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Abstract: - This paper presents a design and implementation of a real-time, vision-based target tracking system 
for unmanned aerial vehicle (UAV). The particle filter framework integrated with Lucas-Kanade optical flow 
technique to predict and correct the state of the moving target based on its dynamic and observation models. 
The optical flow estimates the corresponding feature points in the new image frame related to the previously 
detected/estimated points. The Maximum Likelihood Estimation SAmple Consensus (MLESAC) method 
is applied to estimate the ego-motion transformation matrix using the old and new sets of the feature points. 
This matrix is incorporated with the target dynamic model to give more accurate prediction results of its state. 
Two optimized types of features are extracted to build the target observation model. They include extended 
Haar-like rectangles and edge orientation histogram (EOH) features. A Gentle AdaBoost classifier is applied on 
these features to distinguish and choose the best predefined number of features that highly represent the target. 
The vectorization approach is used to reduce the calculation cost due to the matrix manipulations. The proposed 
tracking system is tested on different scenarios of the on-time modified VIVID database and achieved real time 
tracking speed with 95% successful tracking rate. 
 
Key-Words: - Machine Vision, Image Analysis, Video Tracking, UAV Tracking, Lucas-Kanade Optical Flow, 
Bayesian Particle Filter, Ego-motion  
 
 
1 Introduction 
The Unmanned Aerial Vehicle (UAV) applications 
have received a great attention in recent years. The 
UAV camera delivers a “ bird’s eye view” mapped 
on 2D digital images. The UAV images provide 
massive information about the captured scene along 
with the static and dynamic objects inside it [1] [2]. 

Many systems inspire the extracted information 
to support numerous applications with the needed 
data to take important decisions. These applications 
include target detection, recognition and tracking 
systems in addition to surveillance, traffic planning, 
emergency response, search and rescue operations, 
counter-terrorism and fighting against illegal 
immigration missions [3] [4] [5]. 

Vision based target tracking systems still require 
improvements in their accuracy, scalability and real 
time performance. Also, they should take into 
considerations solving many problems related to 
environment nature and background cluttering, the 
size and the scale of the target, types of the target 
motion, noisy and low contrast imagery [6] [7]. 

The detection and tracking algorithms can be 
classified according the number of targets to be 
tracked into single or multi-object tracking [1] [2]. 

Single target tracking is very important demand for 
special applications such as shooting a single enemy 
target. It requires centering the targeted enemy on 
the field of view (FOV) of the UAV camera and 
keep locking it. One of the main difficulties related 
to this process is the camera platform movement 
with the UAV flying which produce a non-fixed 
background in the captured image sequence. This 
results in an ego-motion effect between the moving 
object and the background [8]. The object scale has 
no fixed values throughout tracking process because 
of the varying UAV altitude during the flight. This 
also another challenge that should be taken into 
consideration in the implementation of the tracker 
system [1] [2]. 

The particle filter is a Bayesian-based framework 
that gives an optimal solution for tracking problem 
involving a recursive prediction and correction steps 
[8] [5]. In prediction step target state is predicted in 
the new frame based on the system dynamics. The 
correction step updates the target current state 
through the likelihood of the new measurement. The 
particle filter uses a set of weighted particles to 
represent this target state. Each particle specifies a 
candidate potential state for the target. In each time 
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step, the prediction and correction steps updates the 
particle distribution based on t he target dynamics 
and new measurements. Then, they are re-weighted 
giving the resulted likelihood.  

The target observation model is constructed 
based on the target extracted features. In first frame, 
the proposed system extracts a pool of two kinds of 
features includes extended Haar-like rectangles HR 
(normal and oriented 45°) and edge orientation 
histogram EOH features because of their simplicity 
and fast computation cost [9] [10]. Then Gentle 
AdaBoost classifier is applied on these features to 
select the best (𝑛𝑛) features to represent the target 
and carry information about it [6].  

The proposed system implemented utilizes the 
vectorization technique in all matrix operations to 
reduce the calculation cost. It provides speed, 
efficiency and performance better than the use of 
for-loop manner. It reduces the memory overhead of 
physically expanding the data before performing the 
binary functions. The next section will converse a 
literatures survey about the related works. The 
proposed system is discussed in section 3 in details. 
Section 4 will clarify and discuss the experimental 
results. The conclusion about the proposed system 
will be in section 5. 
 
