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Abstract: - The paper is devoted to the determination of the real and imaginary parts from the magnitude 
responses for causal linear time-invariant systems having monotonic impulse responses. We demonstrate that 
the problem can be considered as a special filtering task in the Mellin transform domain having a diffuse 
magnitude response. The theoretical background is given for the separating the magnitude response into the real 
and imaginary parts by discrete-time Mellin convolution filters processing geometrically sampled magnitude 
responses and the appropriate finite impulse response (FIR) filters are designed. To compensate exponential 
shortening frequency ranges of the real and imaginary parts due to the end-effects of FIR filters processing 
geometrically sampled magnitude responses, the multiple filtering mode is used, where the sets of the first and 
last input samples are repeatedly processed by the filters having impulse responses with the shifted origins, 
which gradually vary the number of coefficients with negative and positive indices on each side of the origin. 
The performance of the designed filters are evaluated in terms of the accuracy of the generated real and 
imaginary parts and the noise amplification.  
 
 
Key-Words: - Magnitude Response, Real Part, Imaginary Part, Mellin Convolution Filter, Diffuse Frequency 
Response, Geometrically Sampled Data, End-Effects, Multiple Filtering Mode 
 
1 Introduction 
The paper is devoted to the problem of the 
determination of real )(J   and imaginary )(J   
parts of frequency response 

)()()(~
 JjJJ   

from the magnitude response 

22 )]([)]([|)(~|  JJJ   (1) 

for causal linear time-invariant systems having 
monotonic impulse responses (IRs). 

Since the real and imaginary parts of frequency 
responses for causal physical systems are not wholly 
independent, but are linked by the Kramers-Kronig 
(KK) relations [1], it means that the magnitude 
responses are also consistent. This points to a potent 
feasibility of separating the magnitude response into 
the real and imaginary parts by discrete-time signal 
processing methods [2]. At present, however, no 
techniques known for the determining the real and 
imaginary parts from the magnitude response. 

Nevertheless, development of such techniques are of 
particular interest, because they may considerably 
simplify the determination of the real and imaginary 
parts, thanks to the fact that magnitude responses 
are relatively easily and accurately measurable 
signals, for example, by measuring amplitudes of 
steady-state responses of linear time-invariant 
systems to harmonic excitations [3-5].  

We propose to solve the problem by Mellin 
convolution filters [6-9] developed for solving 
interconversion problems between linear monotonic 
and locally monotonic material functions 
interrelated by the Mellin convolution transforms 
(MCT) 
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where x(.) is input function, y(.) is output function, 
and k(.) is kernel. 

Theoretical basis of the Mellin convolution 
filtering [6-9] comes from the fact that transform (2) 
for logarithmically transformed variables 
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alters into the Fourier convolution type transform 
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which may be treated as an ideal convolution filter 
operating on the logarithmic domain. 

Therefore, a discrete-time Mellin convolution 
filter operates with the data uniformly sampled in 
logarithmic domain (3) becoming geometrically 
sampled ones in the linear scale [8,9] 

1...,,2,1,0,0  qnqn

n  , 

and executes discrete convolution algorithm 
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 , (4) 

where q is the common ratio for geometrically 
sampled data. The filter has a periodic frequency 
response [6-9] 

 
n

j qjnheH )lnexp(][)(   (5) 

in the Mellin transform domain and approximates 
the ideal frequency response, expressed by the 
Mellin transform of kernel k(u) of MCT 
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
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1)(]);([)( duuukjukMjH j ,  (6) 

where parameter , named the Mellin frequency 
[6,7], has a physical meaning as angular frequency 
for signals on the logarithmic domain. 

Apart from typical computational problems of 
MCT [6-9], the separating magnitude response into 
the real and imaginary part poses several challenges. 
Although magnitude response (1) contains 
information about the real and imaginary parts, the 
operations of rising to the power and taking square 
root make that neither the real part nor the imaginary 
part can be related to magnitude response (1) 
through MCT, and hence, converting the magnitude 
response into the real and imaginary parts does not 
represent a Mellin filtering task.  

