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Abstract: - The theory and design of adaptive finite impulse response (FIR) filters are well developed and 
widely applied in practice due to their simple analytic description of error surfaces and intrinsic stable behavior. 
However, the studies on adaptive infinite impulse response (IIR) filters are not as common as adaptive FIR 
filters. The reason is that there are two main drawbacks in the design of adaptive IIR filters: stability during the 
adaptation process may not be ensured in some applications and the convergence to the optimal design is not 
always guaranteed because of their multi-modal error surface structures. In order to overcome these difficulties, 
global optimization based approaches are used in adaptive IIR filter design. One of the most recently proposed 
swarm intelligence based global optimization algorithms is the artificial bee colony (ABC) algorithm which 
simulates the intelligent foraging behavior of honeybee swarms. In this work, a novel approach based on 
artificial bee colony algorithm is described and applied to the design of adaptive IIR filters and its performance 
is compared to that of differential evolution (DE) and particle swarm optimization (PSO) algorithms.  
 
 
Key-Words: - Artificial bee colony algorithm, Modified artificial bee colony algorithm, Particle swarm 
optimization algorithm, Differential evolution algorithm, Adaptive IIR filter design, System identification  
 

1 Introduction 
The design of the conventional linear non-adaptive 
filters require a priori information about the 
statistics of the data to be processed. The non-
adaptive filter is optimum only when the statistical 
characteristics of the input data match the priori 
information on which the design of the filter is 
based. If the statistical characteristic of the input 
data varies with respect to time or there is no priori 
knowledge about the variation, adaptive filters are 
needed [1,2]. Adaptive filters find applications in a 
wide range of diverse fields such as system 
identification, noise cancellation, channel 
equalization, linear prediction, control, and 
modeling. There are two major classes of adaptive 
filter realizations, distinguished by the form of 
impulse response, finite impulse response (FIR) 
filters and infinite impulse response (IIR) filters. 
The theory and design of adaptive FIR filters are 
well developed and widely applied in practice due to 
their simple analytic description of error surfaces 
and intrinsic stable behavior [3,4]. Since the 
adaptive IIR filters require fewer number of 
coefficients than adaptive FIR filters to model the 
same system [5], they offer potential performance 

improvements and less computational cost than 
equivalent FIR filters [6]. On the other hand, an 
adaptive IIR filter gives a more general structure as 
it contains both poles and zeros in the transfer 
function, while an FIR filter has only zeros [6]. 
However, there are two main drawbacks in the 
design of adaptive IIR filters. They might have 
multi-modal and non-quadratic error surfaces which 
lead the filter to a local minimum instead of a global 
solution. A further problem is the possibility of the 
filter becoming unstable during the adaptation 
process. The unstability problem can be handled by 
restricting the parameter space in a suitable value 
range. As the error surface of adaptive IIR filters is 
usually multi-modal and non-quadratic with respect 
to the filter coefficients, gradient based learning 
algorithms can easily be stuck at local minima and 
cannot converge to the global optimum. In order to 
achieve the global optimum solution, approaches  
based on global optimization algorithms such as 
genetic algorithm (GA), simulated annealing (SA), 
tabu search (TS),  differential evolution (DE), 
particle swarm optimization (PSO) and artificial bee 
colony (ABC) algorithms can be used for the design 
of adaptive IIR filters. Among these algorithms SA, 
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TS, GA, DE and PSO based design methods have 
been described and applied to the adaptive IIR filter 
design [1,3,6-12]. However, to our best knowledge 
ABC algorithm has not been used to design adaptive 
IIR filters although it was employed for designing 
non-adaptive IIR filters [13]. In [13], basic ABC 
algorithm was employed for designing non-adaptive 
filter structures in which the signals are stationary. 
However, in the design of adaptive filters time-
varying nonstationary signals are employed.  

In this work, a new approach based on ABC 
algorithm for adaptive IIR filter design is introduced 
and the performance comparison of the design 
methods based on ABC, DE and PSO algorithms is 
presented. The paper is organized as follows. 
Section 2 presents a brief review to the artificial bee 
colony algorithm. Section 3 describes the adaptive 
IIR filter design problem. In section 4, the proposed 
approach is described and the simulation results are 
produced on the test problems considered and 
discussed.  
 
