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Abstract. Watermarking technology.play a central role in the digital right management for multimedia data. 
Especially a video watermarking is a real challenge, because of very high compression ratio (about 1:200). 
Normally the watermarks can barely survive such massive attacks, despite very sophisticated embedding 
strategies. It can only work with a sufficient error correcting code method. In this paper, the authors introduce a 
new developed Enhanced Multidimensional Hadamard Error Correcting Code (EMHC), which is based on well 
known Hadamard Code, and compare his performance with Reed-Solomon Code regarding its ability to 
preserve watermarks in the embedded video. The main idea of this new developed multidimensional Enhanced 
Hadamard Error Correcting Code is to map the 2D basis images into a collection of one-dimensional rows and 
to apply a 1D Hadamard decoding procedure on them. After this, the image is reassembled, and the 2D 
decoding procedure can be applied more efficiently. With this approach, it is possible to overcome the 
theoretical limit of error correcting capability of (d-1)/2 bits, where d is a minimum Hamming distance. Even 
better results could be achieved by expanding the 2D to 3D EMHC. A full description is given of encoding and 
decoding procedure of such Hadamard Cubes and their implementation into video watermarking procedure.To 
prove the efficiency and practicability of this new Enhanced Hadamard Code, the method was applied to a 
video Watermarking Coding Scheme. The Video Watermarking Embedding procedure decomposes the initial 
video through Multi-Level Interframe Wavelet Transform. The low pass filtered part of the video stream is 
used for embedding the watermarks, which are protected respectively by Enhanced Hadamard or Reed-
Solomon Correcting Code. The experimental results show that EHC performs much better than RS Code and 
seems to be very robust against strong MPEG compression. 
 
Key-Words: - Hadamard Error Correcting Code, ECC, Hadamard Transform, , Watermarking, DWT, MPEG 

 
 
1 Introduction 
Many applications in telecommunication techno-
logies are using Hadamard Error Correcting Code. 
Plotkin [1] was the first who discovered in 1960 
error correcting capabilities of Hadamard matrices. 
Bose, Shrikhande[2] and Peterson [3] also have 
made important contributions. Levenshstein [4] 

was the first who introduced an algorithm for 
constructing a Hadamard Error Correcting Code. 
The most famous application of Hadamard Error 
Correcting Code was the NASA space mission in 
1969 of Mariner and Voyager spacecrafts. Thanks 
to the powerful error correcting capability of this 
code it was possible to decode properly high-

WSEAS TRANSACTIONS on SIGNAL PROCESSING Jakob Wassermann, Andrzej Dziech

E-ISSN: 2224-3488 196 Volume 13, 2017

mailto:jakob.wassermann@technikum-wien.at
mailto:adzie@tlen.pl


quality pictures of Mars, Jupiter, Saturn, and 
Uranus [5]. A good overview of Hadamard Error 
correcting code is presented in [6]  and [7]. 
In this paper we introduced a new type of 
multidimensional Hadamard Code, we called it 
Enhanced Multidimensional Hadamard Error 
Correcting Code (EMHC). It can overcome the 
limit of error correcting capability of d/2-1 bits 
where d is the minimum Hamming distance. The 
application of this Code in Video Watermarking 
gives also a strong proof of its effectiveness. The 
reason for selecting Video Watermarking lies in 
strong compression ratio, normally factors greater 
than 1:200, which is applied to the video 
sequences. For example, an uncompressed HDTV 
video stream has a data rate of 1.2Gbit/s and for 
distribution reason, it must be compressed to 
6Mbit/s. For embedded watermarks, it is a big 
challenge to survive such strong compression ratio. 
Error correcting code plays a decisive role in 
surviving of the embedded Watermarks.  
This paper has followed the structure: In Chapter 2 
contains the introduction into classical Hadamard 
Error Correcting Code. Chapter 3 describes the 
new Enhanced Multidimensional Hadamard Code 
and its error correcting capabilities.  
In Chapter 4, the authors explain the Video 
Watermarking Scheme and the Chapter 5 presents 
the results and discussion. 
 
 
2 Hadamard Error Correcting Code 
The Hadamard code of n-bit is a linear code, which 
can be generated by rows of a n*n Silvester-
Hadamard Matrix Hn. It can encode k=log2(n). The 
Hamming distance between the words is constant 
and is n/2, The code can be denoted as (2k,k,2k-1) and 

it can correct 

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n  errors. The Code Rate is 
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The code words are the rows of this Matrix H8. To 
get the corresponding Code Book we have to map 
the -1 entries to 0 (-10). In Table 1 the Code Book 

of the linear Code (8,3,4) is depicted. The Hamming 
distance of this code is d=4. 