 
2 Related works 
M. Josh et.al implemented an algorithm for victim 
detection and tracking in search and rescue 
operations using Unmanned Ground Vehicle (UGV) 
[11]. They aimed to reduce the operator effort by 
developing a semi-autonomous system that can 
follow the victim. This system consisted of two 
main stages includes ego-motion compensation 
stage and particles filter and clustering stage. The 
ego-motion compensation algorithm tracks good 
selected features from frame to frame then 
constructs compensation matrix and compensated 
image. They improve the system performance by 
adapting the pyramidal level per velocity feedback. 

In 2015 M . Abdelwahab et. al proposed a real-
time technique for detecting, tracking and counting 
vehicles in simultaneously manner for airborne and 
stationary camera video [12]. They used Kanade–
Lucas–Tomasi (KLT) Feature tracker to detect good 
features to track in the image frame. The non-
stationary background points were removed by 
measuring the changes in the histogram of the pixels 
around each feature point with time to obtain the 
foreground features (FGF). Then they clustered and 
grouped them into separate trackable vehicles per 
the movement angles and displacement magnitudes. 

Their algorithm achieved real time performance for 
tracking vehicles in airborne videos without any 
prior knowledge for their locations and independent 
on their number. 

Cao et.al use the KLT features and Random 
sample consensus (RANSAC) method to separate 
background features from moving objects and 
estimate the ego-motion of the moving camera fixed 
in UAV [8]. They incorporated ego-motion 
transformation matrix with the system model of the 
particle filter prediction step. The HSV color 
histogram and Hu moments were weighted and 
combined for computing the similarity measure and 
used them in the observation model of the particle 
filter correction step. The performance of their 
algorithm achieved tracking rate of 95%. However, 
the average tracking speed of the proposed method 
is 13.1 frames per second which is may not satisfy 
some application requirements. 

Saif et.al presented and updated framework to 
handle six Uncertainty Constraint Factors (UCF) 
issues and challenges for moving object detection 
and tracking problems from UAV aerial images [3]. 
Theas six UCFs including the illumination change, 
environment clutter, object type, Camera motion, 
moving object direction and motion complexity. 
They also dealt with the feature extraction problem 
as a sep arate unsolved issue because of the 
increasing of computation time related to the 
selections of large feature vector that suitable for 
optimum detection performance. They proposed a 
general framework for object detection problem 
from UAV aerial images. They employed a 
combination of frame difference and segmentation 
techniques for motion vector estimation and blob 
detection respectively. After that they suggested to 
use clustering to give physical meaning of overall 
detection. Finally, they recommended a proper 
classification step to distinguish between different 
types of objects that may include individuals, 
vehicles, etc.  

Moti et.al proposed a t racking method based on 
arbitration between Optical Flow (OF) and Kalman 
Filter (KF) techniques that can predict a target 
position in an efficient manner even it turns 
suddenly during its motion [13]. Their attention had 
been drawn to different situations where either the 
OF worked better or the KF did. They measured the 
distances to the nearest obstacle using the laser and 
used infrared camera images to detect the target 
object. Then fused these two types of data with the 
arbitrate OFKF filter for real-time tracking of a man 
in an indoor lab environment. By the same way, 
Shantaiya et. al proposed simultaneously multiple 
objects tracking algorithm using Kalman Filter and 
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improved Optical Flow [14]. They achieved better 
tracking accuracy using this improvement and 
combination relative to using each other separately, 
but the computation time still not suitable to track 
objects in UAV tracking requirements frame works.  
 
 
3 Proposed Framework 
The proposed tracking system consists of four main 
phases as shown in Fig.1 In first phase the target is 
selected within search area and apply feature 
extraction algorithms to build the observation 
model. The second phase calculates the ego-motion 
transformation matrix to incorporate with the target 
optimized dynamic model and perform the 
prediction step. The third phase corrects the target 
state using the new observations. Finally, the new 
target position is estimated in the fourth phase. 
Detailed descriptions for the four phase will be 
discussed in the following sub-sections. 

 
Fig.1 Proposed tracking system block diagram. 

