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Abstract: - The life cycle of tile products are decreasing especially for customized products. The demand 

changes also fluctuate from time to time for each product type. This phenomena created crucial issue in 

meeting customers’ demands within required due date. The occurrences of uncertain conditions caused the 

production line performance not able to meet the requirement because they faced uncertain changes in setup 

time, machinery breakdown time, lead time of manufacturing, and scraps. Hence, an accurate estimation on the 

production line in the presence of these uncertainties is required. Robust decision making on production line 

could be made when an accurate estimation of uncertain variables is modeled. Two approaches based on 

Bayesian inference and adaptive neuro-Fuzzy inference system (ANFIS) were utilized in this study for models 

development to estimate the effect of uncertain variables of production line in the tile industry. The models 

were validated and tested based on data obtained from a tile factory in Iran. The strength of our developed 

models is that the coefficients of decision variables are nonconstant. The best model was judged according to 

the mean absolute percentage error (MAPE) criterion. The results demonstrated that the ANFIS model 

generates the lower MAPE by 0.022 and higher correlation by 0.991 compared to the Bayesian model. 

Consequently, better decisions are generated due to easier identification of uncertainty data and the elaboration 

made the production planning process better understood.  
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1 Introduction 
The first stage of uncertainty modeling is the 

definition of uncertainty, where the true values of 

the input uncertainties are unknown. The classical 

(frequenters) time series mathematical models are 

not suitable and inadequate for handling the 

uncertainty in dynamic production system, because 

of their inability to handle stochastic variables with 

random coefficients.  

Two more robust approaches based on possibility 

and probability theories were proposed in this study 

for modeling the production uncertainties. Fuzzy 

inference under the possibility theory and Bayesian 

inference under the probability theory were 

considered. 

In the literatures, several generalization of Fuzzy 

inference systems were proposed, for example, IF-

inference system in [33] and interval type-2 Fuzzy 

logic system in [34]. The robustness of Fuzzy 

inference system (FIS) was improved by utilizing 

the artificial neural network (ANN) and it is called 

Adaptive neuro-Fuzzy inference system (ANFIS). 

For example, an ANFIS model was developed under 

uncertainties by [38] for production throughput to 

study the prediction capability of ANFIS compared 

to multiple linear regression. [37] developed a 

simple Sugeno neuro-Fuzzy predictive controller 

based on the synergism of a Sugeno neuro-Fuzzy 

controller and a Sugeno plant predictor for the 

control of a nonlinear plant under uncertainties. [35] 

compared the results of the neural networks and 

Fuzzy logic based on the prediction accuracy. 

Beside, [36] proposed the software agent paradigm 

to model the behaviour of complex systems under 

several scenario conditions. [39] proposed an 

autoregressive integrated moving average (ARIMA) 

based on multiple polynomial regression for 

throughput modeling under production 

uncertainties. Later, the performance of the hybrid 

model of ARIMA and Bayesian has been developed 

by [40].  

According to GUM/ISO, the propagation of 

uncertainty is known as the propagation of 

probability distributions. The uncertain inputs are 

characterized by prior probability distributions and 

treated mathematically as random variables. The 

best type of probability distribution for defining 

uncertainty is introduced as normal distribution. 

Hence, the uncertainty framework characterized the 

output quantity by a Gaussian function.  

This study presents the efficiency of ANFIS and 

Bayesian approaches, by modeling the actual 

production throughput of a tile factory using five 

WSEAS TRANSACTIONS on SYSTEMS Amir Azizi, Amir Yazid B. Ali, Loh Wei Ping

E-ISSN: 2224-2678 22 Issue 1, Volume 11, January 2012



input uncertainties: demand, breakdown time, scrap, 

setup time, and lead time. ANFIS and Bayesian 

approaches expressed the possibility and probability 

of occurrence of input uncertainties by defining the 

multimembership functions in Fuzzy environment 

and prior distributions in probability environment 

respectively. Estimations were presented with the 

lower and upper limits in both approaches. 

 

 

2 Literature Review 
Throughput is considered an important parameter of 

production line performance [1–3].  Mula et al 

(2006) reviewed models under uncertainty for 

production planning and highlighted that superior 

planning decisions were made by models for 

production planning that considered uncertainty 

compared to models that did not. Simulation method 

and approximation algorithm also analyze 

throughput under uncertainties, such as unreliable 

machine and random processing times [6, 7]. In a 

model consist of two workstations in a serial 

production line, [1] considered the same speed and 

buffer size for each workstation whereas [8] 

considered general case for workstations having 

unequal processing time, downtime, and buffer size, 

and provided an analytical equation.  

Processing time and breakdown time affected the 

production throughput [3, 8] and [5] examined the 

effects of three uncertainties, namely, demand, 

manufacturing delay, and capacity scalability delay. 

A survey [9] performed on material shortage, labor 

shortage, machine shortage, and scrap showed the 

association of these uncertainties on the product 

tardy delivery. 

Although against lean manufacturing principles, 

[10] proposed using buffer to manage uncertainty. 