Message                      Code Words 
 0 0 0 1     1     1     1      1     1     1     1 
 0 0 1 1     0     1     0     1      0     1     0 
 0 1 0 1     1     0     0     1      1     0     0 
 0 1 1 1     0     0     1     1      0     0     1 
 1 0 0 1     1     1     1     0      0     0     0 
 1 0 1 1     0     1     0     0      1     0     1 
 1 1 0 1     1     0     0     0      0     1     1 
 1 1 1 1     0     0     1     0      1     1    0 

 
Table 1. Code Book of Hadamard Code (8,3,4) 
 
The decoding procedure is based on Hadamard 
Spectrum. The spectral component with the highest 
value determines the decoding message. The 
received code word is used to calculate the 
Hadamard spectrum vector. It  is calculated by 
multiplying  the received and converted (0 is 
mapped to -1) code vector c by the Hadamard 
Matrix H8. 
 

8Hcs        (2) 
Supposed we received the code word: 
 

 00110011c  
 
After conversion (mapping 0 to -1) we receive 
 

 11111111 c  
 
According to the Eq.(2), the decoded Hadamard 
Spectrum vector is: 
 

 

 00000800

11111111 8





s

Hs

 

 
The third component of the vector s has the highest 
value in the spectrum; all others are zeroes, s(3)=8, 
s(i)=0 for i=1,..8 and i≠3. It implicates that the 
code word at the position i=3 was received. The 
codebook at that position gives us the ultimate 
information of the message, which is  (010).  
In the case of one error, the value of the third 
component of the spectrum vector s still remains 
the highest one.  For example a corrupted 
codeword 
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has the Hadamard spectrum vector: 
 

 
 22222622

11111111 8
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The third component is still the highest one, so the 
message can be decoded. In the case of two errors, 
it is already impossible to decode the message 
unambiguously. 
Another type of Hadamard Code, so called punc-
tured Hadamard Code can be created if additionally 
to the Hadamard Matrix  Hn the negated Hadamard 
Matrix –Hn is used to generate the Code Book.  In 
this case, the code is denoted as (2k,k+1,2k-1), 

where : k2 - the length of the codewords, k+1- the 

length of message words and 12 k - the minimum 
Hamming distance.  Code Rate can be increased 

slightly too k
kR
2

1
   

For this purpose a new matrix C2n with 
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Is created. The rows of C2n are the Hadamard 
codewords. In the case of n=8, we can discuss the 
differences between this two versions. In contrast 
to Hadamard Code (8,3,4) the Hadamard Code 
(8,4,4), it can correct not only one error but also 
seven and eight errors. 
In case of eight errors, our code-word  

 11111111 c  
is completely corrupted. In this case, the absolute 
value of the third component of the Hadamard 
spectrum is the highest one, and it has a negative 
sign. A negative sign means that the decoded code 
word must be inverted. 
 

 
 00000800

11111111 8





s
Hs  

 
In the case of seven errors, we have exactly the same 
situation as with one error, however, with one small 
difference: the third component has a negative sign, 
what means the decoded word must be inverted. The 
following figure shows the error correcting ca-
pability of an (8,4,4) Hadamard code. 

 
Fig. 1. Error Correcting Capability of 8 Bit Hadamard 

Code 

The (8,4,4) Hadamard code can correct 1,7 and 8-bit 
errors regardless where they occur within the code 
words. Generally, we can say that n bit Hadamard 

code can correct totally 







1

2
n types of errors.  

Further, in our paper, we will consider only a regular 
Hadamard Code (not the punctured one), which is 
denoted as (2k,k,2k-1) where the total number of 

correcting errors is 







1

4
n . 

 
 

2.2 Two-Dimensional Hadamard Error 
Correcting Code 

 
 

The 2D Hadamard Error Correcting Code uses so-
called basis images instead of Hadamard vectors. 
The basis images functions are orthogonal to each 
other, and they can be generated from the Hadamard 
matrix by multiplication of columns and rows. 
Generally, we can write 
 

:),(*)(:, mHlHA nnml        (3) 
 
 In case of 4x4 Hadamard matrix 
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We can calculate the complete set of 16 such basis 
images. 
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Fig. 2. Basis Images of 2D Hadamard  
     Transform (4x4) 

For instance, the pattern A31 is generated by Eq.(1) 
and has the numerical presentation 
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It can be visualized as 

