) have the form

f(x) = (f1(x), · · · , f8(x))T ,

g(x) =
(

1
C1
, 0, · · · , 0

)T
.

Note that the vector field g is constant.

4.1 Scenario A

This section focuses on the case of two coupled neu-
rons described as in (8) with I1 = u being the input
and V1 = y = hA(x) being the output. The system
has a relative degree of one, which results as follows:

LghA(x) = h′A(x)g(x)
= (1, 0, · · · , 0) g(x)
= 1

C1
6= 0.

(31)

Hence, the normal form of the system in Scenario A
corresponds to (11), i.e., the given system (6)-(7) is
already in normal form for the input u = I1 and the
output y = V1. For the sake of simplicity, the original
notation (6)-(7) of the coupled system will be used in
the following calculations.

The goal of the observer design is getting a con-
vergent estimation

lim
t→∞

Ĩ1 = 0,

where Ĩ1 := I1 − Î1 denotes the estimation error of
the input current I1. This analysis is carried out in
different steps.

Using Lyapunov methods, it has been shown
in [38] that the estimated gating variables ĥ, m̂, n̂ of
the corresponding neuron converge if the membrane
voltage V1 is measured correctly. In other words, the
observer state variables of the internal dynamics of
neuron one converge, i.e., ĥ1 → h1, m̂1 → m1 and
n̂1 → n1 for t→∞. It follows from the first equation
of (6) that

lim
t→∞

(
I1 − Î1

)
= −gC

(
V2 − V̂2

)
.

This implies that the convergence of V̂2 to V2 is re-
quired for a precise measurement of I1.

Since V2 is not exactly known through measure-
ment, the convergence of the gating variables ĥ2,
m̂2 and n̂2 cannot be proved in the same manner as
demonstrated in [38] for the gating variables of the
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first neuron. However, we will show that the abso-
lute error |V2 − V̂2| and therefore |Ĩ1| is bounded for
t→∞.

The ODE for the observer state V̂2 corresponds to
the second equation in (6) with V̂2, ĥ2, m̂2 and n̂2 in-
stead the actual states. Rearrangement of the resulting
equation leads to

˙̂
V2 = −ḡ(t)V̂2 + ûa(t)− ub(t) (32)

with

ḡ(t) =
1
C2

[
gNa,2m̂

3
2ĥ2 + gK,2n̂

4
2 + gL,2 + gC

]
and

ûa(t) =
1
C2

[
gNa,2m̂

3
2n̂2VNa,2

+gK,2ĥ4
2V2,K + gL,2VL,2

]
,

ub(t) =
gC
C2
V1.

As stated in [15], the values for gating variables
remain in the range [0,1]. Direct calculation shows
that ḡ(t) is bounded by

0 < ḡmin ≤ ḡ(t) ≤ ḡmax (33)

with

ḡmin = 1
C2

(gL,2 + gC) ,
ḡmax = 1

C2
(gNa,2 + gK,2 + gL,2 + gC) .

In case of a constant function ḡ(t) = ḡ0, Eq. (32) rep-
resents an linear inhomogeneous differential equation
with the solution

V̂2(t) = V̂2(0)e−ḡ0t+
∫ t

0
eḡ0(τ−t) [ûa(τ)− ub(τ)] dτ.

For t → ∞, the influence of the initial value disap-
pears since ḡ0 ∈ [ḡmin, ḡmax] implies ḡ0 > 0. Conse-
quently, the asymptotics are described by

lim
t→∞

V̂2(t) =
∫ ∞

0
eḡ0(τ−t) [ûa(τ)− ub(τ)] dτ.

Equally, the general solution for V2 can be found.
Hence, the estimation error is governed by

lim
t→∞

(
V2(t)− V̂2(t)

)
=∫ ∞

0
eḡ0(τ−t) [ua(τ)− ûa(τ)] dτ (34)

with

ua(t) =
1
C2

[
gNa,2m

3
2h2VNa,2

+g2,Kn
4
2VK,2 + gL,2VL,2

]
.

Furthermore, with the knowledge hi, mi, ni ∈ [0, 1]
(i = 1, 2), an upper bound of (34) can be found as
follows:

lim
t→∞

∣∣∣V2(t)− V̂2(t)
∣∣∣ =

= lim
t→∞

∣∣∣∣∫ t

0
eḡ0(τ−t) [ua(τ)− ûa(τ)] dτ

∣∣∣∣
≤ lim

t→∞

∣∣∣∣∫ t

0

1
C2

[gNa,2VNa,2 + gK,2VK,2] eḡ0(τ−t)dτ
∣∣∣∣

≤ lim
t→∞

|g2,NaV2,Na + g2,KV2,K |
C2ḡ0

∣∣1− e−ḡ0t∣∣
≤
|g2,NaV2,Na + g2,KV2,K |

g2,L + gC
=: Ṽ∞,max .

With the neuron parameters from Section 2.1, the up-
per bound results in

Ṽ∞,max =
|120 · 115 + 36 · (−12)|

0.3 + 100
mV ≈ 133.3mV.