Later, [11] reported on supply-demand mismatches. 

Lead time uncertainty was concluded to be the cause 

of increased delivery time to supplier. Methodology 

to manage lead time uncertainty was proposed, by 

assuming constant demand rate and not considering 

other production uncertainties. Approximate method 

was also used for forecasting throughput. Analytical 

algorithm presented by [12] analyzed and predicted 

the production throughput under unbalanced 

workstations. Linear regression models was used by 

[13] for formulating strategy, environmental 

uncertainty, and performance measurement.  

Bayesian approach was explicitly used by [14] for 

external evidence in the design, monitoring, 

analysis, interpretation, and reporting of scientific 

investigations. The most appropriate method in this 

context is Markov chain Monte Carlo (MCMC), and 

used in virtually all recently conducted Bayesian 

approaches [15]. The popular MCMC procedure is 

Gibbs sampling, which has also been widely used 

for sampling from the posterior distribution based 

on stochastic simulations for complex problems 

[18]. Gibbs Sampling (BUGS) was used by [19] to 

solve complex statistical problems. For moderate-

sized datasets involving standard statistical models, 

a few thousand iterations should be sufficient [20].A 

complete statistical analysis always includes both 

descriptive statistics and statistical inference. 

Development moves gradually from description to 

inference. Bayesian probability can be applied in 

both stochastic and ignorance types of uncertainties. 

A probabilistic analysis requires that an analyst has 

information on the probability of all events. 

Whenever this information is unavailable, the 

uniform distribution function is often used, which is 

justified by Laplace’s principle of insufficient 

reason [16]. Measurements of uncertainty almost 

exclusively investigated in terms of disjunctive 

variables. A disjunctive variable has a single value 

at any given time, but is often tentative because of 

limited evidence.  

 

 

3 Methodology 
Development model is divided into two section, 

ANFIS inference and Bayesian inference.  

 

3.1 ANFIS inference 
Work stages of uncertainty representation for 

modeling using ANFIS inference are illustrated in 

Fig. 1. Later, the details are explained in further 

subsections.  

 

3.1.1 Load data 
Data loading is about assigning the data set for 

training, testing, and checking. There are five sets of 

data for inputs and one set of data for output 

observed. Ten different datasets were randomly 

selected from 624 dataset to assign for training, 

testing, and checking, hence 384 dataset assigned 

for training, 120 for testing, and 120 for checking to 

make sure the majority of data sets are trained. The 

best result is to have the lowest training error. 

 

3.1.2 Clustering 
Clustering stage is the initial step of ‘Fuzzification’ 

in the FIS. The inputs were ‘Fuzzified’ after all 

numerical values of input uncertainties and output 

was loaded.  The propagation of each uncertainty 

was broken into the different clusters of Fuzzy to 

see the behavior of uncertainties on the production 

throughput.  Clustering includes selection of 

WSEAS TRANSACTIONS on SYSTEMS Amir Azizi, Amir Yazid B. Ali, Loh Wei Ping

E-ISSN: 2224-2678 23 Issue 1, Volume 11, January 2012



membership function and definition of Linguistic 

value. Fuzzy Logic Toolbox in MATLAB software 

was used for clustering Both Grid partitioning and 

subtractive clustering. 

 

 

 
Fig. 1 Flow diagram of computations in ANFIS 

inference 

 

 

3.1.3 Selection of membership function  
For selecting the best type of membership function, 

different membership functions as nonlinear 

functions were considered for the input uncertainties 

and multi linear functions for the output in the 

Sugeno Fuzzy inference system (SFIS). SFIS is 

more accurate than Mamdani FIS [21]. Three of the 

most popular membership functions, which are 

widely used, namely, triangular, trapezoidal, and 

Gaussian were examined. 

 

3.1.4 Definition of linguistic value  
Two sets of Linguistic values were defined with 

respect to number of membership function to 

determine the quality and quantity of membership. 

Three Linguistic values were first examined for 

each uncertainty. The quality of three Linguistic 

values was defined as low, medium, and critical. 

The second set of Linguistic values was examined 

by five statements: very low, low, medium, high, 

and very high. 

 

3.1.5 Generation of FIS 
FIS was presented as black box diagram that has 

three parts: inputs uncertainties (defined as 

nonlinear), the output (production throughput 

prediction), and Fuzzy inference engine. Generating 

rules inferred the relationship between inputs and 

output. Subtractive clustering selected the optimal 

number of rules with the lower training error. The 

number of rules was found through the equation (1) 

until (4) [22].  

 

Di = ∑ exp����	
 � �
�

�� � �xi � xj���                    (1) 

 

where 

Di = centre of cluster i 

N = data points 

ra = constant value 

 

The first cluster was identified by the highest 

density measure (D1*), which was at the centre of 

the cluster.   