 

2 Artificial Bee Colony Algorithm 
 
 
2.1 Basic Artificial Bee Colony Algorithm  
Swarm intelligence is the discipline that deals with 
collective behavior of natural and artificial systems 
composed of many individuals to solve 
combinatorial and numerical optimization problems 
[14-16]. In particular, it focuses on the collective 
behaviors that result from the local interactions of 
the individuals with each other and with their 
environment [16]. The classical examples of swarm 
are bee colony swarming around their hive;  a 
colony of ants;  a flock of birds; an immune system 
which is a swarm of cells and  a crowd that is a 
swarm of people. In 2005, D. Karaboga introduced a 
bee swarm algorithm called artificial bee colony 
algorithm for numerical optimization problems [17]; 
and B. Basturk and D. Karaboga compared the 
performance of ABC with that of some other well-
known population based optimization algorithms 
[18]. Moreover, ABC have been employed by 
several researchers to solve various problems in 
different research areas [19-24]. 

In ABC algorithm, the colony contains three 
groups of artificial bees: employed bees, onlookers 
and scouts. The first half of the colony consists of 
the employed bees and the other half includes the 
onlooker bees. The position of a food source 
represents a possible solution to the optimization 
problem and the nectar amount of a food source 

corresponds to the quality (fitness) of the associated 
solution. Each food source is associated with only 
one employed bee. In other words, the number of 
the employed bees or the onlooker bees is equal to 
the number of solutions in the population. The 
employed bee whose food source has been 
exhausted by the other bees becomes a scout. 

Initially, a population P is produced from the SN 
solutions randomly distributed within the search 
space, where SN denotes the size of employed or 
onlooker bees. If  D is denoted as the number of 
optimization parameters, each solution 

),...,2,1( SNixi   can be represented by a D-
dimensional vector. Then, each food source in the 
initial population is randomly associated with an 
employed bee and their nectar amounts are 
calculated and memorized by the bees. At the 
initialization stage, after determining the initial 
population the nectar amounts of each solution is 
calculated and then the values of control parameters 
of the algorithm are assigned. 

After initialization, each cycle of the search 
consists of three stages [25] : i.) employed bees 
randomly determine a food source within the 
neighbourhood of the food source in their memory 
and evaluate the nectar amount of this candidate 
food source.  Then, a greedy selection procedure is 
applied between the old and the candidate solutions. 
If the new produced candidate food source has an 
equal or better nectar amount than the old source, it 
is replaced with the old one in the memory.  
Otherwise, the bee keeps the present position in the 
memory. Then, employed bees share their 
information with onlooker bees. ii.) onlooker bees 
prefer a food source area depending on the nectar 
information taken from the employed bees. 
Onlooker bees are placed on the food sources with 
respect to roulette wheel selection method. As the 
nectar amount of a food source increases, the 
probability of that food source chosen also 
increases. Each onlooker bee produce a neighbour 
food source within the neighbourhood of the one to 
which she has been assigned and then evaluate the 
nectar amount of it. Then, as mentioned in the first 
stage, the better solution is selected  by using the 
greedy selection method. iii.) the employed bee of 
the food sources whose nectar amount is abandoned 
by the bees becomes as a scout bee. Scout bees are 
the explorers of the colony and they do not use any 
prior knowledge while investigating the new food 
sources. A new food source is randomly produced 
by a scout bee and replaced with the abandoned one. 
In ABC algorithm, by means of the scout bees 
discovering the rich and entirely unknown food 
sources becomes possible. In our model, at each 
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cycle only one of the employed bees is selected and 
classified as a scout bee. The selection of the scout 
bee is controlled by a control parameter called 
"limit". If a solution representing a food source can 
not be improved by a predetermined number of 
trials, it means that the associated food source has 
been exhausted by the bees and then the employed 
bee of this food source becomes a scout. The 
number of trials for releasing a food source is equal 
to the value of "limit" which is an important control 
parameter of ABC algorithm. The three stages 
mentioned above are repeated at each cycle of the 
search until the termination criteria are satisfied. 