 
Fig. 3. Basis Image A31. The “1” is interpreted as 255 

(White) and “-1” as 0 (Black) 

The 2D Hadamard Spectrum of such basis images, 
which is denoted by C, delivers a matrix where only 
one coefficient differs from zero. It represents a 2D 
spectrum of the corresponding basis image. For 
example, the Hadamard spectrum matrix of the pat-
tern A31 is  



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The component C31=16 and all others are zero. This 
fact, identification of the basis image through its 
spectral coefficient, can be utilized to construct 
error-correcting code. The codewords are the pattern 
of basis images, and they can be decoded unambigu-
ously by detecting the highest absolute coefficient 
value inside of 2D Hadamard Spectrum according to 
Eq.(4).  
To apply the basic images as codewords, we have to 
map their two-dimensional structure into one-
dimensional pulse stream which will be denoted by 

the codeword. In Table, 2 such 2D Hadamard code-
book is depicted. In case that the basis image A31 is 
corrupted by some perturbation and looks like it 
depicted in Figure 4. 
 

Message Basis 
Image 

Maximal
Matrix 
Element 

Pulse Stream  
(code word) 

0000 

 

C11 0000000000000000 

0001 

 

C12 0101010101010101 

0010 

 

C13 0000000011111111 

0011 

 

C14 0000111111110000 

0100 

 

C21 0000111100001111 

0101 

 

C22 01011010010111010 

0110 

 

C23 0011110000111100 

0111 
 

C24 01101001101101001 

1000 

 

C31 0011001100110011 

1001 

 

C32 0101010110101010 

1010 

 

C33 0011001111001100 

1011 

 

C34 0011110011000011 
 

1100 
 

C41 0110011001100110 

1101 

 

C42 0101101010100101 

1110 

 

C43 0110011010011001 

1111 

 

C44 0110100110010110 

 
Table 2 : 2D Code Book constructed  

from Basic Images 
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It is still possible to recover the original pattern 
completely. To understand this, let us consider this 
corrupted Basic Image:  
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The Hadamard Spectrum we obtain from 
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the absolute value of │C31│=10 and it still stays the 
highest one between the other spectral coefficients of 
matrix C, hence the corresponding message word 
could be read out from the code book depicted in 
Table 2. It is “1000” (see the row for coefficient 
C31). 
 
 
 
 
 
 
Fig. 4. Corrupted Basic Image A31 
 
The total number of errors that can be corrected is 
n/4-1 and correspond completely to the one-
dimensional case. The simple enlargement from 1D 
to 2D doesn’t bring any improvement. To overcome 
this limit, a new enhance Hadamard decoding 
procedure for 2D and 3D Hadamard Code is 
introduced. 
 

2.3 Enhanced 2D Hadamard Error 
Correcting Code 

The enhanced 2D Hadamard Code makes it possible 
to correct more errors as with the standard Hadamard 
method. With this approach is possible to overcome 
the theoretical limit of error correcting capability of 


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4

2n errors. 

The basic idea is to map the 2D basis images into a 
collection of one-dimensional rows and applying 
them 1D decoding procedure. After this, the image is 
reassembled, and the 2D decoding procedure 

(Eq.(4)) can be applied more efficiently.  
To show the functionality of this method we consid-
er the basis images A71 of 8x8 2D Hadamard Trans-
form. In this case is n=8. This basic image (Fig.5) 
can be derived from Eq.(3).   
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Fig. 5. Basic Image A71 of 2D Hadamard Transform 
(8x8) and its visualization. “1” is interpreted as white 
(255), “-1” as black (0) 

This image is now corrupted by noise (Fig.6). The 
corresponding error matrix contains 17 errors. 
According to the consideration from chapter 2.1, it is 
not possible to recover this pattern because the 

number of errors exceeds the limit of 151
4

2



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
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


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Fig. 6. Original Basis Pattern A71, Error Mask, and 
the Corrupted Pattern 

The main idea of the enhanced Hadamard Error 
Correcting Code is  to reduce the total number of 
errors beyond the limit by applying at first one- 

 
 
 
 
 
 
 

 
 
 

   Fig. 7. Enhanced Hadamard Decoding 
Procedure on Error Mask and on Corrupted 
Basis Image 

A B C D E 
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dimensional error correcting code for each row of the 
2D Pattern.The functionality of the enhanced Hada-
mard decoding procedure is depicted in Figure 7. 
The steps of the algorithm could be described as 
follows:  
 
 The corrupted basis image (A) is separated into 

its rows (B). 
 