 

Di = Di – D1* × µ (xi*)                                           (2)  

 

µ (xi*) = exp (- 
���� �����

���
� �� )                                       (3) 

 

Where rb is a positive constant and it is greater than 

ra according to [23]. A sufficient number of cluster 

centers were generated by repeating the same 

process for other clusters and revising the density 

measures. Gaussian membership functions 

determined weightage of each rule i for input 

variable j, as the polynomial function moves 

between 0 and 1. This approach presented accurate 

relationship between response and inputs by 

generating the optimal rules.  
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µij (xi) = exp ( 
�������� 

��
� �� )                                           (4) 

 

The subtractive clustering parameters in ANFIS are 

the squash factor; accept ratio, reject ratio, and 

range of influence.  Squash factor is used to 

multiply the radii values that determine the 

neighborhood of a cluster centre. The purpose is to 

squash the potential for outlying points to be 

considered as part of that cluster. The value of 

squash factor considered for clustering was 1.25 and 

the accept ratio was set at 0.5. The accept ratio is a 

fraction of the potential of the first cluster centre. 

Range of influence of cluster was set at 0.5.  The 

reject ratio is a fraction of the potential of the first 

cluster centre, and was defined at 0.15  

 

3.1.6 Training algorithms 
The training adjusted the membership function 

parameters and displayed the error plots. ANN 

was utilized for training, testing, and checking 

for each uncertainty. Back propagation gradient 

descent and the least square of error are two 

optimization methods for training the generated 

FIS. Gradient error back propagation adjusts the 

Fuzzy sets coefficients while the least squares 

of error adjust the parameters of consequent 

polynomial function.  
Hybrid learning algorithm includes both and was 

employed for identifying linear and nonlinear 

parameters.  

 

 

 

3.1.7 Number of iteration  
The number of iteration was selected to do the 

training process through the hybrid learning 

algorithm. Four different simulations, which are 

called epochs in ANFIS, were performed for each 

randomly assigned data set in order to achieve the 

lower training error. Training was started by 50 

simulations then increased to 100, 150, and 200 to 

see if there was any possibility to more error 

reduction, and make sure the error not increasing 

and no overfitting. The training process was stopped 

when the maximum epoch number was reached. 

 

3.1.8 Training 
Training process was implemented in MATLAB 

software. The theory of the training process is 

described step by step with relevant equations. 

 

 

Input node layer 

In step 1, the output of five uncertainties is denoted 

by O.  

 

Oi = µi (D)                                                            (5) 

Oi = µi (L)                                                            (6) 

Oi = µi (Se)                                                          (7) 

Oi = µi (S)                                                            (8) 

Oi = µi (B)                                                            (9) 

 

µi (U)  = 




�� �  !"� 
�  #$%�

                                         (10) 

 

where 
D = Demand, 

L= lead time of manufacturing, 

Se = Setup time, 

S = Scrap, 

B = Breakdown time 

Oi = Output of cluster i, 

i = 1,..,5, 

µ = Membership function, 

U = Uncertainty. 

 

Rule nodes (inference layer or rule layer) 

The weight of each cluster is found in step 2. The 

output of each input was obtained from step 1 and 

multiplies to other factors as shown in equation 

(11). 

 

Oi = Wi = µi (B) × µi (D) × µi (L) × µi (Se) × µi (S)  

                                                                             (11)                 

 
where 

W' = weight of cluster i. 

 

Normalized layer (Average nodes layer) 

Defuzzification method was done through the 

weighted average in step 3. The output i is the ratio 

of the weight of cluster i to the summation of all 

weights as shown in equation (12).         

 

Oi =  W( i = 
)�

∑ )�
                                                     (12) 

 

Consequent nodes layer (aggregation layer) 

W( i is multiplied by the output of the cluster i in the 

step 4 as presented in equation (13). 

 

Oi = W( i × F'                                                        (13) 

 
where 

F' = the output of the cluster i. 

 

Total output layer 

In the step 5, the overall output as the summation of 

all incoming signals is computed by equation (14). 
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Oi = F = 
∑ )� +�,�-.

∑ )�,�-.
                                               (14) 

 

3.1.9 Check the model validation 
Model validation was done by overfitting and 

reducing the training error. The overfitting was 

determined by number of error plots during training. 

This was done by testing the trained FIS on the 

training data against the checking data. If the 

checking error is decreased the model does not have 

overfitting and it is valid.  

 
3.1.10 Testing and checking datasets for 

validation 
The test data and check data were plotted against the 

FIS output to validate the forecasted data was near 

to actual data.  

 

3.2 Bayesian inference 
Bayesian inference use distribution-based approach 

where the prior probabilities were utilized to 

quantify uncertainty regarding the occurrences of 

events. Stages of uncertainty are illustrated in Fig. 2.  

 
Fig. 2  Flow diagram of computations in Bayesian 

inference 

 
3.2.1 Load data 
The data observed for input uncertainties and 

throughput of production was translated to the 

BUGS language by inserting them into the R 

software. The translated data was loaded by 

importing them to the model programmed in BUGS. 

A list from a vector of output and a vector for each 

uncertain variable was developed by using a 

command for reading the data.  

 

3.2.2 Selection of probability  
Problem formulation with predefined probability 

levels explicitly considered the stochastic property 

of the uncertainties. The selection of probability was 

divided into prior distribution of inputs and 

likelihood probability for observed data. These two 

probability selections were two main input 

components of Bayesian inference. 

