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Abstract: - Heart rate variability (HRV) is a measure of the balance between sympathetic mediators of heart rate 
that is the effect of epinephrine and norepinephrine released from sympathetic nerve fibres acting on the sino-
atrial and atrio-ventricular nodes which increase the rate of cardiac contraction and facilitate conduction at the 
atrio-ventricular node and parasympathetic mediators of heart rate that is the influence of acetylcholine released 
by the parasympathetic nerve fibres acting on the sino-atrial and atrio-ventricular nodes leading to a decrease in 
the heart rate and a slowing of conduction at the atrio-ventricular node. Sympathetic mediators appear to exert 
their influence over longer time periods and are reflected in the low frequency power(LFP) of the HRV spectrum 
(between 0.04Hz and 0.15 Hz).Vagal mediators exert their influence more quickly on the heart and principally 
affect the high frequency power (HFP) of the HRV spectrum (between 0.15Hz and 0.4 Hz). Thus at any point in 
time the LFP:HFP ratio is a proxy for the sympatho- vagal balance. Thus HRV is a valuable tool to investigate 
the sympathetic and parasympathetic function of the autonomic nervous system. Study of HRV enhance our 
understanding of physiological phenomenon, the actions of medications and disease mechanisms but large scale 
prospective studies are needed to determine the sensitivity, specificity and predictive values of heart rate 
variability regarding death or morbidity in cardiac and non-cardiac patients. This paper presents the linear and 
nonlinear to analysis the HRV. 
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1 INTRODUCTION 

Heart rate variability (HRV) is the temporal 
variation between sequences of consecutive heart 
beats. On a standard electrocardiogram (ECG), the 
maximum upwards deflection of a normal QRS 
complex is at the peak of the R-wave, and the 
duration between two adjacent R-wave peaks is 
termed as the R-R interval. The ECG signal requires 
editing before HRV analysis can be performed, a 
process requiring the removal of all non sinus-node 
originating beats. The resulting period between 
adjacent QRS complexes resulting from sinus node 
depolarizations is termed the N-N (normal-normal) 
interval. HRV is the measurement of the variability 
of the N-N intervals [1].  

One example will be used throughout the 
following sections to explain more visually, if 
possible, what the technique does and how it can be 
calculated on the tachogram. The chosen example is 
given in (Fig. 1), being an RR interval time series 
extracted from an ECG signal monitored during a 
stress test. The tachogram has a length of 2712 
seconds (45 minutes) containing 3984 heart beats.. 
As indicated in the figure, some irregular or faulty 
RR intervals were corrected this way, changing the 

shortest RR interval from 256 ms to 443 ms. In other 
words, the impossible instantaneous heart rate of 234 
bpm in such condition was corrected by the 
preprocessing algorithm to a maximal instantaneous 
heart rate of 135 bpm which was probably correct. 
The linear time and frequency domain techniques for 
HRV were standardized in a report of the Task Force 
of the European Society of Cardiology and the North 
American Society of Pacing ans Electrophysiology 
[2]. And another example is the normal case of HRV 
shown in fig. 2. 

Figure 1 The tachogram used as example [2]. 
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2 Physiology of Heart Rate Variability   

Heart rate variability, that is, the amount of 
heart rate fluctuations around the mean heart rate [4] 
is produced because of the continuous changes in the 
sympathetic parasympathetic balance that in turn 
causes the sinus rhythm to exhibit fluctuations 
around the mean heart rate. Frequent small 
adjustments in heart rate are made by cardiovascular 
control mechanisms. This results in periodic 
fluctuations in heart rate. The main periodic 
fluctuations found are respiratory sinus arrhythmia 
and baroreflex related and thermoregulation related 
heart rate variability [5]. Due to inspiratory 
inhibition of the vagal tone, the heart rate shows 
fluctuations with a frequency equal to the respiratory 
rate [6]. The inspiratory inhibition is evoked 
primarily by central irradiation of impulses from the 
medullary respiratory to the cardiovascular center. 
In addition peripheral reflexes due to hemodynamic 
changes and thoracic stretch receptors contribute to 
respiratory sinus arrhythmia. This is 
parasympathetically mediated [7]. Therefore HRV is 
a measure of the balance between sympathetic 
mediators of the heart rate (HR) i.e. the effect of 
epinephrine and norepinephrine released from 
sympathetic nerve fibres, acting on the sino-atrial 
and atrioventricular nodes, which increase the rate of 
cardiac contraction and facilitate conduction at the 
atrioventricular node and parasympathetic mediators 
of HR i.e. the influence of acetylcholine released by 
the parasympathetic nerve fibres, acting on the sino-
atrial and atrioventricular nodes, leading to a 
decrease in the HR and a slowing of conduction at 
the atrioventricular node. Sympathetic mediators 
appears to exert their influence over longer time 
periods and are reflected in the low frequency power 
(LFP) of the HRV spectrum [8]. Vagal mediators 
exert their influence more quickly on the heart and 

principally affect the high frequency power (HFP) 
of the HRV spectrum. Thus at any point in time, 
the LFP:HFP ratio is a proxy for the sympatho-
vagal balance. 