 On each row is applied 1D Hadamard decoding 

procedure. Rows which contain only one error are 
decoded error free (because of each row has the 
length of n=8). Rows No. 6 and No. 8 are now 
without any errors (C). 

 
 Reassemble the pattern again (D). The renewed 

pattern contains now fewer errors as before, 
namely 15.  

 
 Apply the 2D Hadamard decoding procedure ac-

cording to Eq.(4). The result will be error free 
pattern (E).  

We simulated the error correcting performances of 
the enhanced  and standard Hadamard Error 
Correcting Codes with the codewords of the length 
n=64. The results are depicted in Fig. 8. On the x-
axis, we have the number of bit errors, on  the y-axis 
the number of corrected codewords in percentage. 
The enhanced Hadamard Code is depicted with a 
continuous line and standard Hadamard with dashed 
line.  As described in chapter 2.1 the standard 
Hadamard Error Correcting Code has the following 
features: It can correct 100% of all corrupted 
codewords of the length n if the number of error bits 
occurring in the range [1,.., n/4-1] to [3n/4+1,…,n]. 
In case n=64 we can see, that standard Hadamard 
Code corrects all errors if their number is between 1 
and 15 and between 49 and 64. In the case of 
Enhanced Hadamard Correcting Code, we can 
correct beyond these limits 
 

 
Fig. 8. Comparison of Error Correcting Capabilities of Standard 
Hadamard (dashed line) with 8x8 2D Enhanced Hadamard Code 

For example, in the case of 16 errors, we correct 
92% of all possible error pattern inside the code-
word. In the case of 17 errors, it is still 83% of all 
error pattern that can be corrected. If we have 48 
errors, in the case of Standard Hadamard Code no 
errors could be corrected on the contrary to the En-
hanced Hadamard Code. It can correct 92% of all 
error pattern. 

3 Enhanced 3D Hadamard Error 
Correcting Code 
The performance of Enhanced Hadamard Code can 
be improved by diluting it to three dimensions. 
Instead of using basic images, we can use basic 
cubes for generating a code book.  
 
 
3.1  3D Hadamard Transform 
We consider the representation of an Hadamard 
Matrix of order n as 
 

 )(,),(),( 21 nnnH nn      (7) 
 
where )(nk  is the column vector with the order n 
of the Matrix and nk 1 .  
The n order 3D Hadamard Transform of the 3D 
Signal Cn(x,y,z) is defined as 





n

i
knn iikkBkkkS

1
,21321 )(),(),,(

3
   (8) 

where  
T
nnnn HiCHiB  ):,(:,):,(:,     (9) 

 
is the 2D Hadamard Transform of the 2D Signal 
Matrix ),:,(:, iCn  where ni 1  
 
 
3.2  3D Hadamard Cubes and the Encoding 
Procedure 
Hadamard cube is a basis image expanded in the 
third dimension by multiplying the pattern with 
Hadamard vectors. 
 
 kmlmlk AD        (10) 
 
where the basis image is represented by Aml and k  
is the k Hadamard vector of the order n. For example 
the pattern A41 
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and the Hadamard vector  T11112   
generates the cube D412 

 

  
 

Fig. 9. Hadamard Cube D412 

The Encoding Procedure itself is similar to the 
encoding procedure in 2D case.(see Chapter 2.2.). 
All cubes are numbered all the way through and each 
is assigned to the message word. By using a mapping 
procedure we convert every cube into a one-
dimensional pulse stream, which represents the code 
codeword. A Code Book looks similar as in 2D case 
(see Table 2) instead of  n2 code words we have in 
3D case n3. 
The decoding procedure and the corresponding error 
correction work similar to the procedure described in 
Chapter 2.3. After the codeword is mapped back 
from pulse stream to the 3D cube, the Eq(7) can be 
applied and generate the 3D spectrum.  
 

 
 

Fig. 10. Comparison of Error Correcting Capabilities 
of Stanard Hadamard (a) with 3D Enhanced Hada-

mard Code (b). 

 

The coordinate of the biggest absolute value of the 
spectrum defines the corresponding message word. 
Before it can be applied the cube is resolved from the 
front side in separate layers. On each layer, the 
enhanced 2D Hadamard decoding procedure is 
applied. The Performance of the 3D Hadamard Code 
was simulated and compared with the Standandard 
Hadamard Code of the length n=512.The Cubes have 
the dimension 8*8*8. The results are depicted in 
Figure 10. 
 