  

3.2.3 Prior distribution 
Prior distribution refers to the historical behavior of 

the inputs. Its selection for inputs is done before 

observing the data. This behavior can be elicited 

from the experts [14]. The distribution of prior 

usually is defined in question by the normal 

distribution with mean of zero and low variance. 

Unfortunately, as the propagation of uncertainty 

may change with time, the prior information on the 

inputs cannot assume true. Therefore, the 

determination of prior probability distribution is 

done by the trial and error method. 

BUGS can modify the approximate prior by 

considering the sum of Gaussians cantered on each 

sample generated. The selection of prior probability 

distribution to express the uncertainty propagation 

of inputs can be examined with different distribution 

to see which one is more accurate based on lower 

error generated.  

One way to compare the models with different 

probability distributions is to use a criterion based 

on trade-off between the fit of data to the model and 

the corresponding complexity of the model. A 

Bayesian model [24] was proposed to compare 

criterion based on deviance information criterion 

(DIC). For each uncertain variable, three popular 

probability distributions were examined: uniform, 

exponential and normal. The posterior probability 

distribution function of the model parameters was 

computed from the defined prior probability 

distribution function. The best prior probability 

distribution was based on lower DIC comparison. 
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3.2.4 Likelihood 
The purpose of selecting likelihood probability 

distribution is to identify the best probability 

function which can fit the observed data. The 

likelihood function for production throughput was 

computed using the conditional distributions given 

the data observed in a tile industry.  The probability 

distributions of normal, exponential, Weibull, and 

logistic function were tested. The procedure was to 

maximize the likelihood to fit the data better. 

Dependencies values between variables were also 

identified through the conditional probabilities. It 

was gained by integrating the unknown parameters 

through the equations (15) and (16). 

 

p �y0|y� = 2 p �y0|x� p �x|y� dx                            (15) 

 
⇒ for normal distribution =  p �y0|y� = 

2 

σ √�π

 e�� .
�σ� �67���� �  


σ́ √�π
 e�� .

�σ́
� ���µ́�� dx      (16) 

 

where 

y0 9 future observation, 

y 9 observed at given x. 

 

3.2.5 Compilation 
The compilation process utilizes both prior and 

likelihood. It synchronizes the information about the 

uncertainty before observation and the behavior of 

data after observation. The compiling is to multiply 

the prior distribution and likelihood probability.  

 

3.2.6 Sampling 
Various samplings were computed from the joint 

posterior distribution. Markov chain method is used 

to obtain sample from full conditional distributions. 

A vector of unknown parameter was considered to 

consist of n subcomponents. Then the sampling 

started choosing the value of unknown parameters 

from the conditional distribution to find the best 

value of the beta for the posterior distribution, 

where the posterior distribution was maximized. 

Gibbs sampling algorithm was utilized because it is 

the robust procedure of MCMC. The Gibbs 

sampling algorithm approximated the posterior 

distribution function by making random draws from 

the probability distributions of the input 

uncertainties and evaluating the model at the 

resulting values.  

 

3.2.7 Quantity of simulations 
Five simulation runs of 1000, 5000, 8000, and 

10000 for drawing samples were examined to test 

the model based on DIC.  Simulation started from 

1000 and was increased until it reached 

convergence. The amount optimal simulation run 

was determined by lower value of convergence and 

DIC.  

 

3.2.8 Generation of posterior  
The posterior is the product of observation 

probability (likelihood) and previous information 

(prior). Different samplings were performed to 

generate posterior of unknown parameters. Each 

kernel of the generated sample had weightage in 

term of closeness to the posterior. Kernel is a 

function of the sample variance. Closer kernels 

dominated the posterior. Final posterior was 

obtained by weight-normalizing of sum of kernel 

products, which had the best posterior mean and 

variance.  

Fig 3 showed a construction of Bayesian black 

box diagram. A processor of Bayesian inference 

engine including rules of probabilities and Bayesian 

theory to derive the posterior mean and variance of 

the model is at the centre of the diagram.  

 

 
Fig. 3 The construction of Bayesian inference model 

 

Bayesian inference engine used the Bayes factor 

(BF) to analyze the model proposed as shown in 

equation (19). Two different sets of prior 

uncertainty were assigned for each uncertain 

variable. Two competing models were generated 

into two chains denoted by M1 and M2 as in 

equation (17). The data observed for each 

uncertainty was denoted by X. The posterior was 

found through the equation (18).  

 

M1: f1 (x | β') and M2: f2 (x | β')                        (17) 

 

                                                                            (18) 

∫
∫
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(19) 

 

When the M1 is as the null model, the possibilities of 

BF results are as follows. 

 

If BF(x)  ≥ 1 => M1supported, 

If 1 > BF(x)  ≥ 10
-1/2 

=> minimal evidence faced for 

M1, 

If 10
-1/2

 > BF(x)  ≥ 10
-1

 => substantial evidence 

faced for t M1, 

If 10
-1

 > BF(x)  ≥ 10
-2

 => strong evidence faced for 

M1, 

If 10
-2

 > BF(x)   => decisive evidence faced for M1. 