3.1 Pre-Tracking Phase 
In the first frame, the target is selected manually and 
represented by a rectangle. Then all HR and EOH 
features are extracted for the selected target within a 
pre-defined search area. The main purpose of this 

step is to represent this target observations 𝑂𝑂𝑇𝑇  to 
compare with each candidate target in the next 
frames. The extracted features don’t represent the 
target in identical degrees. So, only the best F 
number of features are selected. The Gentle 
AdaBoost classifier are used to distinguish and 
classify between the features. The following 
subsections will describe the steps of pre-tracking 
phase in details. 
 
 
3.1.1 HR features extraction 
The Haar-like rectangle features HR designate target 
color and its spatial information. They compute the 
difference between the defined white and black 
areas of the HR filter using the following equation: 

𝐻𝐻𝐻𝐻(𝑥𝑥, 𝑦𝑦,𝑤𝑤,ℎ, 𝑡𝑡𝑦𝑦𝑡𝑡𝑡𝑡,𝐶𝐶) = 𝐸𝐸𝑤𝑤 − 𝐸𝐸𝑘𝑘  (1) 

Where 𝑥𝑥,𝑦𝑦 stands for the top-left corner 
coordinates of the HR filter defined in pattern 𝑡𝑡𝑦𝑦𝑡𝑡𝑡𝑡. 
Fig.2 shows examples of normal and oriented 45° 
HR patterns used in this paper. The 𝑤𝑤 and ℎ are the 
HR width and height respectively. The term 𝐶𝐶 
stands for one channel of the used color space (R, G, 
B). 𝐸𝐸𝑤𝑤  and 𝐸𝐸𝑘𝑘  are the summation of pixels inside 
white and black parts of HR filter.  

 
Fig.2 different Haar-like rectangles patterns. 

The pool of the extracted features contains 
numerous 𝐻𝐻𝐻𝐻 patterns, sizes and color channels. 
The computational time of extracting HR features 
depends on m any aspects includes the number of 
pixels to be summed within each area of HR filter. 
The Integral Image is used to reduce this time 
because It requires only four memory access [15]. 
The integral image 𝐼𝐼𝐼𝐼 of an image I for the pixel at 
location (𝑥𝑥,𝑦𝑦) can calculated using equation (2):  

𝐼𝐼𝐼𝐼(𝑥𝑥,𝑦𝑦) = 𝐼𝐼(𝑥𝑥,𝑦𝑦) + 𝐼𝐼𝐼𝐼(𝑥𝑥 − 1,𝑦𝑦) + 𝐼𝐼𝐼𝐼(𝑥𝑥,𝑦𝑦 − 1) −
𝐼𝐼𝐼𝐼(𝑥𝑥 − 1,𝑦𝑦 − 1)   (2) 

where 𝐼𝐼𝐼𝐼(𝑥𝑥,−1) = 𝐼𝐼𝐼𝐼(−1,𝑦𝑦) = 0. Once the 
integral image 𝐼𝐼𝐼𝐼 is calculated over image I, the 
summation 𝑆𝑆 of all values of the pixels within any 
rectangular area with upper left corner (𝑥𝑥1,𝑦𝑦1) and 
lower right corner (𝑥𝑥2,𝑦𝑦2) can be computed using 
equation (3) as shown in Fig.3: 

𝑆𝑆 = 𝐷𝐷 − 𝐵𝐵 − 𝐶𝐶 + 𝐴𝐴 (3) 
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Fig.3 Calculating summation of pixel values within 

certain area of image I. 
 
 
3.1.2 EOH features extraction 
To increase the robustness of the observation model, 
the proposed system combines between HR and 
EOH features. The EOH features have discriminant 
power towards abrupt changes in illumination 
intensities. Also, the objects which have same colors 
as the background can be distinguished by EOH. So, 
they give good results for tracking targets in low 
light environment where the colors are hardly 
distinguished, such as t he case of infra-red images 
[10]. The first step for EOH features extraction from 
an image is to apply vertical and horizontal Sobel 
filters on the corresponding grayscale image. This 
produces the corresponding horizontal and vertical 
edge maps 𝐺𝐺𝑥𝑥  and 𝐺𝐺𝑦𝑦 , respectively. Then the 
magnitude 𝑀𝑀 and direction 𝜃𝜃 are computed for 
every pixel (𝑥𝑥,𝑦𝑦) using the following equations: 

𝑀𝑀 = �𝐺𝐺𝑥𝑥2(𝑥𝑥,𝑦𝑦) + 𝐺𝐺𝑦𝑦2(𝑥𝑥,𝑦𝑦) (4) 

𝜃𝜃 = arctan�𝐺𝐺𝑦𝑦 (𝑥𝑥 ,𝑦𝑦)
𝐺𝐺𝑥𝑥(𝑥𝑥 ,𝑦𝑦)

� (5) 

The 𝜃𝜃 greater than pre-defined threshold are 
considered as n oise. All edge directions are 
quantized between 0 to 2π into B number of bins as 
shown in Fig.4.  