 
3.3  Fast Decoding Procedure for 3D 
Hadamard Cubes  
The speed for the decoding procedure of Hadamard 
cubes can be increased significantly by utilizing 
some characteristics of  Hadamard Matrices. 

The Hadamard Cube can be considered as Hadamard 
Pattern (basis Image) expanded in the third 
dimension. It can be thought of as n- pattern 
concatenated in the z-aches. These patterns are 
Hadamard basis images only multiplied by 1 or -1, 
depending on the vector )(nk  of the Hadamard 
Matrix Hn. We have the total number of n2 basis 
images and each of them can be multiplied by n 
column vectors of an Hadamard Matrix Hn, so we 
have a total number of n3 cubes.  
We can conclude , that the pattern of the front side of 
the cube and the Hadamard vector )(nk define 
unambiguously the cube. 
In order to relate any number j, 1≤ j ≤n3, to the 
distinct cube the basis pattern number Pb and column 
Hadamard number k, which define the cube, have to 
be determined as follows: 
 


















0mod              
mod

njn
nj

k

n
jPb

    (11) 

 
The cube number Cb can now be assigned as follow: 
 

knPC bb  )1(       (12) 
 
The decoding procedure consists of determining  the 
front and top pattern of the cube. The front pattern is 
Hadamard pattern enclosed by x- and y axes. The top 
pattern is Hadamard pattern enclosed by x and z-
axis. 
As a vector in a Hadamard matrix  always starts with 
a leading 1, a cube’s front pattern is always the base 
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pattern which was used to generate the cube. In 
Figure 11 are these pattern depicted and numbered. 
The Hadamard Cube D412 (Fig.9) has the front 
pattern number Pb= 4 and the top pattern number 
Pt=8. From the top pattern number is possible to 
calculate the number k 
 

 









0mod                  
P1       mod t

nPn
nnP

k
t

t    (13) 

 
The related cube number now can be calculated 
according the Eq(12). If the top pattern is corrupted 
and it identification is not possible, then the column 
number k can be defined by a side pattern, which is 
determined by z-and y axis. In this case the number k 
is calculated 
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Where Ps the side patter nmuber. 
 

 

Fig.11 Base Pattern and their Number 

In case the front pattem cannotbe  determined, the 
top pattern together with the side pattern uniquely 
identify the original  (front) pattern. To  illustrate 
this, the cube from  Figure 9 is considered. The rows 
of the top pattern are based on the highest row of the 
front pattern, only varying in signedness. As stated 
earlier, the number  of sign changes describes the 
column in the  matrix of the Hadamard pattems set, 
where the base pattern is originated. As the side 
pattern is based on the far right column  of the 
original pattern, the row in the matrix  of the set is 
specified. Therefore, the front pattem can be defined 
by interpreting the top  pattern and side pattern as 
column and row, respectively, in the matrix of the  
Hadamard patterns set. For the  example of cube D412 

the top pattem number is 8, therefore  the cube 
column  where pattern 8 is located  also includes  the 
front  pattern. The  side pattern number 2 then 
identifies the front pattem as it specifies the row 
inside the column. 
After identification of the front pattem, the cube 
number can then  be calculated with Eq.(12).  
Depending on the pattem quality of the front top and 
side pattem, Eq. (13) or rather Eq.(14) is used to 
calculate  k. 

As a result, it can be seen that three sources of 
information are available, but only two of them are 
necessary to rebuild the cube. 
 
 
4 Application of Enhanced Hadamard 
Code in Watermarking Technology 

Digital Watermarking is a very prospective new 
technology, that offers a huge number of new 
applications [8]. Especially the challenge to protect 
intellectual properties of multimedia data against 
illegal usage or tempering can be solved by 
watermarking technologies [9]. One of the important 
components is an error correcting code. Especially 
when watermarked video sequences undergo a very 
hard compression the error correcting code used in 
the watermarking scheme plays a decisive role in 
surviving of watermarks[10]. For this reasons, we 
choose these techniques to demonstrate the 
efficiency of Enhanced Hadamard Error Correcting 
Code (EHC). To underline the performance of EHC, 
it was compared with the well known Reed-Solomon 
Code [11,12] used in the same watermarking 
scheme. 