 

The error of Monte Carlo (MC) for sampling 

procedures was calculated for each uncertain 

parameter by equation (20). 

MC error = 
EF

√�GH%I� JK 'LI�ML'JNO�                           (20) 

 

3.2.9 Check the model validation 
The model validation was checked firstly through 

two ways of checking. First checking was by visual 

inspection of trace/history plots to see if the model 

is convergence. The model convergence was 

achieved when the chains were overlapping. The 

second way of checking was to check the 

autocorrelation. The convergence graphically 

presents the distribution of uncertainty. Gelman 

Rubin statistic (GRS) showed the convergence ratio 

[25]. The autocorrelation is defined between zero 

and one. A slow convergence shows the high 

autocorrelation, indicating validity of model.  

 

3.3 Models comparison  
Many authors [26-29] used Mean Absolute 

Percentage Error (MAPE) and Correlation to 

compare forecasting models. They measure the 

accuracy of fitted time series values. MAPE 

expresses error as a percentage, which is the average 

of the absolute of the difference between actual and 

forecasted divided over actual. It is used to measure 

within sample goodness-of-fit and out-of-sample 

forecast performance. The value of MAPE is 

computed by equation (21). 

 

MAPE = 


N  �∑ P�QRLGMS�+J�IRMOLIT�

QRLGMS PNL	
 � × 100    (21) 

 

Correlation criterion showed an association between 

the fitted value and the actual value. Absolute 

correlation value nearing to 1.0 implies high 

accuracy while absolute correlation value   greater 

than 0.8 is considered as strong relationship [31]. 

The correlation value is calculated through the 

equation (22) [30]: 

 

Correlation = 
UJVM�'MNRI �QRLGMS MNT +J�IRMOLIT�

σ"WXY� σZ[�\"]W\^
    (22) 

 

where  

Covariance of actual and forecasted 

9  ∑ _QRLGMS�QRLGMS`̀ `̀ `̀ `̀ `� �+J�IRMOLIT� +J�IRMOLIT`̀ `̀ `̀ `̀ `̀ `̀ `̀ `̀ a
N�


NL	
      (23) 

 

 

4 Results  
 

We will comment on the experimental results. 

 

4.1 Membership function 
The most suitable and efficient membership 

functions for defining the propagation of 

uncertainties was found with the lowest training 

error, which was Gaussian membership function. 

Fig. 4  and fig 5 showed the Gaussian membership 

functions of each uncertainty in SFIS with five 

clusters for breakdown time and demand 

respectively. The Gaussian membership functions 

for lead time, setup time and scrap have similar 

trend as break down time and demand. 

 

 
Fig. 4 Fuzzy membership function of breakdown 

time 

 
The propagation of breakdown time was presented 

in five values of linguistic variables and 

corresponding membership functions as follows: 

 

B very low ~ N (180, 83.08) 

B low ~ N (277, 83.09) 

)(/)|(

)(/)|(
)(

22

11

MpxM

MpxM
xBF

π
π

=
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B medium ~ N (308, 83.08) 

B high ~ N (420, 83.08) 

B very high ~ N (492, 83.08) 

 
where 

N represents Gaussian membership function 

 

 

 
Fig. 5 Fuzzy membership function of demand 

The propagation of demand was presented in five 

values of linguistic variables and corresponding 

membership functions as follows: 

D very low ~ N (8725, 1953) 

D low ~ N (10570, 1953) 

D medium ~ N (10800, 1953) 

D high ~ N (12780, 1953) 

D very high ~ N (16950, 1953) 

 
Similarly, the propagation of lead time was shown 

in five values of linguistic variables and 

corresponding membership functions as follows: 

L very low ~ N (5200, 338.5) 

L low ~ N (5718, 338.5) 

L medium ~ N (5782, 338.5) 

L high ~ N (6028, 338.5) 

L very high ~ N (6720, 339) 

 

Similarly set up time propagation was presented in 

five values of linguistic variables and corresponding 

membership functions as follows: 

Se very low ~ N (190, 12.37) 

Se low ~ N (218, 12.36) 

Se medium ~ N (230, 12.39) 

Se high ~ N (240, 12.38) 

Se very high ~ N (242, 12.37) 

 

Similarly scrap propagation was presented in five 

values of linguistic variables and corresponding 

membership functions as follows: 

S very low ~ N (1800, 535.1) 

S low ~ N (2650, 535.1) 

S medium ~ N (3020, 535.1) 

S high ~ N (3420, 535.1) 

S very high ~ N (3800, 535.1) 

 

4.2 ANFIS model structure 
Figure 9 exhibited the generated FIS whereby a 

processor of SFIS to elaborate five Fuzzy rules is 

located at the centre of the Fuzzy black box diagram  

 

 

 
Fig. 6 Constructed Fuzzy model with five inputs and 

one output 

 

 

 
Fig. 7 ANFIS model structure with five rules 

 
The ANFIS model was structured by five rules. The 

model divided the five uncertainties space into the 

Fuzzy subspaces and also structured the polynomial 

function of throughput response using five linear 

functions. The five uncertainties defined by the 

Gaussian membership functions were inserted to the 

ANFIS model.   Fig. 7 showed the ANFIS model 

structure. 