 
Fig.4 Edge quantization bines. 

The direction ranges of each bin b are defined by 
equation (6).  

𝑏𝑏𝑏𝑏𝑛𝑛𝐻𝐻𝑏𝑏𝑛𝑛𝑏𝑏𝑡𝑡𝑏𝑏 = �(𝑏𝑏 − 1) ∗ �2𝜋𝜋
𝐵𝐵
� ,𝑚𝑚 ∗ �2𝜋𝜋

𝐵𝐵
� − 1� (6) 

This process produces a binary image corresponding 
to each bin and has the same size as t he image 
frame. Each binary image b is multiplied by the 
magnitude M and generates B number of quantized 
magnitude images. Finally, the EOH features for a 
certain region are computed as the summation of the 
magnitude of all pixels within that region. Similarly, 
the integral image is computed in advance to reduce 
the summation time and increase the performance of 
the system. 
 
 
3.1.3 AdaBoost features classification 
The Gentle AdaBoost classifier trains 𝑇𝑇 week 
classifiers and combines them into a l inear fashion, 
where the value of T equals to number of features F. 
Each classifier ℎ𝑏𝑏(𝑥𝑥) is a simple threshold function 
trained on numerus values of one type of feature. 
Although one-week classifier is not accurately to 
describe a whole dataset alone, a combination of 
them would lead to a strong classifier. A simple 
weak classifier example used in this paper is as the 
following: 

ℎ𝑏𝑏(𝑥𝑥) = �1        𝑏𝑏𝑖𝑖 𝑖𝑖𝑏𝑏(𝑥𝑥) < 𝜃𝜃𝑏𝑏
−1         𝑜𝑜𝑡𝑡ℎ𝑡𝑡𝑒𝑒𝑤𝑤𝑏𝑏𝑒𝑒𝑡𝑡

       𝑏𝑏 = 1,2, …𝑇𝑇�      (7) 

where 𝑖𝑖𝑏𝑏  is the selected feature and 𝜃𝜃𝑏𝑏  is the learned 
threshold. Finally, The AdaBoost classifier produces 
the optimal N features index to be used for 
target/candidate targets representations. 
 
 
3.2 Prediction Phase 
The first step in the particle filter framework is the 
prediction of the target state. It estimates the new 
position of each particle that represent a candidate 
target position using the state transition model. The 
first order auto-regression model is usually used to 
describe the transition of the target during its 
movement and achieves good results for tracking 
systems [8] [13] [14]. The proposed system 
modifies this model to compensate the ego-motion 
effect resulted by the motion of the UAV and hence 
its camera. First, the system uses the optical flow 
technique and k-means clustering method to 
calculate the ego-motion transformation matrix that 
reflects the motion of the UAV and accordingly the 
images background. Then it is combined with the 
dynamic model to produces the proposed state 
transition model. The following subsections 
explains the steps of this phase in more details. 
3.2.1 Harries corner HC detection and estimation 
The proposed system assumes image background to 
occupies the most of image area. So, it detects the 
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Harris corner HC points to represent the background 
in the current image frame, Fig.5(a) [16]. In the next 
image frame, the Lucas-Kanade optical-flow 
algorithm estimates the new position of HC points 
and the system creates the HC pair set, Fig.5(b).  

Although most of HC and their correspondences 
belongs to the background, a considerable portion of 
them are related to the moving targets (foreground). 
So, the system uses the k-means algorithm to 
distinguish between them and then eliminates the 
foreground points. 

 
Fig.5 Harries Corner HC detection and estimation. 
(a) detecting HC in the whole image, (b) estimating 
HC in the next frame, (c) eliminating HC points 
belongs to the moving object. 

Let (xi , yi) denotes an 𝑏𝑏𝑡𝑡ℎ  HC point and (yi
′ , yi

′) 
for its correspondence one. The Euclidian distance 

ED between angle 𝜔𝜔 between them can be 
calculated using equation (8) and (9), respectively.  