 
 
4.1 Proposed Watermarking Scheme 

The proposed watermarking scheme works in the 
spectral domain and uses an Interframe Discrete 
Wavelet Transform (DWT) [13] of video sequences 
and an Intraframe Discrete Cosine Transform (DCT) 
for embedding procedure [14,15]. In the Fig. 12, the 
whole encoding process is illustrated. The raw 
format of the luminance channel of the original video 
stream is decomposed by multi-level Interframe 
DWT with Haar Wavelet. This low pass filtered part 
of the video stream undergoes a block-wise DCT 
Transform. From DCT spectrum, special coefficients 
are selected and used for embedding procedure with 
2D Hadamard coded watermarks. The embedding 
procedure itself is realized through QIM (Quadrature 
Index Modulation) techniques [16].  
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Fig. 12. Watermarking Encoding Process 

 
The decoder procedure is depicted in Fig.12. At the 
beginning of the decoding procedure, the embedded 
video sequence undergoes the same multi-level Inter-
frame DWT and Intraframe DCT transforms as on the 
encoder side.  

 

Fig. 13. Watermarking Decoding Process 

After the selection of the proper DCT coefficients, 
the inverse QIM (IQIM) is applied. It delivers the 
decoded code words (pulse stream). Through the 
help of Enhanced Hadamard Error Correcting Code, 
the original watermark is extracted. 
 
 
4.1.1 Multi-Level DWT 
As mentioned above a multi-Level Interframe DWT 
with Haar Wavelet was used to deliver a low pass 
filtered video. The Fig.14 illustrates the operating 
principle of this transform.  
 

 
 

Fig. 14.  Multi-Level Interframe DWT 

In the first level, the two consecutive frames are 
averaged. In the second level, the frames from level 
one are averaged and so forth. In this watermarking 
schemes, we used DWT levels from12 till 16. 
 
 
4.1.2 Selection of Embedded Coefficients 
To realize the embedding procedure, some coeffi-
cients from the DCT spectrum of DWT filtered vid-
eo sequence must be selected. The Fig.15 shows 
which coefficients are qualified for watermarking. 
These are mostly from the yellow area. 

 

 
 

Fig. 15. Coefficients of DCT Spectrum which 
fits for embedding 
 
 

4.1.3 Quadrature Index modulation (QIM) 
To embed the watermark bits into selected coeffici-
ants, the so called Quadrature Index Modulation 
Method was seleceted. It is a method  for infor-
mation hiding  which means  binary  digits  (i.e., 0 
and  1) can  beembedded  in any number  rational 
number n. 
Different  from  other embedding routines, tltis ap-
proach not only changes the value of a. certain num-
ber, but takes its actual value into  account. This 
leads to a.more robust embedding procedure and to a 
higher  video quality. 
 
 
 
 
 
 
 
 
 
 

 
Fig. 16. (a)- 1 function (b) 0-function for quantizing 
data 
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Basically, QIM consists of two step functions: one 
function represents the 0-function and the other rep-
resents the 1-function [16]. Figure 16 shows the ex-
ample for Δ=1. 
It can simply be said that  on the x-axis the values 
are located before embedding and on the y-axis the 
resulting values are located after the embe-
dding. Depending on whether 0 or 1 is to be 
encoded, the data holding  the DCT coeflicients 
are quantized using the function f1  or  f 0  defined in 
equation 15. 
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An  important factor is the quantization width Δ, 
which determines the actual embedded values. 
This parameter influences the overall video quality 
the most, as it directly introduces noise to data. 
For decoding embedded data., y-values of both 
functions have to be calculated  for a. specific 
value, read from the specified DCT coeflicient. 
The smallest distance between the value and the 
calculated y-values of the both functions determine 
whether 0 or 1 would be enco-ded. 
 
 
4.2 Investigation with 3D Enhanced 
Hadamard Error Correcting Code 
The investigation was done with HDTV video 
sequence with the resolution of 1080x1920 and 
25fps. The video was captured with an AVCHD 
Camera. The watermarking processing was 
performed only for the luminance channel (after 
converting RGB into YCrCb color space) because 
it is more robust against distortions than any other 
channels. It was investigated how many embedded 
watermark bits survive compression attacks 
without causing significant impairments. The 
degradation of the watermarked output video was 
measured with SSIM (Structural Similarity) index. 
SSIM is based on the human eye perception and so 
the expressiveness about distortion is better than in 
the traditional methods like PSNR (Peak Signal to 
Noise Ratio) or MSE (Mean Square Error) [17]. 
It was chosen the Enhanced 3D Hadamard Code of 
the size of 8x8x8, which means the code word 
length of 512 bits. This implies the message code 
length of 8 bit (log2(n) messages). The DCT block 
size was 8x8 and from each block were selected 16 

coefficients. With these, information is easy to cal-
culate the total number of embedded watermark bits 
for each frame.  