4.3 Rules 
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Five “if-then” rules were extracted to represent how 

to achieve to the different levels of production 

throughput.  Rule 1: If breakdown time, setup time 

and scrap fall in low cluster while lead time falls in 

medium  and demand is high;  then production level  

will be high, Rule 2: If breakdown time, scrap, lead 

time and setup time fall in high cluster while 

demand is very low; then level of production is low, 

Rule 3: If lead time and demand are in low cluster 

while breakdown time, setup time and scrap fall in 

medium cluster; then level of production will be 

medium, Rule 4: If breakdown time, setup time, 

scrap and lead time fall in very low cluster while 

demand is very high;  then production level will be 

very high, Rule 5: If breakdown time, scrap and 

setup time fall in very high cluster while lead time 

falls in high cluster and demand is medium; then 

production level will be very low. 

 

Table 1 Estimated parameters of each uncertainty 

Uncertainties Clusters σ µ 

Breakdown 

time 

Very low 9.11 180 

Low 9.11 277 

Medium 9.11 308 

High 9.11 420 

Very high 9.11 492 

Demand 

Very low 44.19 8725 

Low 44.19 10570 

Medium 44.19 10800 

High 44.19 12780 

Very high 44.19 16950 

Lead time 

Very low 18.39 5200 

Low 18.39 5718 

Medium 18.39 5782 

High 18.39 6028 

Very high 18.41 6720 

Setup time 

Very low 3.51 190 

Low 3.51 218 

Medium 3.52 230 

High 3.51 240 

Very high 3.51 242 

Scrap 

Very low 23.13 1800 

Low 23.13 2650 

Medium 23.13 3020 

High 23.13 3420 

Very high 23.13 3800 

 

4.4 Mean and standard deviation 

estimation of parameters 
The parameters including the mean and standard 

deviation of each uncertainty were tabulated in 

Table 1 with respect to their clusters that were 

expressed in the rules section. The membership 

functions for all the parameters are Gaussian. 

 

4.5 Training error 
Trend of training error is shown in Fig. 8.The figure 

indicates no overfitting during the training process 

with testing trend and the error rate was reducing. 

This showed that the combination of the least 

squares method and  back propagation gradient 

descent method used for training FIS membership 

function parameters generated lower training error. 

For example, the error trend of training performed 

for 200 iterations presented in Fig. 8 indicated low 

error in training. 

 

 
Fig. 8 Error trend for training 

 

 

 
Fig. 9  Nonlinear relationship between uncertain 

variables and throughput in   2-D and 3-D diagram 

 

4.6 Uncertainties and Throughput 

Relationships 
Based on the extracted rules, the nonlinear 

relationship between the uncertainties and response 

were identified. Fig. 9 showed some of the effects of 

inputs on response.  
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4.7 Coefficients estimation of parameters 
The coefficients of Sugeno Fuzzy inference linear 

functions (SFILF) after final output results were 

computed and shown in table 2. 

 

Table 2 Estimated coefficients of SFILF 

Clusters 

Inputs’ coefficients of SFILF 

βb β
 β� βc βd βe 

Very low 35170 -8.16 0.01785 -3.441 2.755 -0.4042 

Low 7058 -5.091 0.8506 -1.05 10.99 0.2962 

Medium 42140 -9.371 0.0434 -4.045 -19.79 -0.5418 

High 1157 3.393 0.7026 0.7061 -13.47 0.2097 

Very high -12110 -2.319 1.174 0.9599 19.36 0.6033 

The estimated coefficients of the five uncertainties 

were inserted into the model as presented in   (24).  

 

P�t�  ~  βb h β
B�t�  h β�D�t�   h βcL�t�   h
βdSe�t�   h  βe S�t�                                         (24)    

                             
where 

P(t) = Production throughput (level) over the time, 

B(t) = Breakdown time, 

D(t) = Demand volume over the time, 

L(t) = Lead time of manufacturing, 

Se(t) = Setup time, 

S(t) = Scrap volume over the time,   

βb 9 Intercept, 
β
, … , βe= Coefficient of inputs. 

 

The five SFILF were formulated for all clusters as 

shown in (25) until (29).  