An artificial onlooker bee chooses a food source 
depending on the probability value associated with 
that food source, ip  , calculated by the following 
expression, 

                        





SN

n
nfit

ifit
ip

1

                           (1) 

 
where, ifit  represents the fitness value of the 

solution i  which is proportional to the nectar 
amount of the food source in the position i . The 
fitness values of the solutions are calculated by 
using the expression (2), 

       
i

i f
fit




1

1
                       (2) 

In the equation above, if  is the Mean Squared Error 
(MSE) value produced by the solution i. In order to 
produce a candidate food position from the old one 
in memory, the ABC uses the expression (3), 
 
                        )( kjijijijij xxxv             (3) 

 
where,  SNk ...,,2,1  and  Dj ...,,2,1  are 
randomly chosen indexes. In order to provide the 
old and the candidate positions to be different from 
each other, k  has to be different from . is a 

random number between [-1,1]. 
The food source of which the nectar is 

abandoned by the bees is replaced with a new food 
source by the scout bees. If ix  is assumed as the 

abandoned food source and  Dj ...,,2,1 , the 
new food source position discovered by the scout 
bees to be replaced with ix  can be defined as in (4), 

 

      )(]1,0[ minmaxmin
jjjj

i xxrandxx          (4) 

The pseudo-code of the basic ABC algorithm is 
given below: 
 
1: Randomly generate an  initial population of  

solutions ix , SNi ...,,2,1  

2: Evaluate the fitness value of each solution ix  in 

the initial population 
3: cycle = 1, 
4: REPEAT 
5: Produce new solutions ijv  within the  

neighbourhood of ijx  for the employed bees by   

using (3) and evaluate them by using (2) 
6:   Apply the greedy selection process between th

ix  and iv  solutions of each employed bee and 

memorize the selected solutions. 
7: Calculate the probability values ip  for the 

solutions ix  by using (1). 

8: Produce the new solutions iv  for the onlooker 

bees from the solutions ix  selected depending 

on ip  and evaluate them by using (2) 

9: Apply the greedy selection process between the

ix  and iv  solutions of each onlooker bee and 

memorize the selected solutions. 
10: Determine the abandoned solutions for the 

scout, if exist, replace it with a new randomly 
produced solution ix  by using (4). 

11: Memorize the best solution obtained so far 
12: cycle=cycle+1 
13: UNTIL  (termination criteria are met) 
 
 
2.2 ModifiedArtificial Bee Colony Algorithm  
Basic ABC algorithm has three control parameters: 
colony size (number of employed bees or food 
sources), maximum cycle number and the limit 
value. In basic ABC algorithm, the new position of 
a food source is produced by changing only one 
parameter of the present position.  This process 
reduces the convergence speed of ABC during the 
initial phase of search. In order to avoid this 
undesirable characteristic of basic ABC,  the new 
position of a food source might be determined by 
changing more than one parameter. The ABC 
producing neighbour solutions in this way is called 
modified ABC. Modified ABC has got one more 
control parameter compared to basic ABC, called 
modification rate, which controls the frequency of 
parameter change in the production of a neighbor 
solution. The recommended value for this control 
parameter is between [0,1]. Modified ABC has been 

i ij
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used for constrained optimization problems [26] by 
Karaboga and Basturk in 2007. In this paper, the 
ABC and modified ABC is used for the design of 
adaptive IIR filters for the purpose of adaptive 
system identification which is an unconstrained 
optimization problem. warm intelligence is the 
discipline that deals with 
 
 
3 Definition of the Problem 
Many problems in the area of signal processing can 
be reduced to system identification process [27], 
where one might gather data from a system whose 
structure is initially unknown. In this work, adaptive 
IIR filters are employed for the system identification 
purpose. Fig. 1 represents the block diagram of a 
system identification process using an adaptive IIR 
filter. 

 
Fig. 1 Block diagram of system identification 
process using adaptive IIR filter 
 
As seen from the figure, an adaptive IIR filter is 
used to model the behaviour of a physical dynamic 
system. Generally, the nature of the system is 
unknown and thus it may be regarded as unknown 
system. At each cycle, the coefficients of the filter 
are adaptively adjusted by adaptation algorithm so 
as to minimize the error between the outputs of the 
filter and the unknown system.  