In practice, Ṽ2 stays clearly below this theoretical up-
per bound as demonstrated in Fig. 5. This implies
good approximation Î1 ≈ I1.

As final step, the observer is augmented by a fil-
ter for the estimated signal û = Î1. The necessity
of filtering has already been addressed in Section 3.4.
Using Eq. (21), the filtered input current estimate Ī1

results from

Ī(t) = T
(

d
d t

)
◦ Î1(t)

= T
(

d
d t

)
◦
(
C1V̇1(t)

+F (V1, V̂2, h1,m1, n1)
) (35)

with

F (V1, V̂2, h1,m1, n1) = gNa,1m̂
3
1ĥ1(V1 − VNa,1)

+ gK,1n̂
4
1(V1 − VK,1)

+ gL,1(V1 − VL,1)− gC(V1 − V̂2).

As stated in Section 3.4, the time derivative V̇1 of V1

can be obtained directly from the filter. More pre-
cisely, we apply the filter transfer function (20) to F ,
and the modified transfer function

Tdiff(s) =
a0s

a0 + a1s+ · · ·+ am−1sm−1 + sm
,
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Figure 5: Estimation error of V2 using identical neurons with different initial values in the observer (V̂2(0) =
50mV 6= V2(0) = 0mV and ĥ2(0) = 0 6= h2(0) etc.)

which carries out a differentiation, to C1V1(t). This
results in

Ī(t) = T
(

d
d t

)
◦
(
C1V̇1(t) + F (· · · )

)
= T

(
d
d t

)
◦ (F (· · · )) + C1Tdiff

(
d
d t

)
◦ V1(t).

Figure 6 depicts the application of this filter scheme
using a fourth order Bessel filter with the cut-off fre-
quency ωg = 0.3 kHz. Even with the influence of
measurement noise, the observer yields a reasonable
estimation for the input current of neuron one.

To sum up, we derived a theoretical upper bound
for the estimation error. In practice the designed ob-
server shows good and stable estimations.

4.2 Scenario B

Again, the goal is getting a convergent estimation for
the input current of neuron one, i.e., Î1 → I1. Sim-
ilar to Scenario A, this section starts with the com-
putation of the relative degree and the elaboration of
the Byrnes-Isidori normal form. With this preliminary
work, we will carry out the observer design and anal-
yse its convergence.

Here, the input-output configuration u = I1 and
y = V2 = hB(x) results in the following first Lie-
derivative of the output map hB along the input vector
field g:

LghB(x) = h′B(x)g(x)
= (0, 0, 0, 0, 1, 0, 0, 0) g(x) = 0

As explained in Section 3.1, the first mixed Lie-
derivative has to be taken into account:

LgLfhB(x) = Lg ((h′(x)f(x)))
= Lgf5(x)
= gC

C1C2
6= 0.

Consequently, in Scenario B the relative degree of the
system is two. Further, its normal form corresponds
to (12) with the diffeomorphisms

Φ(x) = (x5, f5(x), x2, x3, x4, x6, x7, x8),T (36)

whose inverse is given by

Φ−1 = (Φ−1
1 , η1, η2, η3, y, η4, η5, η6)T (37)

with the first component

Φ−1
1 = Φ−1

1 (y, ẏ, η)
= y + 1

gC

[
C2ẏ + gNa,2η4η

3
5(y − VNa,2)

+gK,2η4
6(y − VK,2) + gL,2(y − VL,2)

]
.

(38)
As mentioned before, a relative degree of one is a

necessary condition for an asymptotic estimation with
an unknown input observer under the assuption that
only y is measured. Nevertheless, if one assumes an
exact estimation of the time derivatives ˙̂y and ¨̂y of the
measured output signal y = V2, the proof of conver-
gence in Î1 succeeds. This results from a special form
of the internal dynamics as described below.

The comparison of (6) and (12) with (30) and (36)
taken into account shows that η4, η5 and η6 corre-
spond to h2, m2 and n2, respectively. Furthermore,
their state equations are only functions in y = V2. For
the observer states η̂i (i = 4, 5, 6) follows that these
states converge, since ŷ = y is exactly known [38].

To continue, a close look at Eq. (38) reveals that
the estimated state x̂1 = V1 = Φ−1

1 is just a function
in y, ẏ and η̂4, . . . , η̂6. Since the estimates of these
states are known to converge, it follows that x̂1 → x1

holds.
Finally, only the convergence of η̂1, . . . , η̂3 is un-

determined. These states correspond to ĥ1, m̂1 and

WSEAS TRANSACTIONS on SYSTEMS Klaus Robenack, Nicolas Dingeldey

E-ISSN: 2224-2678 277 Issue 7, Volume 11, July 2012



Figure 6: Simulation of the observer for Scenario A with non-identical neurons and measurement noise

m̂1, respectively. Equivalent to neuron two and as
stated in [38], for neuron one η̂i → ηi (i = 1, 2, 3)
holds due to V̂1 → V1.