𝐸𝐸𝐷𝐷 =  ��𝑥𝑥𝑏𝑏 − 𝑥𝑥𝑏𝑏′ �
2 + �𝑦𝑦𝑏𝑏 − 𝑦𝑦𝑏𝑏′ �

2 (8) 

𝜔𝜔 =  𝑦𝑦𝑏𝑏−𝑦𝑦𝑏𝑏
′

𝑥𝑥𝑏𝑏−𝑥𝑥𝑏𝑏
′   (9) 

After that, the k-means algorithm is applied on all 
ED and 𝜔𝜔 data to cluster them into two groups. The 
system assumes that the group containing the largest 
number of HC points is considered as background. 
The other group points are removed from the HC 
pair set as shown in Fig.5(c). 
 
 
3.2.2 Ego-motion estimation 

The ego-motion effect is resulted from the 
motion of the moving platform that holds the 
camera. So, the captured image contains moving 
background and moving targets. As illustrated 
above the proposed system applied k-means 
algorithm on all HC pair set and removed the targets 
points. So, the remaining HC points are representing 
the background only. After that the image frame is 
divided into sub-blocks. Each sub-block is assigned 
to all HC pair that located inside its borders as 
shown in Fig.6(a).  

 
Fig.6 Harries Corner HC detection and estimation. 
(a) image sub-blocks, (b) estimating ego-motion 
magnitude and direction in each sub-block. 
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The affine geometric transformation is estimated 
for each block using MLESAC method as shown in 
Fig.6(b). MLESAC is a generalization of RANSAC 
estimator with a maximization of the likelihood 
rather than just the number of inliers [17]. Not all 
blocks have the same affine transformation matrix 
because of the possibilities of image rotation, 
skewing, and warping. So, the ego-motion 
transformation matrix E is calculated as the median 
of all affine transformation matrices that calculated 
for each block. It takes the form of 3x3 matrix 
which have 6 parameters as shown in equation (10). 

𝐸𝐸 =  �
𝑏𝑏 𝑐𝑐 𝑡𝑡
𝑏𝑏 𝑑𝑑 𝑖𝑖
0 0 1

� (10) 

where a, b, c, d, e and f are the matrix components 
which determine the values of translation, scale, 
sheer and rotation transformation types. 
 
 
3.2.3 Dynamic model update 
The proposed system incorporates the ego-motion 
transformation matrix E with the auto-regression 
model to give optimized dynamic model. This 
model is applied on the N particles that represent all 
target candidates state to predict the state of the 
candidate targets in the next frame. Each candidate 
target can be represented using the state vector S 
that includes information about the target position, 
velocity and size as illustrated in the equation (11): 

𝑆𝑆 = (𝑥𝑥,𝑦𝑦, �̇�𝑥,𝑦𝑦,̇ 𝑤𝑤,ℎ)𝑇𝑇  (11) 

Where x and y are the left-top coordinate of the 
candidate rectangle and w and h are its width and 
height respectively. The target velocity information 
is represented by ẋ and ẏ components.   

To reduce the calculations cost, the propose 
system uses the vectorization technique in all matrix 
manipulations instead of the traditional for-loop 
fashion. Thus, the predicted states for N particles is 
calculated using the following equations: 

𝑿𝑿𝒕𝒕 =  𝑿𝑿𝒕𝒕−𝟏𝟏 + �̇�𝑿𝒕𝒕−𝟏𝟏 +  𝑮𝑮𝑮𝑮𝒕𝒕−𝟏𝟏(𝟎𝟎,𝝈𝝈𝑮𝑮)     (12) 

𝒀𝒀𝒕𝒕 =  𝒀𝒀𝒕𝒕−𝟏𝟏 + �̇�𝒀𝒕𝒕−𝟏𝟏 +  𝑮𝑮𝑮𝑮𝒕𝒕−𝟏𝟏(𝟎𝟎,𝝈𝝈𝑮𝑮)     (13) 

�̇�𝑿𝒕𝒕 =  �̇�𝑿𝒕𝒕−𝟏𝟏 + 𝑮𝑮�̇�𝑮𝒕𝒕−𝟏𝟏(𝟎𝟎,𝝈𝝈�̇�𝑮)     (14) 