3 Nonlinear techniques 

The cardiac system is dynamic, nonlinear, 
and nonstationary, with performance continually 
fluctuating on a beat-to-beat basis as extrinsic and 
intrinsic simultaneously influence the state of the 
system [9, 10]. Due to the assumptions and 
conditioning requirements, linear analyses may 
not account for all aspects of cardiac performance, 
particularly the subtle interactions between the 

control mechanisms that regulate cardiac function 
[11]. Analysis techniques arising from nonlinear 
system dynamics theory were therefore developed to 
ascertain the multidimensional processes that 
control the cardiac system [12]. 

A nonlinear system is mathematically 
defined as a second- or higher-order power system, 
meaning that the independent variable in the 
mathematical equation contains an exponent. For 
example, the equation for a parabola, y = x2, 
describes a simple nonlinear system. Whereas in a 
linear system the variables produce an output 
response, in a nonlinear system the variables 
contribute to the output response. Although a linear 
system can be decomposed into its component parts, 
in a nonlinear system, the parts interfere, cooperate, 
or compete with each other. A small change 
dramatically alters the nonlinear system because the 
initial condition of all variables along with the input 
stimulus influences the output response. Nonlinear 
system dynamics theory allows for the mathematical 
reconstruction of an entire system from one known 
variable since the reconstructed dynamics are 
geometrically similar to the original dynamics [13]. 
Chaos theory, which was popularized by Gleicks 
best-selling book [14], is a specialized sub theory of 
nonlinear system dynamics that describes systems 
that are low dimensional (3 to 5 variables), have 
defined boundaries, and exhibit sensitive 
dependence on initial conditions. This theory alerted 
scientists to the value of mathematical error and 
physiological noise when describing a systems 
behavior [15]. Small differences in initial conditions 
(such as those due to rounding errors in numerical 
computation) yield widely diverging outcomes for 
chaotic systems, rendering long term prediction 
impossible in general. This happens even though 
these systems are deterministic, meaning that their 

 
Figure 2 Heart rate variation of a normal subject [3]. 
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future behavior is fully determined by their initial 
conditions, with no random elements involved. In 
other words, the deterministic nature of these 
systems does not make them predictable. This 
behavior is known as deterministic chaos, or simply 
chaos. Also, with sinus rhythm, deterministic 
behavior is exhibited during a cardiac cycle and 
stochastic behavior between cardiac cycles [15]. 
Consequently, analysis techniques based on the 
broader nonlinear system dynamics theory have 
been used to explain and account for the nonlinearity 
of the high-dimensional cardiac system. Numerous 
nonlinear analysis techniques exist. 

Several commonly used nonlinear 
techniques will be explained now. Some recent 
review papers discussing nonlinear HRV are 
Acharya et al [16] and Voss et al [17]. 

3.1 𝟏
𝒇
 slope 

Kobayashi and Musha [18] first reported the 
frequency dependence of the power spectrum of RR 
interval fluctuations. The plots had an uneven 
density that might overweight for data in the higher-
frequency range. Therefore, a logarithmic 
interpolation is used, resulting in a balanced number 
of points for linear interpolation. The slope of the 
regression line of the log(power) versus 
log(frequency) relation (1/f), usually calculated in 
the 10-4 – 10-2 Hz frequency range, corresponds to the 
negative scaling exponent ß and provides an index 
for long-term scaling characteristics [19]. Fig. 3 
indicates the (1/f)ß relation between PSD and 
frequency, reflected on a    log – log  scale 
approximately as a line. The figure is the result for 
the example used throughout this chapter, leading to 

a 1/f slope of -1.34. 