An important matter common for all finite 
impulse response (FIR) filters is compensation of so-
called end effects (named also transient effects) [10], 
which in the case of geometrically sampled data 
(magnitude responses) appear as an exponential 

shortening of frequency range of output signal (real 
and imaginary parts) [6]. 

The final purpose of this study was the 
construction of discrete-time magnitude-response-
to-real-part transformers (further, MR-to-Re 

transformers) and magnitude-response-to-
imaginary-part transformers (further, MR-to-Im 

transformers). 
The rest of this paper is organized as follows. 

Theoretical background for separating the 
magnitude response into the real and imaginary 
parts by using Mellin convolution filters is given in 
Section 2. Implementation aspects including 
discrete-time transformer design and end-effect 
compensation for the real and imaginary parts are 
considered in Section 3. Simulation results and 
discussion are presented in Section 4, where 
performance evaluation and peculiar application 
features of designed transformers are described. 
Section 5 contains conclusions. 
 

 

2 Theoretical Background  
We will consider two limiting cases for magnitude 
response (1): (i) – when the imaginary part is small 
and tends to zero 0)(  J , and (ii) – when the 
imaginary part takes the maximum value 

)()( max  JJ  . 
 
 
2.1 Limiting Case when Imaginary Part 
 Tends to Zero 
In this case, the magnitude response approaches to 
the real part )(|)(~|  JJ   allowing to estimate 
the imaginary part by the KK relation [1,11] 

du
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


 , (7) 

while the real part may be taken approximately 
equal to the magnitude response 

|)(~|)(  JJ  . (8) 

As shown in [11], KK relation (7) represents 
MCT with the following functions in the case of 
magnitude response (1): |)(~|)(  Jx  , 

)()(  Jy  , and kernel 

/)1/(2)( 2uuuk  , 

which according to (6) gives the frequency response 

)2/tan(]);([)(min  jjukMjH  . (9) 
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In its turn, Eq. (8) may be treated as the 
determination of )(J   from )(~

J  by an all-pass 
filter with a constant (unit) frequency response 

1)(min  jH . (10) 
 
 
2.2 Limiting Case with Maximum 
 Imaginary Part 
According to the phenomenological theories  
[12-14], the imaginary part of an elementary causal 
system with the monotonic IR has the following 
upper bound 
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with the corresponding real part 
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being consistent with KK relations [1,11]. The parts 
(12) and (11) give the following magnitude response 
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1
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
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


J
J , (13) 

where J is factor of proportionality while  is 
characteristic time of the system. 

Nevertheless, magnitude response (13) is not 
often adequate for real systems, such as materials 
[12-14], because the real parts of materials contain, 
as a rule, constant instantaneous values. Hence, we 
consider the real part with added constant 
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Then the parts (14) and (11) create a magnitude 
response 
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which does not represent MCT in regard to the parts 
(14) and (11). Based on (13), we propose to 
approximate magnitude response (15) by a Mellin 
convolution transformable function  
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which slightly overestimates response (15). 
Contrary to the functions of pairs 

 )(~),(max  JJ   and  )(~),(max  JJ  , the 

functions of pairs  )(),(max  AJ   and 
 )(),(max  AJ   may be related to each other in 
terms of the Mellin transforms 

    )();();( maxmax  jHjAMjJM  ; (16) 

    )();();( maxmax  jHjAMjJM  , (17) 

where )(max jH   and )(max jH   are frequency 
responses of MR-to-Re and MR-to-Im transformers 
in the limiting case with the maximum imaginary 
part. To take into account (16) and (17), frequency 
responses )(max jH   and )(max jH   may be 
determined as follows 

    jjAMjJMjH  );(/);()( maxmax ; 
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the following frequency responses were obtained for 
the MR-to-Re and MR-to-Im transformers in the 
limiting case with maximum imaginary part: 

)2/sin()()22(2
)2()( 1max
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
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where (.)  is gamma function. 
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2.3 Diffuse Magnitude Responses 
In Fig. 1(a), functions )(min jH   and )(max jH   are 
shown, which form the bounds for the magnitude 
response of an ideal MR-to-Re transformer, while in 
Fig. 1(b), functions )(min jH   and )(max jH   are 
demonstrated, which also create the bounds of the 
magnitude response for an ideal MR-to-Im 
transformer. Depending on the values for the real 
and imaginary parts, MR-to-Re and MR-to-Im 
transformers have different ideal magnitude 
responses )( jH , but all they must be located 
within the indicated above bounds. Therefore, ideal 
MR-to-Re and MR-to-Im transformers may be 
treated as Mellin convolution filters with diffuse 
magnitude responses.  