�̇�𝒀𝒕𝒕 =  �̇�𝒀𝒕𝒕−𝟏𝟏 + 𝑮𝑮�̇�𝑮𝒕𝒕−𝟏𝟏(𝟎𝟎,𝝈𝝈�̇�𝑮)     (15) 

𝑾𝑾𝒕𝒕 =  𝑾𝑾𝒕𝒕−𝟏𝟏 + 𝑮𝑮𝑮𝑮𝒕𝒕−𝟏𝟏(𝟎𝟎,𝝈𝝈𝑮𝑮)                 (16) 

𝑯𝑯𝒕𝒕  =  𝑯𝑯𝒕𝒕−𝟏𝟏 + 𝑮𝑮𝑮𝑮𝒕𝒕−𝟏𝟏(𝟎𝟎,𝝈𝝈𝑮𝑮)               (17) 

where 𝑿𝑿𝒕𝒕, 𝒀𝒀𝒕𝒕, �̇�𝑿𝒕𝒕, �̇�𝒀𝒕𝒕, 𝑾𝑾𝒕𝒕 and 𝑯𝑯𝒕𝒕 predicted state 
vectors for all N particles in the current time t.  
G∗(∗) is zero mean white Gaussian noise 
components for several unidentified dynamic factors 
that may happened during tracking (sudden random 
motion, slight acceleration, …). σ∗ is the variance of 
G∗(∗).  

The proposed system takes only the first two 
rows in E and updates only the two position 
components in the state vector 𝐗𝐗 (i.e. xt  and yt) as 
the following equation: 

�𝑿𝑿𝑿𝑿𝒕𝒕𝒀𝒀𝑿𝑿𝒕𝒕
�

2×𝑁𝑁
= �

𝑏𝑏 𝑐𝑐 𝑡𝑡
𝑏𝑏 𝑑𝑑 𝑖𝑖�2×3

× �
𝑿𝑿𝒕𝒕
𝒀𝒀𝒕𝒕
𝟏𝟏
�

3×𝑁𝑁

 (18) 

where 𝑿𝑿𝑿𝑿𝒕𝒕 and 𝒀𝒀𝑿𝑿𝒕𝒕 are the two updated position 
components of the target at frame t. 

The components 𝑏𝑏 and 𝑑𝑑 in the ego-motion 
transformation matrix E replicate the scale change 
of the entire image due to the UAV altitude 
variations. The proposed system inspires these 
components to update the predicted size of the 
candidate targets. The following are used to 
calculate the new width and heights for all N 
particles states: 

𝑾𝑾𝑿𝑿𝒕𝒕 =  𝑾𝑾𝒕𝒕 ∗ 𝑏𝑏  (19) 

𝑯𝑯𝑿𝑿𝒕𝒕  =  𝑯𝑯𝒕𝒕 ∗ 𝑑𝑑                        (20) 

where 𝑾𝑾𝑿𝑿𝒕𝒕 and 𝑯𝑯𝑿𝑿𝒕𝒕 are the updated width and 
heights components of the target at frame t. The 
components 𝑏𝑏 and 𝑑𝑑  signifies the decreasing or 
increasing the image scale and therefore the target 
size. Finally, the predicted state of the particles can 
be expressed by the following equation: 

𝑺𝑺𝒕𝒕 = �𝑿𝑿𝑿𝑿𝒕𝒕,𝒀𝒀𝑿𝑿𝒕𝒕, �̇�𝑿𝒕𝒕, �̇�𝒀𝒕𝒕,𝑾𝑾𝑿𝑿𝒕𝒕,𝑯𝑯𝑿𝑿𝒕𝒕� (21) 

 
 
3.3 Correction Phase 
The correction phase consists of three main steps. 
First, HR and EOH features are extracted for all N 
particles by the same way as d iscussed before but 
using the vectorization method. Then the 𝑁𝑁 × 𝑇𝑇 
matrix are created which represents the target 
observation features as shown in equation (22). 

𝑂𝑂 =

⎣
⎢
⎢
⎡ 𝑖𝑖1

1 𝑖𝑖2
1 . . .𝑖𝑖𝑇𝑇1

𝑖𝑖1
2 𝑖𝑖2

2 . . .𝑖𝑖𝑇𝑇2
…

𝑖𝑖1
𝑁𝑁 𝑖𝑖2

𝑁𝑁 . . .𝑖𝑖𝑇𝑇𝑁𝑁⎦
⎥
⎥
⎤
 (22) 
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These observations are compared with the target 
template by computing the error between them 
using equation (23). 