The basic structure of an IIR filter can be defined 
by the following difference equation: 

 

          



M

i
i

N

i
i inxbinyany

11

)()()(              (5) 

where  and ib  are the adjustable coefficients of 

the model. )(nx and )(ny  are the filter’s input and 
output, respectively, and N(M) is the filter order. 
The input signal is usually chosen as a wideband 

signal in order to allow the adaptive filter to 
converge to a good model of the unknown system. 
For fixed filter coefficients the transfer function of 
the IIR filter can be written in the following general 
form: 
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The coefficients of the filter can be represented in 

the string form of . 

The design of this adaptive IIR filter can be defined 
as a minimization problem of the cost function J(w) 
by adjusting the coefficients at each cycle. The cost 
function ( Mean Squared Error-MSE )  is usually 
expressed as the time-averaged cost function 
defined by Equation 7, 
 

 

   J(w) = 



N

n

nynd
N

1

2)]()([
1

 =  E[ |e(n)|2 ]     (7) 

 
where E denotes the statistical expected value, and 
e(n) is the estimation error which is equal to the 
difference between the desired signal and the 
adaptive filter output, 
 
 

                    )()()( nyndne                        (8) 
 
 

4 Simulation Results 
Simulation studies have been carried out on widely 
used three test problems defined for the purpose of 
system identification [11,27]. In this work, the 
simulations are realized by using the adaptation 
algorithms of ABC, modified ABC, DE and PSO 
which have global search ability, and then 
performances of the algorithms are compared. For 
each algorithm, the quality of the solution i in the 
population is calculated by using the following 
formula, 

                        
)(1

1
)(

wJ
ifit

i
                           (9) 

 
where )(wJ i  is the cost function value computed 

for the solution i . In order to calculate the quality of 
a solution a moving scheme is employed. The cost 
function defined by Equation 7 is calculated by 
using a block of N samples (N=100) and the data 
block is shifted by 1 sample after each cycle.  

ia

 T
MN ...bbba...aa 1021w
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The control parameter values of the algorithms 
used in the simulations are given in Table 1. The 
values of the control parameters have a significant 
effect on the performance of the algorithms. In this 
work, for DE and PSO algorithms, the control 
parameter values suggested in the literature were 
used [10,28]. In ABC based algorithms, the 
optimum value of the limit parameter was chosen 
according to [29] and the value of the modification 
rate parameter was chosen as mentioned in [26]. For 
a fair comparison, the colony sizes and the 
evaluation numbers of the algorithms are chosen to 
be equal to each other. In the table, minX   and 

maxX  represents the lower and upper bounds of the 
filter parameters. 
 
Example 1: Low-dimensional (2 parameters), 
bimodal, no noise 
In the first example [11], a second order system was 
being modeled with a first order adaptive IIR filter.  
The unknown plant and the adaptive filter had the 
following transfer functions, respectively, 
 

21

1

25.01314.11

4.005.0
)(










zz

z
zH D    

    
11
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


za

b
zH                                 (10) 

 

The system input was a uniform white sequence. 
The data length used in calculating the MSE was     
N = 100. Since the filter order is smaller than the 
system order, the MSE surface is multi-modal. The 
cost function has a global minimum at 

Tglobalw ]906.0311.0[   and a local minimum 

at Tlocalw ]519.0114.0[ .  

 
 

Fig. 2 shows the evolution of the MSE averaged 
over 50 different runs of modified ABC, ABC, DE 
and PSO algorithms. 
 

 
Fig. 2. Cost function value versus number of cycles 
averaged over 50 random runs for modified ABC, 
ABC, DE and PSO algorithms (Example 1) 

 
As seen from the Fig. 2, PSO algorithm produces a 
similar but a bit better result than DE algorithm in 
terms of mean squared error. The evolution of MSE 
error for the basic and modified ABC algorithms is 
similar during first cycles. However, after around 80 
cycles the MSE value of modified ABC gradually 
decreases and finally the lowest MSE value is 
obtained.  

Fig. 3 also demonstrates the evolution of the 
parameters for the run in which the minimum MSE 
value is obtained.  

Fig. 4 demonstrates the positions of the poles and 
the zeros of the stable filters designed with the 
minimum MSE value by using the parameter values 
found by the algorithm given in in Table 2. 
 