This broadband spectrum, characterizing 
mainly slow HR fluctuations indicates a fractal-like 
process with a long-term dependence [20]. Saul et al 
[19] found that ß is similar to -1 in healthy young 
men. This linearity of the regression line and the 
slope of -1 in healthy persons mean that the plots of 
RR-interval versus time over 2 minutes (10-2 Hz), 20 
minutes (10-3 Hz) and 3 hours (10-4 Hz) may appear 
similar. This is called scale-invariance or self-
similarity in fractal theory. It has been suggested that 
the scale invariance may be a common feature of 
normal physiological function. The breakdown of 
normal physiological functioning could lead to either 
random or periodic behavior, indicated by steeper 1/f 
slopes, which could lead to a more vulnerable state 

of homeostasis. Bigger et al [21] reported an altered 
regression line    (ß ≈ - 1.15) in patients after MI. A 
disadvantage of this measure is the need for large 
datasets. Moreover, stationarity is not guaranteed in 
long datasets and artefacts and patient movement 
influence spectral components. 

3.2 Fractal dimension 

The term ’fractal’ was first introduced by 
Mandelbrot [22]. A fractal is a set of points that 
when looked at smaller scales, resembles the whole 
set. An essential characteristic of a fractal is self-
similarity. This means that its details at a certain 
scale are similar, but not necessarily identical, to 
those of the structure seen at larger or smaller scales. 
A simple mathematical example illustrating the self-
similarity property is the Koch curve (Fig. 4).  

The concept of fractal dimension (FD) that 
refers to a non-integer or fractional dimension 
originates from fractal geometry. The FD emerges to 
provide a measure of how much space an object 
occupies between Euclidean dimensions. The FD of 
a waveform represents a powerful tool for transient 
detection. This feature has been used in the analysis 
of ECG and EEG to identify and distinguish specific 
states of physiological function. Several algorithms 
are available to determine the FD of the waveform, 
amongst others the algorithms proposed by Higuchi 
and Katz. From a practical point of view, one often 
estimates the FD via the box-counting method. The 
higher the FD, the more irregular the signal. 

 
Figure 3 Log(power) versus log(frequency) plot of the 

tachogram example given in (Fig. 1). The thick line indicates 

the 1/f slope or scaling exponent ß and is derived as the 

regression line calculated in the 10-4 – 10-2 Hz frequency 

range. 
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3.2.1 Algorithm of Katz 

According to the method of Katz [23] the FD 
of a curve can be defined as 

𝐷𝐾𝑎𝑡𝑧 =
log⁡(𝐿)

log⁡(𝑑)
      (1) 

where L is the total length of the curve or sum of 
distances between successive points, and d is the 
diameter estimated as the distance between the first 
point of the sequence and the most distal point of the 
sequence. Mathematically, d can be expressed as: 

𝑑 = max(‖𝑥(1) − 𝑥(𝑖)‖)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑖                (2) 

Considering the distance between each point of the 
sequence and the first, point i is the one that 
maximizes the distance with respect to the first point. 
The FD compares the actual number of units that 
compose a curve with the minimum number of units 
required to reproduce a pattern of the same spatial 
extent. FDs computed in this fashion depend upon 
the measurement units used. If the units are different, 
then so are the FDs. Katz approach solves this 
problem by creating a general unit or yardstick: the 
average step or average distance between successive 
points, a. Normalizing the distances, Dkatz is then 
given by 

𝐹𝐷 =
log(

𝐿

𝑎
)

log(
𝑑

𝑎
)
        (3) 

3.2.2 Box-counting method 

What is the relationship between an objects 
length (or area or volume) and its diameter? The 
answer to this question leads to another way to think 
about dimension. Let us consider a few examples 
(Fig. 5). If one tries to cover the unit square with 
little squares of side length ϵ, one will need 1/ϵ2 
boxes. To cover a segment of length 1, you only need 
1/ ϵ little squares. If the little cubes are used to cover 
a 1x1x1 cube,  1/ ϵ3 is needed. Note that the exponent 
here is the same as the dimension. This is no 
coincidence, but the general rule is: 

𝑁ϵ(𝑆)⁡~
1

ϵ𝑑
⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑎𝑠⁡ϵ → 0     (4) 

where o is the length of a box or square, S the full 
dataset and N o (S) the minimum number of n-
dimensional boxes needed to cover S fully. d is the 
dimension of S. This way, the FD can be estimated 
via a box-counting algorithm as proposed by 
Barabasi and Stanley [24] as follows: 

𝐹𝐷 =⁡ lim
∈→0

ln𝑁∈(𝑆)

ln∈
       (5) 

One also refers to the fractal dimension as 
the box-counting dimension or shortly box 
dimension. Given the standard RR interval time 
series as example (Fig. 1), the relation between the 
number of boxes and the box size is shown in          
(Fig. 6), resulting in a FD equal to 1.6443. 

 

  

Figure 4 An illustration of how fractals look like with the 

feature of scale independence and self-similarity: (a) the 

Koch curve and (b and c) details of the top of the curve. 