𝑡𝑡𝑒𝑒𝑒𝑒 = 𝑂𝑂 − 𝑂𝑂𝑇𝑇               (23) 

Thanks to the vectorization technique, all errors are 
calculated for all particles and all features in one 
step with high performance. Then the system 
calculates the likelihood L of the particles based on 
their errors using the equation (24).  

𝐿𝐿 =  1
√2𝜋𝜋𝛼𝛼2 𝑡𝑡

�−𝑡𝑡𝑒𝑒𝑒𝑒2𝛼𝛼 �
2

  (24) 

where 𝛼𝛼 is a tuneable parameter. The exponential 
function is used to boost the lower error estimates to 
be compared with higher error values.  

Initially, all the particles are given the same 
weights. Then they are re-weighted according to 
their likelihood L. based on the new weights, the 
particles are resembled to reject the particles having 
very low weight and to concentrate on the large 
weighted ones.  
 
 
3.4 Post-Tracking Phase 
The new state of the target is evaluated as the 
median of all candidate states represented by the re-
sampled particles. The median filter is to eliminate 
any particles may have status positions relatively far 
from the object center. It achieves good results 
better than average filter due to its robust resistance 
to the noise.  

Based on the estimated new position of the 
target, the new search area is determined for further 
tracking in the next frame. Finally, all the above 
procedures are repeated every 𝑛𝑛𝑡𝑡ℎ  frame.  
 
 
4 Experimental Results and Analysis 

To evaluate the proposed system, Numerous 
experiments are accomplished on VIVID database. 
All algorithms are implemented in MATLAB and 
executed on 2.6 G Hz processor and 4 GB RAM. 
The proposed system achieved 95.2% for successful 
target tracking. It can process more than 57 frames 
per second using 2000 particles which indicates 
more improved results. As illustrated in Table 1 
both speed and accuracy are registered in 
comparison between the proposed system and 
tracking method proposed in [8].  

 
 

Table 1. Comparison between the proposed tracking 
system and the classical particle filter framework 

Tracking Method Speed 
(fps) 

Accuracy 
% 

Proposed tracking system 57 95.4 
Classical PF tracking 

framework 13.1 95.1 

 

4.1 Database 
VIVID database is used to evaluate the proposed 
system with different scenarios [18]. It consists of 
numerous image sequences captured via UAV 
camera for different scenes (runways, roads, desert, 
forests, …). The images have sizes 640×480 pixels 
which provide good information details about target 
to be tracked. To simulate more challenging 
environments that usually happened during UAV 
flight, some modifications are performed on the 
captured image frame. The UAV vibrations or its 
camera shacking cause changing in image position, 
rotation and scale. This can be simulated by 
applying affine transformation with small random 
values on the new frames.  

Generally, the VIVID includes civilian and/or 
military vehicles moving on a road and/or runway. 
The moving vehicles have various types of motions, 
varying speed and similar shape and color. Also, the 
scale of them are changing in the image due to the 
change of UAV altitude. The VIVID database offers 
a ground truth for certain vehicle, every 10 frame of 
its sequence, to compare with the resulted target 
position and size. To evaluate the proposed system 
the recall and precision are calculated by the same 
way as in [8]. 
 
 
4.2 Analysis and Discussion 

In pre-tracking phase, the proposed system 
generated 20 random states around selected vehicle 
and 200 random states as backgrounds. After that, 
the extended HR and EOH features are extracted to 
provide 127 pool of features as the following: 
• Normal HR features (1 - 105)  

• EOH features (106 - 121)  

• Oriented HR features (122 – 127) 

Fig.7 illustrates the histogram of the best 32 features 
over 10 running times of the AdaBoost classifier. In 
Fig.7(a) tracked vehicle and background color are 
semi-close to each other. Conversely, the vehicle 
has distinguishable oriented edges. As a r esult, the 
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classifier designated EOH and oriented HR features 
more than HR ones as shown in Fig.7(b). As 
demonstrated in Fig.7(c), the vehicle color, edges 
and orientation edges can be distinguished easily. 
So, the classifier selected the best features from all 
of them approximately by the same degree as shown 
in Fig 7(d). 