At low Mellin frequencies 5.0||  , MR-to-Im 
transformer has a united – not diffused – magnitude 
response. This indicates actually on a practical 
feasibility of using KK transformers [11] for 
estimating the imaginary part from the magnitude 
response. An important point is that MR-to-Im 
transformer has zero frequency response at zero 
frequency 0)0(  jH , which ensures cutting out 
zero frequency component (DC component) of an 
input magnitude response and, thus, minimizes the 
effect of constant 


J . 

 

 

Fig. 1. Diffuse magnitude responses of ideal MR-to-
Re (a) and MR-to-Im (b) transformers. 

3 Implementation Aspects 
 
 
3.1 Design of Discrete-Time Transformers 
Based on classification of MR-to-Re and MR-to-Im 
transformers as Mellin convolution filters with 
diffuse magnitude responses, we designed the 
discrete-time transformers in the form (4) by the 
learning to use the system identification principle 
[6,7] with pairs of the exact functions  )(~),(  JJ   

and  )(~),(  JJ 
 
corresponding to the Cole-Cole 

model [16]. Taking into account our experience with 
the development of discrete-time KK transformers 
[11], we used the same common ratio 2q  and 
filter length 8N . It is important to stress that the 
design of the transformers has been performed in 
input-output signal domain without involving the 
diffuse frequency responses, i.e. bounds (10) and 
(18), as well as (9) and (19). 
 
 
3.2 End-Effects Compensation 
As it is known [6,10], FIR filters suffer from of the 
end effects problem, in particular, in processing 
aperiodic signals, appearing as shortening usable 
filtered sequences in the beginning and end. Since 
the full overlapping of a portion of input signal with 
IR must be provided requiring that N input samples 
without zeros must be convolved with the filter 
coefficients to compute a correct output sample, a 
FIR filter allows obtaining only a correct output 
sequence, which is by 1N  samples shorter than 
input sequence. This shortening is particularly 
undesirable for geometrically sampled datasets 
[6,11,15], because exponentially – by 1Nq  times – 
reduces dynamic interval (range) of independent 
variable for output waveform to compare with the 
dynamic interval (range) of independent variable for 
input function. The common ratio 2q  and filter 
length 8N  used here shorten dynamic frequency 
range for the real and imaginary parts 

128271 Nq  times. 
To overcome this drawback, we use the multiple 

filtering mode [6,11,15] for the first and last N input 
samples, when instead of the traditional sliding 
filtering mode [2], where a single IR moves along 
the input sequence, the origins of  fixed (non-
moved) IRs move along the input sequence. To 
realize the multiple filtering mode, we designed 
additional filters, where the origins of IRs were 
shifted the left and right in regard to the origin of 
the non-shifted IR of the sliding mode filter to attain 
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gradual variation of the number of coefficients with 
negative and positive indices on each side of the 
origin. We designed the additional filters with the 
shifts of IRs altering by step 0.5, to provide the 
expansion of the frequency range for the real and 
imaginary parts together with doubling the sampling 
rate ( 41.12 

y
q ). The designed filters were 

combined in filter banks [6]. 
 
 
4 Simulation Results and Discussion 
 
 
4.1 Performance Evaluation 
Following the suggestion in [6,11,15], we evaluated 
the performance of discrete-time transformers by: (i) 
accuracy of the generated real and imaginary parts 
and (ii) noise amplification of the transformers. 