 

 
 

Table 1  Control parameter values of the algorithms used in the simulations 
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Modified ABC
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ABC Modified ABC DE PSO 
Colony size = 40 Colony size = 40 Population size = 40 Swarm size = 40 

limit value = 180 (Example 1) 

limit value = 200 (Example 2,3) 

limit value = 400 (Example 4) 

 

limit value = 180 (Example 1) 

limit value = 200 (Example 2,3) 

limit value = 400 (Example 4) 

Modification Rate = 0.7 

Crossover rate = 1 

Scaling factor (F) = 0.85 

Inertia factor,  = 0.5 

Cognitive factor, 1c = 1 

Social factor, 2c = 1 

Xmax = 1 
Xmin = -1 

Xmax = 1 
Xmin = -1 

Xmax = 1 
Xmin = -1 

Xmax = 1,  Xmin = -1 
      Vmax =0.5, Vmin =-0.5 
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Table 2 The best parameter values found by modified ABC, ABC, DE and PSO algorithms for Example 1 
 

Coefficients Global 
Minimum Modified ABC ABC DE PSO 

b0 -0.311 -0.3119 -0.3050 -0.3075 -0.3041 
a1 -0.906 -0.9066 -0.9073 -0.9109 -0.9121 

 

 

 
(a) Modified ABC 

 

 
(b) ABC 

 
Fig. 3.  Evolution of the parameters of the first filter 
for modified ABC and ABC algorithms 
 
 

 
(a) Modified ABC 

 
 

 
 

 

 
(b) ABC 

 
(c)  DE 

 
(d) PSO 

Fig. 4. Pole-zero diagrams of the best filters 
obtained for the first example by the algorithms 
 
Example 2: High-dimensional (11 parameters), 
unimodal, SNR=30 dB 
In this test problem, the unknown plant given was a  
fifth order low-pass Butterworth filter and the 
adaptive IIR filter to be designed was the same 
order with the plant [27], 
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In the simulation, the system input x(n) was chosen 
as a uniform white sequence taking values in (-0.5, 
0.5), and the signal-to-noise ratio (SNR) was 30 dB.  
In order to compare the algorithms in terms of the 
MSE evolution, Fig. 5 shows the average evolution 
of the best solutions over 50 random runs for four 
algorithms. From the figures drawn for two filters, it 
is seen that ABC and PSO algorithms produce 
similar performance for finding the optimum filters. 
The performance of the DE algorithm is the worst 
especially at the first cycles. Among four 
algorithms, the modified ABC is the best in terms of 
MSE and evolution speed performances in this 
example, too.  

Fig. 6 and 7 present the evolution of the 
nominator and the denominator parameters for the 
ABC based algorithms for the best run. As seen 
from the figures given for basic ABC, the evolution 
might show instantaneous changes. However, the 
evolution process of the parameters for modified 
ABC seems more stable since the values are 
changing gradually.  
 
 

 
Fig. 5. Cost function value versus number of cycles 
averaged over 50 random runs for modified ABC, 
ABC, DE and PSO algorithms (Example 2) 
 

 
(a) Nominator parameters 

 
(b) Denominator parameters 

 
Fig. 6.  Evolution of the nominator and denominator 
parameters of the high order filter for modified ABC 
algorithm 
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                 (b) Denominator parameters 
 
Fig. 7.  Evolution of the nominator and denominator 
parameters of the high order filter for ABC 
algorithm 
 

From the pole zero diagrams given in Fig.8, it is 
seen that all the poles are located in the unit circle 
and hence all the designs are stable. 
 

 
(a) Modified ABC 

 
 

 
(b) ABC 

 
(c) DE 

 
(d) PSO 

 
Fig. 8. Pole-zero diagrams of the best filters 
designed for the second example by the algorithms 
 
The parameters values of the best designed adaptive 
IIR filters by the algorithms are given in Table 3. 