To sum up, all observer states y, ẏ and η̂ are either
exactly known from measurement or converge, re-
spectively. Therefore, a convergent estimation of the
input current of neuron one can be obtained by (19).
Similar to Scenario A, filtering the estimated signal û
as in (21) is suitable to suppress the negative impacts
of measurement noise.

To conclude Scenario B, Figure 7 shows the re-
sults of the designed observer with both algebraic
derivative estimation and state-variable filtering. The
filter for smoothing Î1 uses ωg = 0.3 kHz, the
state variable filter for the derivative estimation ωg =
100 kHz. The parameters for the algebraic deviation
estimation are ∆T = 0.05ms and the polynomial or-
der is 2. Each method yields reasonable estimations
of I1. However, algebraic estimation suffers slightly
from its moving window (∆T ), which comes into ef-
fect at spikes of the action potentials. All in all, the
observer design has been proven to yield good results.

5 Conclusion

In this paper we suggested a control-theoretic ap-
proach for the model based estimation of the current
input of neurons. More precisely, we considered a pair
of electrically coupled neurons, where an input cur-
rent is estimated measuring one membrane voltage.
In particular, we presented a combination of nonlin-
ear state observers and linear filters. We analyzed the
convergence as well as asymptotic properties of our
estimation schemes. Moreover, we also discussed the
performance limitations due to the system’s structure
and the accuracy of required derivative estimations.
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[20] C. Koch, Ö. Bernander and R. J. Douglas, Do
neurons have a voltage or a current threshold for
action potential initiation?, Journal of Computa-
tional Neuroscience 2, 1995, pp. 63–82.

[21] I. S. Labouriau and H. M. Rodrigues, Syn-
chronization of Coupled Equations of Hodgkin-
Huxley Type, Dynamics of Continuous, Discrete
and Impulsive Systems 10(3a), 2003, pp. 463–
476.

[22] L. Ljung, Asymptotic behavior of the extended
Kalman filter as a parameter estimator for lin-
ear systems, IEEE Trans. on Automatic Control
24(1), 1979, 36–50.

[23] D. G. Luenberger, Observing the state of a linear
system, IEEE Trans. Mil. Electronics ME-8(2),
1964, pp. 74–80.

[24] P. Mai and C. Hillermeier, Least-Squares-
basierte Ableitungsschätzung: Theorie und Ein-
stellregeln für den praktischen Einsatz, Automa-
tisierungstechnik 56(10), 2008, pp. 530–538.

[25] E. A. Misawa and J. K. Hedrick, Nonlinear ob-
servers — a state-of-the art survey, Journal of
Dynamic Systems, Measurement, and Control
111, 1989, pp. 344–352.

[26] J. Moreno, Unknown input observers for SISO
nonlinear systems, in IEEE Conference on Deci-
sion and Control, 2000, volume 1, pp. 790–801.

[27] J. Moreno and E. Rocha-Cózatl, Pasivizaión
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[40] E. Rocha-Cózatl and J. Moreno, Passivity and
unknown input observers for nonlinear sys-
tems, in 15th Triennial World Congress of the
International Federation of Automatic Control
Barcelona, 21-26 July 2002.

[41] W. Sangtungtong, On Improvement in the
Adaptive Sliding-Mode Speed Observer, WSEA
Transactions on Systems 9(6), 2010, 581–593.

[42] Y. D. Sato and M. Shiino, Spiking neoron mod-
els with excitatory or inhibitory synaptic cou-
plings and synchronization phenomena, Physi-
cal Review E 66, 2002, No. 041903.

[43] E. Schwartz (ed.), Computational neuroscience,
MIT Press, Cambridge, Massachusetts, 1990.

[44] L. Shuang, W. Zhixin and W. Guoqiang, A Feed-
back Linearization Based Control Strategy for
VSC-HVDC Transmission Converters, WSEA
Transactions on Systems 10(2), 2011, 49–59.

[45] S. K. Spurgeon, Sliding mode obersers: a survey,
International Journal of Systems Science 39(8),
2008, pp. 751–764.

[46] E. Steur, I. Tyukin and H. Nijmeijer, Semi-
passivity and synchronization of diffusively cou-
pled neuronal oscillators, Physica D: Nonlinear
Phenomena 238(21), 2009, pp. 2119–2128.

[47] R. E. Thomas and A. J. Rosa, The Analysis and
Design of Linear Circuits, Wiley, 4th edition,
2004.

[48] R. D. Traub and R. Miles, Neuronal networks of
the hippocampus, Cambridge University Press,
Cambridge, 1991.

[49] R. D. Traub, J. G. R. Jefferys and M. A. Whit-
tington, Fast Oscillations in Cortical Circuits,
MIT Press, Cambridge, MA, 1999.

[50] S. Vassileva, V. Gantcheva and B. Tzvetkova,
Inferential Measurement of gibberelline by pre-
dictive software analyzers, Comptes rendus de
l’Acaémie bulgare des Sciences (ISSN 1310-
1331) 63(9), 2010, 1359–1366.

[51] B. L. Walcott, M. J. Corless and S. H. Żak, Com-
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