The accuracy was determined by a difference 
(error) between computed output )(ˆ y  and exact 
(true) output y() 

)()()(  yye 
 , 

which was quantitatively estimated by mean-square 
error (MSE) 





M

m

m
eME

1

2 )()/1(  . (20) 

As true waveforms y(), we use the exact real and 
imaginary parts corresponding to the Havriliak-
Negami model [17] with the following frequency 
response 

  



 )(1)(~

jJJJ . (21) 

The model (21) allows to change shapes of the real 
and imaginary parts, and, consequently, the 
magnitude responses to large extent to vary 
parameters 

J,,   and J. In this study, we 
calculate error (20) for 100M  points of the real 
and imaginary parts equally spaced on the 
logarithmic frequency domain over the frequency 
range 55 1010    at characteristic time 1 .  

In its turn, noise amplification was quantitatively 
estimated by noise gain (amplification coefficient) 
[6] 


n

2 nh = S ][ , 

showing how the noise variance 2

x
  of input data 

(magnitude response) is transmitted to the noise 

variance 2
y

  of the output data (real and imaginary 

parts) 22
xy

S  . 
 
 
4.2 Sliding Mode Transformers 
In Table, the coefficients are given for basic – 
sliding mode MR-to-Re and MR-to-Im transformers 
with non-shifted IRs having 4 coefficients with 
negative and positive indices on each side of the 
origin of IR. It can be seen that the transformers are 
non-linear phases filters [2] having the coefficients 
with no symmetry. 
 
Table. Coefficients for MR-to-Re and MR-to-Im 
transformers 

n 

Coefficients h[n] 
MR-to-Re 

transformer 
MR-to-Im 

transformer 
-3.5 -0.00862702 0.109042 
-2.5 0.0474832 0.0134620 
-1.5 -0.143979 0.165268 
-0.5 0.480793 0.601015 
0.5 0.759683 -0.372957 
1.5 -0.185825 -0.470905 
2.5 0.0656697 0.136201 
3.5 -0.0153284 -0.178838 

 
In Figs. 2 and 3, as examples, the exact real and 

imaginary parts (solid) and the computed ones 
(dashed) by the designed transformers are shown for 

1  and 5.0 , and five values of  to keep 
constant parameters ,3


J and 1J . The 

chosen values for the parameters are close to those 
used for describing complex dielectric permittivity 
of typical polymers [13,14].  

As seen, the accuracy of computing the real and 
imaginary parts is quite high, particularly, for the 
real parts at 5.0 , where it is hard to distinguish 
between the exact and computed curves. 
 
 
4.3 Transformer Banks 
Shifts of the origins of IRs have typically adverse 
effect on the performance to increase of both MSEs 
and the noise gains. In this study, we limited the 
performance with MSEs 5.0E  and the noise gain 

20S . Within these limitations, we constructed a 
bank consisting of 17 MR-to-Re transformers 
covering the shift interval over 44  s  and a bank 
of 10 MR-to-Im transformers covering the shift 
interval over 5.22  s .  
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Fig. 2. Exact (solid) and computed (dashed) real 
parts. 
 

 
 

Fig. 3. Exact (solid) and computed (dashed) 
imaginary parts. 
 

In Fig. 4, MSEs are shown as functions of the 
shifts of the origins of IRs for transformers of the 
constructed banks calculated for combinations 
( 1,1   ) and ( 5.0,5.0   ) and the fixed 

parameters ,3


J and 1J . Similarly, the 
noise gains of transformers are shown in Fig. 5 for 
the both banks. 

 

 
 

Fig. 4. Variation of MSE from the shift. Solid 
symbols: 1 , 1 , open symbols: 5.0 , 

5.0 . Shaded area: the shift interval necessary 
for covering the frequency range of the magnitude 
response for 8N . 

 

 
 
Fig. 5. Variation of the noise gain from the shift. 
Shaded area: the shift interval necessary for 
covering the frequency range of the magnitude 
response for 8N . 
 

As it is seen, the real part is determined with the 
higher accuracy over the wider frequency range 
compared with the imaginary part. The constructed 
MR-to-Re transformer bank allows to cover 
frequency range from 2-0.5fmin to 20.5fmax  providing 
two times larger dynamic frequency range than that 
of the magnitude response minmax / ff . Therefore, 
MR-to-Re transformers with the maximum shifts 

4s determine the real part outside the frequency 
range of the measured magnitude response, i.e. work 
as extrapolators. However, these transformers may 
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be impracticable due to increased noise gains (see 
Fig. 7).  