 
P1�t� ~ 35170 � 8.16 B�t� h  0.018D�t�  �
3.441 L�t�  h 2.755 Se�t�  � 0.404 S�t�                     (25)   

 

P2�t� ~ 7058 � 5.091 B�t�  h 0.851 D�t�  �
1.05 L�t�  h 10.99 Se�t�  h  0.296 S�t�                      (26) 

 

P3�t� ~ 42140 � 9.371 B�t� h 0.043D�t� �
4.045 L�t� � 19.79 Se�t� � 0.542S�t�                       (27)   

 

P4�t� ~ 1157 h 3.393 B�t�  h 0.703 D�t�  h
0.7061 L�t�  � 13.47 Se�t�  h  0.210 S�t�                  (28)   

 

P5�t� ~ �12110 � 2.319 B�t�  h 1.174 D�t�  h
0.9599 L�t�  h 19.36 Se�t�  h  0.603 S�t�                 (29) 

 

                         

4.8 Rule viewer  
The rule viewer was performed to expose all parts 

of the Fuzzy inference process from inputs to 

output. Each row of plots corresponds to one rule, 

and each column of plots corresponds to either an 

input variable or an output variable.  

4.9 Model programmed in BUGS 

Table 3 described Table 3 Description of the BUGS 

model expressions. The sign ~ indicates a stochastic 

relationship, where Tau =1/variance showed 

precision level. The c function combines objects 

into a vector, where the variable x was collected by 

different values that were measured in different 

period of time.   

 

Table 3 Description of the BUGS model expressions 

Expression Type Usage 

dnorm 
Normal 

distribution 

x ~ dnorm (mu, 

tau) 

c Vector of data set x = c (x1, x2, …, xn) 

 

 

4.10 Probability distribution test 
Four popular probability distributions including 

normal, Weibull, logistic, and exponential were 

tested. Fig.10 showed the normal distribution is the 

best fit for production throughput while Fig. 11 

showed the summary of the normal distribution 

function. 

 

 

 
Fig.10 Testing four popular probability distributions 

 

 
Fig. 11 Anderson-Darling normality test 

4.11 Checking the programmed model  
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After programming, the model was checked for any 

completeness and consistency with the data. The 

initial values were generated by sampling from the 

prior. The model programmed was proven 

syntactically correct and compiled.  

 

4.12 Convergence diagnostics test 
Computational results of the lowest MAPE were 

selected in this section for the Bayesian model. The 

convergence diagnostics were checked through two 

chains results. The convergence was achieved 

because both chains overlapped each other, 

according to [25]. The dynamic race plots of the 

stochastic parameters with 10,000 iterations were 

done to check the convergence on 95% credible 

interval. Fig. 12 graphically showed the results.  

 

 
Fig. 12 Dynamic trace plots of uncertain parameters 
 

DIC is the summation of goodness of fit and 

complexity. Deviance is the average of the log 

likelihoods calculated at the end of iteration in 

Gibbs Sampler. The definition of deviance is - 2 × 

log (likelihood). Likelihood is defined as p (y|theta), 

where y comprises all stochastic parameters given 

values and theta comprises the stochastic parents of 

y - 'stochastic parents' are the stochastic parameters 

upon which the distribution of y depends, when 

collapsing over all logical relationships. 

 

4.13 Kernel density 

Fig. 13 showed the value of Kernel density for each 

stochastic parameter was performed on 10000 

samples. The diagrams indicated smoothed kernel 

density estimate. The trends indicated the posterior 

distribution of each stochastic parameter is normal 

like prior distribution, thus proving the estimations 

were robust and logical.  

 

 
Fig. 13 Kernel density of the uncertain parameters 

 

4.14 Running quartiles 
Running quantiles plot out the running was done for 

mean with running 95% confidence intervals where 

10000 iterations were used. Results are presented in 

Fig. 14.  

 

4.15 Bivariate posterior  
“Bivariate posterior scatter plots” present the 

correlation between two stochastic parameters. For 

example, the Fig. 15 shows correlation between (βe� 

and (β��.  

 

4.16 Pair-wise correlations 
Table 4 exhibited the calculated values of pair-wise 

correlations of all parameters. The highest 

correlation value was between beta2 and beta5 

while its lowest value was between beta0 and beta3. 

 

 
Fig. 14 Running mean of the uncertain parameters 
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Fig. 15 Pairwise correlation of (βe� and (β�� 

 

 

Table 4 Pairwise correlations of all inputs 

Variables Correlation values 

beta0 beta1 -0.00705918 

beta0 beta2 -1.65774E-4 

beta0 beta3 2.87397E-5 

beta0 beta4 -0.00629102 

beta0 beta5 0.00675832 

beta1 beta2 0.319391 

beta1 beta3 -0.384504 

beta1 beta4 -0.00271504 

beta1 beta5 -0.0436661 

beta2 beta3 -0.873166 

beta2 beta4 -0.0208795 

beta2 beta5 0.592831 

beta3 beta4 -0.155095 

beta3 beta5 -0.817384 

beta4 beta5 -0.0179657 

 

4.17 Autocorrelation function 

The autocorrelation function for the chain of each 

parameter indicated the dimensions of the posterior 

distribution were mixing slowly before 20 lags in 

each case. Slow mixing is often associated with high 

posterior correlations between parameters.  

 

4.18 Gelman Rubin statistics 
Gelman Rubin statistic (GRS) was performed for all 

stochastic parameters, which were modified by [25] 

in equation (30). The idea was to generate the 

multiple chains starting at overdispersed initial 

values, and assesses the convergence by comparing 

within-chain and between-chain variability over the 

second half of those chains.  