 
 
Table 3 The parameter values of the best filters designed by modified ABC, ABC, DE and PSO algorithms for 
Example 2 
 

Coefficients Modified ABC ABC DE PSO 
a1 -0.1759    -0.1940    -0.0096    -0.1768 
a2 0.3063     0.2798     0.3783     0.2554 
a3 -0.4183    -0.4418    -0.3002    -0.4192 
a4 -0.0029    -0.0162    -0.0003    -0.0298 
a5 -0.0424    -0.0398    -0.0301    -0.0353 
b0 0.1078     0.1071     0.1084     0.1086 
b1 0.4160     0.4120     0.4336     0.4158 
b2 0.5067     0.4992     0.5866     0.5002 
b3 0.0676     0.0384     0.2025     0.0454 
b4 -0.2770    -0.2988    -0.1721    -0.3080 
b5 -0.1533    -0.1776    -0.1209    -0.1668 
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Example 3: High-dimensional (9 parameters), 
bimodal, SNR=20dB 
The unknown plant was a sixth order system and the 
adaptive IIR filter was a fourth order filter with the 
following  transfer functions [27], 
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Since the system was a sixth order system and the 
filter fourth order, the error surface is bimodal as in 
the first example. Zero mean Gaussian pseudo-noise 
was added to the channel output to give a signal-to-
noise ratio of 20 dB. 
In order to compare the algorithms in terms of the 
MSE evolution for example 3, Fig. 9 shows the 
average evolution of the best solutions over 50 
random runs with different initial solutions for four 
algorithms. 
From the figures drawn for four algorithms, it is 
seen that modified ABC produces the best result in 
terms of evolution speed and it finds the lowest 
MSE value. Fig. 10 and 11 present the evolution of 
the nominator and the denominator parameters for 
the algorithms for the best run. It can be clearly seen 
that modified ABC shows more stable behaviour in 
terms of the evolution of parameters during the 
adaptation process.  
 

 
Fig. 9. Cost function value versus the number of  
cycles averaged over 50 random runs for modified 
and basic ABC, DE and PSO algorithms (Example  
3) 

 
(a) Nominator parameters 

 

 
(b) Denominator parameters 

 
Fig. 10.  Evolution of the parameters of the third 
filter for modified ABC algorithm 
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(b) Denominator parameters 

 
Fig. 11.  Evolution of the parameters of the third 
filter for ABC algorithm 
 
Also, Fig. 12 demonstrates the positions of the poles 
and the zeros of the stable filters designed by 
algorithms with the minimum MSE value, by using 
the parameter values given in Table 4.   

 
 

 
(a) Modified ABC 

 

 

 

 
(b) ABC 

 
(c) DE 

 
(c) PSO 

 
Fig. 12.  Pole-zero diagrams of the filters with the 
minimum MSE value designed for the third example 
 
 
 

Table 4 The parameter values of the best filters designed by the modified and basic ABC, DE and PSO 
algorithms in the Example 3 
 
 

Coefficients Modified ABC ABC DE PSO 
a1 -0.0107    -0.0542    -0.0022    -0.0059 
a2 -0.0115    -0.0564    -0.0010    -0.0040 
a3 0.0142     0.0440     0.0024     0.0043 
a4 -0.8437    -0.7959    -0.8443    -0.8535 
b0 0.9962     1.0000     0.9909     1.0000 
b1 -0.0205    -0.0732    -0.0025    -0.0058 
b2 0.3362     0.3135     0.3639     0.3423 
b3 0.0096     0.0184     0.0013     0.0016 
b4 -0.3676    -0.3279    -0.3511    -0.3906 
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Example 4: High-dimensional (17 parameters), 
multi-modal, no noise 
The unknown plant was chosen as an elliptic filter 
with the order of 10 and the adaptive IIR filter to be 
designed was an eighth order filter. Both filters had 
the transfer function as the following form,  

 
                  

                                     

    (13) 
 
The coefficients of the unknown plant are given in 
the first two columns of Table 5. Since the order of 
the unknown plant is higher than the adaptive IIR 
filter to be designed, the error surface is multi-
modal. The system input was chosen as a uniform 
white sequence and the data length used in 
calculating the MSE was N = 100. 