Bit/Frame 911216
512
9

8
10801920
22 





 C
W
M

B
WHE  (7) 

Where H is, the height and W is the width of the 
frame. The letter B denotes the block size of DCT 
transform; the letter M is the message code length; 
the letter W represents the code word length of the 
3D Hadamard Code and the letter C is the number 
of selected spectral coefficients.  
In Table 2, the results of capacity and robustness 
measurements are presented. The compression at-
tacks were done by H.264 codec with different 
compression ratios. Because the method works in 
the raw video, the original data rate is 1.2 Gbit/s. 
As a watermark was used a chessboard pattern of 
the size of 30x30 Pixel. 
The watermarks were inserted successively into the 
frames. The Delta QIM gave the width of the quan-
tization steps and was tuned to value 11. Generally, 
the Delta value determines the noise distortion in 
the host video. 
The embedded video sequence was compressed 
with different compression ratios. In the case of 
compression to 5 Mbit/s, which correspond to a 
compression ratio of 1:240 it is still possible to 
extract all watermarks error free. The quality com-
parison between originally compressed video and 
embedded and compressed shows, that there is only 
slightly difference. The SSIM index Video is in this 
case 98%. 

 

 
 
Table 2. Results for 3D Enhanced Hadamard Code 
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4.3 Comparison of 3D Enhanced Hadamard 
with Reed-Solomon Code 

In order to show the performance of Enhanced 
Hadamard Code, a comparison between EHC and 
well known Reed-Solomon Code was carried out. 
Reed-Solomon Code is well known as an error cor-
recting code and it has a plenty of practical imple-
mentations for example in consumer electronics 
like CD, DVD, Blu-Rays, QR-Code or in data 
transmission.  
 

Data 
Rate 

EHC Err. 
% 

Reed-
Salomon 

Error % 

5 
Mbit/s 

  
0 

  
17,5 

4 
Mbit/s 

  
 
1,7 

  
 
27,6 

3 
Mbit/s 

 

  

 
6,8 

  
35,3 

2 
Mbit/s 

 
 

 
 
41,2 

  
 
40,8 

 
Table 3. Comparison of Enhanced Hadamard with 
Reed-Salomon Code 
 
To make the Reed-Solomon Code comparable to 
Enhanced Hadamard Code we have to select two 
parameters: the length of the symbol and the redun-
dancy. The symbol length (block length) is equal to 
the message of 9 bit. The 3D Enhanced Hadamard 
Code has a codebook, where to every message of 9 
bit a cube is assigned with codeword length of 512 
bits. The Reed-Solomon Code has a codebook, 
where for each message of 9 bit a string of 4599 
bits (512 Symbols, each symbol is 9 bit long) is 
assigned. The redundancy of Reed-Solomon Code 
was selected in such a way, that the number of cor-
rectable symbols should approximately correspond 
to the number of correctable bits of Hadamard 
Code, which is n/2. So we get an RS Code of [511, 
255] with a codeword length of n=511 symbols and 
the message of k=255 symbols, where a symbol is 9 
bit long. 
The comparison of the performance of both codes is 
documented in Table 3. At the data rate of 5Mbit/s, 
which correspond to the compression ratio of 1:240, 
the EHC Code can still recover the whole water-

mark without errors. In contrary the RS Code shows 
a recovered watermark with 17% errors. At the data 
rate of 3Mbit/s, the performance advantage of EHC 
is even more visible. EHC Watermark has an error 
of 1,7%. In contrary the RS Watermark is barely 
visible and has an error of 27,6%. In all these con-
siderations we should take into account, that con-
cerning the capacity EHC code is superior against 
RS code because the EHC codeword length is much 
shorter (512 bits) than an RS codeword (4599 bits). 

5 Conclusion 
In this paper a new type of multidimensional 
Hadamard Error Correcting Code, we called it En-
hanced Hadamard Error Correcting Code (EHC) 
was introduced. It has remarkable property, it can 
overcome the limit of n/2-1 correctable bit errors of 
a standard Hadamard Code, where the codeword 
length and the Hamming distance d have the same 
value n. The application of this Code in Video Wa-
termarking gives also a strong prove of its effec-
tiveness. 
Compared to Reed-Solomon Code the Enhanced 
Hadamard Code is much more effective. The wa-
termarks of a video, protected by EHC, can survive 
a very strong compression attack, in opposite to 
RS-Code. 
EHC protected watermarks can be easily recovered 
error-free from a video with a compression ratio of 
1:240, which corresponds to a data rate of 5 Mbit/s.  
If the same embedding process is using RS Code 
instead of EHC the error free recovery of the wa-
termarks is not possible. It has an error of about 
17,5% and the content of a watermark can barely be 
recognized.  
All these results are very promising, and they show 
that the new Enhanced Hadamard Code is very 
powerful and can be successfully used in video 
watermarking. 
 