 

GRS = A / W                           (30) 

 
where 

A= width of the empirical credible interval based on 

samples pooled together (2 chains × 10000 iterations). 

W= width average of the intervals across the two chains 

 

The GRS is to average the interval widths (shown in 

red color). It should be 1 if the starting values are 

suitably overdispersed and the convergence is 

approached.  The blue and green interval lines 

should be approximately stabilized to constant value 

(not necessarily 1). It is proven and shown for all 

five stochastic parameters in Fig. 16. 

 

 
Fig. 16 Gelman Rubin statistic for the uncertain 

parameters 

 
Where 

Green = width of 80% intervals of pooled chains: should 

be stable 

Blue = average width of 80% intervals for chains: should 

be stable 

Red = ratio of pooled/within: should be near 1 

 

 

4.19 Box plot of posterior 
Box plot of posterior efficiency distributions were 

presented in Fig. 17. The calculated baseline value 

was 11595.7809089724. 

 

4.20 Model fit 
Fitted values were compared with actual values in 

95% interval for production output, breakdown, 

demand lead time, setup time and scrap was 

calculated and plotted. The results showed 

production throughput and demand had similar 

upward trend while breakdown time, lead time, set 

up time and scrap were having similar downward 

trend.  Fig. 18 showed comparison between fitted 

value to actual value for production throughput, 

while  Figure 23 showed  the similar comparison  

for breakdown time. 
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Fig. 17  Box plot of posterior efficiency 

distributions 

 

 
Fig. 18 Fitted value compare with actual values over 

production throughput observed with 95 % interval 

 

 
Fig. 19 Fitted value compare with actual values over 

breakdown time observed with 95 % interval 

 

where 

Red = posterior mean of µi,  

Blue = 95% interval,  

Black dot = observed data 

 

4.21 Posterior estimates  
The final set of posterior estimates using Gibbs 

sampling in 95% credible interval was summarized 

in Table 5. The percentiles of 2.5% and 97.5% of 

posterior estimates produce an interval, which the 

parameter lies with probability of 0.95. 

 

Table 5 Summaries of the posterior distribution 

Coefficient mean 
Std. 

Dev. 
MC error median 

βb 0.01343 3.179 0.0242 0.02376 

β
 -0.0849 2.896 0.01872 -0.1016 

β� 0.9585 0.1596 0.001056 0.958 

βc 0.1268 0.6618 0.004444 0.1246 

βd -0.0458 3.156 0.02213 -0.0614 

βe -0.1481 0.7179 0.005325 -0.1474 

Deviance 1939.0 2.383 0.01624 1939.0 

 

The value of MC error shows an estimate of (σ / 

√N�
). The batch means method outlined by [32] was 

used to estimate σ.  

 

Finally, the Bayesian model is formulated as in 

equation (31). 

 

P�t�~ 0.01343 � 0.0849 B�t� h 0.9585 D�t� h
0.1268 L�t� � 0.04589 Se�t� � 0.1481 S �t�         (31) 

 

 

4.22 Comparison 
The forecasting accuracy was calculated using 

Pearson correlation and the MAPE for both 

Bayesian and ANFIS models. MAPE index used to 

compare the performance of ANFIS and Bayesian 

models. The values in Table 6 indicated that the 

ANFIS model significantly yield a better fit than the 

Bayesian Model for production level under the five 

uncertain variables  

 

Table 6 Comparison of ANFIS and Bayesian 

models 

Model MAPE Pearson correlation 

Bayesian 0.0261403 0.989 

ANFIS 0.0223005 0.991 

 

To achieve higher production throughput level for 

the case study using the ANFIS model, the 

coefficients of the production uncertainties were 
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indicated; where for breakdown time was -2.319, for 

demand = 1.174, for manufacturing lead time = 

0.9599, for setup time = 19.36, and for scrap = 

0.6033. The lower and upper limits for very high 

level of production throughput were identified as 

follows. 

• Breakdown time should fall between 474.14 

and 509.85, 

• Demand between 16863.38 and 17036.61,  

• Lead time between 6683.92 and 6756.08 

• Setup time between 235.12 and 248.87  

• Scrap between 3754.66 and 3845.33. 

 

5 Conclusion 
This study found that the application of the 

Bayesian and ANFIS inferences on detecting the 

production uncertainties and their impacts on the 

production throughput level as more viable and 

accurate than classical approach. ANFIS model was 

proven as more efficient and provides better 

production forecasting accuracy compared with 

Bayesian model. Hence, ANFIS model is 

recommended to be used for production estimation 

under random uncertainties.  

Different combinations in terms of number of 

simulations, types of membership functions for the 

ANFIS model, and different prior distributions for 

stochastic variables in the Bayesian model were also 

examined and found to be viable. 

200 epochs were found to be the best iterations 

number in the case study and the best membership 

function was the Gaussian in SFIS for the ANFIS 

model. The best simulations iterations of MCMC 

were 10000 and the best prior distributions for 

stochastic variables were normal distributions for 

the Bayesian model. 
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