Fig. 13 represents the cost function value versus 
number of cost function evaluations averaged over 
50 different runs of modified ABC, ABC, DE and 
PSO algorithms. As seen from the figure, ABC 
based approaches design the optimal filters quicker 
than the DE and PSO algorithms. The performance 
of the modified ABC algorithm is fairly better than 
the other three algorithms and the worst 
performance is performed by the DE algorithm. As 
seen from the pole-zero diagrams given in Fig. 14, 
all the adaptive IIR filters designed are stable. 

 

 

Fig. 13. Cost function value versus the number of  
cycles averaged over 50 random runs for modified 
and basic ABC, DE and PSO algorithms (Example 
4) 
 

 
(a) Modified ABC 

 

(b) ABC 

 
(c) DE 

 
(d) PSO 

 

Fig. 14.  Pole-zero diagrams of the best filters 
designed by the algorithms for the fourth example 
 
The coefficients of the unknown plant and the 
adaptive IIR filters designed by the algorithms are 
given with Table 5. 
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Table 5 The parameter values of the unknown plant and the adaptive IIR filters with the minimum MSE value 
designed by the algorithms in the Example 4 
 

Coefficients Unknown plant 
(elliptic filter) Modified ABC ABC DE PSO 

a1    -0.3771    -0.3165     0.3773     0.1773     0.2256 
a2     4.1167     0.2039    -0.1974     0.0599     0.0038 
a3    -1.4008     0.3004     0.2585    -0.1130    -0.0461 
a4     6.5731    -0.3202     0.0976    -0.2823    -0.0852 
a5    -1.9431     0.2490    -0.0972    -0.0685    -0.0176 
a6     5.0176     0.0946     0.2794     0.0824     0.1865 
a7    -1.1919     0.0353     0.2296     0.1310     0.1805 
a8     1.7830     0.0120    -0.0019     0.0536     0.0484 
a9    -0.2726 - - - - 
a10     0.2217 - - - - 
b0     0.2226     0.2262    0.2792     0.2116     0.2092 
b1     0.3241     0.3421    0.4964     0.4485     0.4455 
b2     1.1701     0.3253    0.4664     0.4598     0.5353 
b3     1.2975     0.0899    0.2523     0.1392     0.1646 
b4     2.3973    -0.0252    0.0513    -0.2573    -0.1570 
b5     1.9469    -0.0162   -0.1002    -0.3116    -0.2200 
b6     2.3973     0.0688    0.0660    -0.1609    -0.0112 
b7     1.2975     0.1517    0.2342     0.1223     0.2368 
b8     1.1701     0.0272    0.1212     0.1344     0.2292 
b9     0.3241 - - - - 
b10     0.2226 - - - - 

 

For all examples, when the average MSE values 
obtained by the algorithms after 50 random runs are 
examined, it is clear that the modified ABC 
algorithm produces the minimum averaged MSE 
values. Hence, it can be said that ABC algorithm is 
more robust than DE and PSO algorithms and its 
tuning ability is better than these algorithms. It 
means that its performance is not so dependent on 
initialization process. 
 
SNR Test : To show the effect of signal to noise 
ratio (SNR) on the performance of algorithms, the 
Example 2 was realized for three different SNR 
values of 5, 10, 20 and 30 dB, then the results were 
compared in terms of convergence speed as 
demonstrated in Fig. 15. From the figure, it is seen 
that the higher the SNR value, the quicker the 
convergence is.  In terms of final MSE value the 
modified ABC is superior on other algorithms. 
 

 

4 Conclusion 
In this work, a novel approach based on ABC 
algorithm for adaptive IIR filter design was 
described and its performance compared with DE 
and PSO algorithms which have been also recently 
introduced global search algorithms for the purpose 
of system identification. The performance of the 
algorithms was examined in the case of uni-modal, 
multi-modal, with noise and without noise cases. 
Simulation results show that, the performance of 
ABC algorithm in terms of the evolution speed and 
final mean squared error is similar or better than  
DE and PSO algorithms although ABC is as simple 
as these two algorithms. It can be concluded that, 
ABC algorithm based approach can successfully be 
used for designing adaptive IIR filters with desired 
specifications. 
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(a) Modified ABC algorithm 

 
(b) ABC algorithm 

 
(c) DE algorithm 

 
(d ) PSO algorithm 

 
Figure 15.  Performance comparison in terms of 
SNR values. 
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