Performed research was supported by National Science Centre, 
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References 

 
[1] PLOTKIN, M.: Binary Code with specified minimum dis-

tance, IRE Transactions, IT-6:445-450, 1960 
[2] BOSE, R.C., SHRIKHANDE, S.S.: A note on the result in the 

theory of code construction. Inf. And Control 2, 183-194 
(1965)  

WSEAS TRANSACTIONS on SIGNAL PROCESSING Jakob Wassermann, Andrzej Dziech

E-ISSN: 2224-3488 206 Volume 13, 2017



[3] PETERSON, W.W.: Error correcting codes. The M.I.T. Press, 
Massachusetts Institute of Technology & J.Wiley & Sons, 
New York 1961 

[4] LEVENSHTEIN, V.I.: Application of Hadamard matrices to a 
problem in coding. Problems of Cybernatics, 5, 166-184, 
1964 

[5] Combinatoric in Space, The Mariner 9 Telemetry System, 
http://www.math.cuden.edu/~wcherowi/courses/m6409/marin
er9talk.pdf 

[6] HORADAM, K.J.: Hadamard Matrices and their Applications. 
Published by Princeton University Press, ISBN-13:978-0-
691-11921-2 

[7] AGAIAN S.,SARKHANYAN H, EGIAZARIAN K., ASTOLA J. : 
Hadamard Transforms, Published by SPIE, ISBN: 978-0-
8194-8647-9 

 
[8] SWANSON, M.D., K. M. T. A.: Multimedia Data-Embedding 

and Watermarking Technologies. In: Proceeding of IEEE 
86 (1998), S. 1064-1087 

[9] LIN, S. D., S. C.-F.: A Robust DCT-Based Watermarking 
for Copyright Protection. In: IEEE Transactions on Con-
sumer Electronics 46 (2000), S. 415 

[10] SWANSON, M.D., K. M. T. A.: Multimedia Data-Embedding 
and Watermarking Technologies. In: Proceeding of IEEE 
86 (1998), S. 1064-1087 

[11] SHU LIN, DANIEL J.COSTELLO, JR.: Error Control 
Coding, Prentice-Hall, Inc. Englewood Cliffs, New Jersey 
07632 (1983) 

[12] MACWILLIAMS, F.J., Sloane, N.J.A.: The theory of error-
correcting codes. North Holland, New York, 1977 

[13] PIK-WAH CHAN, M. R. L.: A DWT-Based Digital Video 
Watermarking Scheme with Error Correcting Code. In: In-
formation and Communications SecurityLecture Notes in 
Computer Science 2836 (2003), S. 202-213 

[14] ZHAO, D., C. G. L. W.: A Chaos-Based Robust Wavelet-
Domain Watermarking Algorithm. In: Chaos, Solutions and 
Fractals 22 (2004), S. 792 

[15] I.J.COX, J. KILLIAN, F. L. & VOL.6 PP., T. S.: Secure Spread 
Spectrum Watermarking for Multimedia. In: IEEE Transac-
tions on Image Processing 6 (1997), S. 1673-1687 

[16] CHEN, B., W. G., WORNELL: Quantization Index Modulation 
for Digital Watermarking and Information Embedding of 
Multimedia. In: Journal of VLSI Signal Processing 27 
(2001), S. 7-33 
 

[17] HARTUNG, F. & KUTTER, M.: Multimedia Watermarking 
Techniques. In: Proceeding of IEEE 87 (1999), S. 1079-
1107 

[18] HO ANTONY T.S., SHEN  JUN, SOON HIE TAN, KOT ALEX C..: 
Digital image-in-image watermarking for copyright protec-
tion of satellite images using the fast Hadamard transform. 
In: Geoscience and Remote Sensing Symposium 6 (2002), S. 
3311 – 3313 

 

WSEAS TRANSACTIONS on SIGNAL PROCESSING Jakob Wassermann, Andrzej Dziech

E-ISSN: 2224-3488 207 Volume 13, 2017

http://www.math.cuden.edu/~wcherowi/courses/m6409/mariner9talk.pdf
http://www.math.cuden.edu/~wcherowi/courses/m6409/mariner9talk.pdf