In its turn, the constructed MR-to-Im transformer 
bank allows to determine the imaginary part within 
frequency range from 21.5fmin to 2-1fmax, i.e. over 
dynamic frequency range that is  66.52 5.2   times 
narrower than that of the measured magnitude 
response. 

 
 

4.4 Behaviour in the Mellin Frequency 
 Domain 
In Fig. 6(a), the magnitude responses are shown for 
MR-to-Re transformers with zero and 0.5 shifts of 
the origins of IRs. As it is seen, the magnitude 
responses are well fitted to the magnitude response 
(10) of the ideal all-pass filter. It is interesting to 
note that just the transformers with shifts 5.0s , 
and not the transformer with zero shift, have the 
better fit and the higher accuracy for symmetric real 
parts ( 1,1   ) (see Fig. 4) . 
 

 
 

Fig. 6. Magnitude responses of MR-to-Re 
transformers with different shifts. Shaded area: ideal 
diffuse magnitude response. 

 
In general, within the interval of the shift 

5.2s , MR-to-Re transformers have relatively 
smooth magnitude responses, which according to the 
Parseval's relation [2] result in relatively low noise 
gains, which oscillate around value 1 (see Fig. 5) and 

have the mean value 96.0S . The shifts either to 
the left and right greater than 2.5 produce 
substantially larger lateral lobes, which have 
adverse effect on the accuracy of generated 
waveforms and increase noise amplification. 
Enormous lateral lobes arise for the extrapolation 
transformers with 4s  (Fig. 6(b)), which are 
accompanied by large noise gains (see Fig. 5). The 
simulations performed showed that, just the noise 
gain, not the accuracy, typically limits the expansion 
of frequency range in the multiple filtering mode. 

The behaviour of MR-to-Im transformers are 
similar to that described above. For the imaginary 
parts, the larger variations are observed in the 
magnitude responses causing larger dispersions in the 
noise gains (see Fig. 5). As an example, in Fig. 7, the 
magnitude responses are shown for zero and 
maximum shifts. It is seen, that tremendous lateral 
lobe is produced at the shift 5.2s . 

 

 
 

Fig. 7. Magnitude responses of MR-to-Im 
transformers with different shifts. Shaded area: ideal 
diffuse magnitude response. 
 
 
5 Conclusions 
We have demonstrated that a problem of separating 
the magnitude response into the real and imaginary 
parts for causal linear time-invariant systems may 
be considered in filtering framework in the Mellin 
transform domain with diffuse frequency responses, 
which establishes a theoretical foundation for the 
determination of the real and imaginary parts by 
discrete-time Mellin convolution filters processing 
geometrically sampled magnitude responses. 
Discrete-time magnitude-response-to-real-part and 
magnitude-response-to-imaginary-part transformers 
have been designed in the form of FIR Mellin 
convolution filters. 

To overcome exponential shortening frequency 
ranges of the real and imaginary parts due to the end-
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effects of FIR filters operating with geometrically 
sampled magnitude responses, we have used the 
multiple filtering mode by repeated processing sets 
of the first and last N input samples by the 
transducers having impulse responses with the 
shifted origins, which gradually vary the number of 
coefficients with negative and positive indices on 
each side of the origin. Transformer banks have 
been constructed for implementing the multiple 
filtering mode. 

We have evaluated performance of the 
transformers in terms of the accuracy of the 
generated real and imaginary parts and the noise 
gain of the transformers. It has been found that the 
real part can be determined with the higher accuracy 
over wider frequency range compared with the 
imaginary part. 

We have disclosed that increased shifts of the 
origins of impulse responses produce lateral lobes in 
the appropriate magnitude responses of the Mellin 
convolution filters, which enlarge the noise gains 
and reduce the accuracy of the generated real and 
imaginary parts, and just the enlargement of the 
noise gain is the main factor limiting expansion of 
frequency ranges in the multiple filtering mode. 
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