 
Fig.7 Selecting best features using Gentle AdaBoost 
Classifier. (a) selected target in “egtest03” scene, (b) 
best features histogram of (a), (c) selected target in 
“egtest05” scene, (d) best features histogram of (c). 

The AdaBoost classification process consume 
more than 52 seconds to select the best 32 features, 
as an example, using the for-loop fashion. Thanks to 
the vectorization technique, the time elapsed for the 
same number of features reduced to less than 2 
seconds. This time is needed only at the beginning 
of the system and not affect the tracking time. 
However, the number of features used to represent 
the target affects the tracking system speed and 
accuracy. The higher number of features, the higher 
accuracy and lower speed as shown in Fig.8 and 
Fig.9. 

 
Fig8. Accuracy of the proposed system for different 
number of features. 

 
Fig.9 Speed of the proposed system for different 
number of features. 

In ego-motion transformation step, the system 
tried homogenously to detect the strongest 𝐻𝐻𝐶𝐶 
points over the entire image. Then, the image is 
divided into 2× 2 sub-block. All HC pairs assigned 
to a sub-block used to calculate its ego-motion 
transformation matrices. The number of HC points 
was affecting by the background smoothness. When 
the image background contained large smooth area, 
the number of required HC points increased to cover 
all image areas.  

As mentioned before, the main purpose for 
calculating ego-motion transformation matrix E is to 
incorporate it with the target dynamic model. To 
prove that, the proposed system was tested 10 times 
on different scenarios in image sequence “egtest01". 
The recall and precision are calculated with and 
without the optimized dynamic model. At the 
beginning, the dynamic model works good but after 
frame #900 the vehicle accelerates making the 
particles lag its center. This means that the dynamic 
model does not guide the particles as better as 
before which reduces the accuracy as shown in 
Fig.10 (red curve). When system used the optimized 
dynamic model, the particles directed to the vehicle 
center which improved the accuracy (green curve). 

 
Fig. 10. The proposed tracking system accuracy. 
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After frame #1300, the UAV altitude started 
decreasing. This affected the image scale that started 
increasing. Accordingly, the vehicle size increased 
with the same ration as the image. Regarding this 
effect produced particles with states far from the 
real target candidate states in width and height. 
Therefore, the recall accuracy registered fewer 
values. So, the total accuracy reduced despite of the 
good precision values as shown in Fig. 11. 

 
Fig.11 Recall and precision without using 

optimizes dynamic model.  
As discussed before, the proposed system 

updated the target dynamic model using equations 
(19) and (20) to compensate the background scale 
change. This corrected the width and height of 
particles state. Hence, the recall and precision got 
higher values as shown in Fig. 12. 

 
Fig.12 Recall and precision with optimizes dynamic 
model.  
 
 
5 Conclusion  
This paper proposed a r eal-time target tracking 
system based on UAV images. The optical flow and 
particle filter techniques were integrated together to 

build the optimized tracking system. The Lucas-
Kanade and MLESAC algorithms were used to 
calculate the ego-motion transformation matrix. 
Then the system incorporated this matrix with the 
target dynamic model for the particle filter 
prediction step. The extended HR and EOH features 
were collaborated to build the particle filter 
observation model.  

The incorporation of ego-motion transformation 
matrix with the first order auto-regression model 
produced an optimized target dynamic model. It 
compensated the effect of moving background and 
altitude changes on the target position inside the 
image. So, it can guide the particles towards the new 
estimated positions with better accuracy. 

Thanks to Gentle AdaBoost classifier, only the 
best features conveying more information about the 
target than others were selected. This reduces 
number of features that required to achieve desired 
accuracy. So, the performance and speed of the 
tracking system were increased.  

The use of integral image approach in features 
extractions had a g reat effect in the system speed 
and implementation simplicity. It reduced the 
calculation cost for any summation process to only 
four memory access. Also, the use of vectorization 
technique in matrix operations for large number of 
particles reduced the memory overhead and 
enhanced the tracking speed. The adaptive search 
area yielded the system to focus its calculations 
within only the effective area near the target. So, a 
great reduction in calculations time was achieved 
for single target tracking. 

In the future, the proposed system will be 
implemented on a n embedded system for onboard 
target tracking system.  
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