 

  

     Figure 5 Principle of box-counting algorithm [25]. 

WSEAS TRANSACTIONS on SIGNAL PROCESSING Mazhar B. Tayel, Eslam I AlSaba

E-ISSN: 2224-3488 52 Volume 13, 2017



  

 
 

 

3.3 Detrended fluctuation analysis 

Detrended fluctuation analysis (DFA) is 
used to quantify the fractal scaling properties of 
short interval signals. This technique is a 
modification of root-mean square analysis of 
random walks applied to nonstationary signals [26]. 
The root mean square fluctuation of an integrated 
and detrended time series is measured at different 
observation windows and plotted against the size of 
the observation window on a        log - log scale. 
First, the RR interval time series x (of total length N) 
is integrated as follows: 

𝑦(𝑘) = ⁡∑ |𝑥(𝑖) −⁡𝑥𝑎𝑣𝑒𝑟𝑎𝑔𝑒|
𝑘
𝑖=1 ⁡     (6) 

where y(k) is the kth value of the integrated series, 
x(i) is the ith RR interval and x average is the mean 
of the RR intervals over the entire series. Then, the 
integrated time series is divided into windows of 
equal length n. In each window of length n, a least-

squares line is fitted to the data, representing the 
trend in that window as shown in (Fig. 7 (a)). The y-
coordinate of the straight line segments are denoted 
by yn (k). Next, the integrated time series is 
detrended, yn (k), in each window. The root mean 
square fluctuation of this integrated and detrended 
series is calculated using the equation: 

𝐹(𝑛) = √
1

𝑁
∑ [𝑦(𝑘) − 𝑦𝑛(𝑘)]

2𝑁
𝑘=1     (7) 

This computation is repeated over all time 
scales (window sizes) to obtain the relationship 
between F(n) and the window size n (the number of 
points, here RR intervals, in the window of 
observation). Typically, F(n) will increase with 
window size. The scaling exponent DFA a indicates 
the slope of this line, which relates log(fluctuation) 
to log(window size) as visualized in (Fig. 7 (b)). 
This method, based on a modified random walk 
analysis, was introduced and applied to 
physiological time series by Peng et al [27]. It 
quantifies the presence or absence of fractal 
correlation properties in nonstationary time series 
data. DFA usually involves the estimation of a short-
term fractal scaling exponent 𝛼1over the range of 4 
≤ n ≤ 16 heart beats and a long-term scaling exponent 
𝛼2 over the range of 16 ≤ n ≤ 64 heart beats. Figure 
7 (b) shows the DFA plot for the HR example, where 
DFA 𝛼1 is 1.0461 and DFA 𝛼2 is 0.8418. 

Healthy subjects revealed a scaling 
exponent of approximately 1, indicating fractal like 
behavior. Patients with cardiovascular disease 
showed reduced scaling exponents, suggesting a loss 
of fractal-like HR dynamics (𝛼1 < 0.85 [28];  𝛼1 < 
0.75 [26]). From many studies on test signals, one 
had the following a ranges: 

• 0 < α < 0.5: power-law anti-correlations are present 
such that large values are more likely to be followed 
by small values and vice versa. 

• α = 0.5: indicates white noise. 

• 0.5 < α < 1: power-law correlations are present such 
that large values are more likely to be followed by 
large values and vice versa. The correlation is 
exponential. 

• α = 1: special case corresponding to 1/f noise. 

• α > 1: correlations exist, but cease to be of a power-
law form. 

  

Figure 6  Illustration of the box-counting method applied 

on the tachogram example given in (Fig. 1). First a 2D 

plane is built based on the dataset S, here consisting of both 

the RR intervals and corresponding time points. The 

number of boxes in that plane containing points of the 

dataset is counted and given by Nϵ (S). This depends on the 

size of the boxes, namely ϵ. This relation is represented in 

a ln – ln scale by the rhombuses. The line is the best fit 

through these points and the slope of the line reflects the 

fractal dimension. 
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• α = 1.5: indicates Brownian noise. 

The a exponent can also be viewed as an 
indicator of the ’roughness’ of the original time 
series: the larger the value of a, the smoother the time 
series. In this context, 1/f noise can be interpreted as 
a compromise or ’tradeoff’ between the complete 
unpredictability of white noise (very rough 
’landscape’) and the much smoother landscape of 
Brownian noise.  

It is important to note that DFA can only be 
applied reliably on time series of at least 2000 data 
points. DFA as such is a mono-fractal method, but 
also multi-fractal analysis exists [29]. This 
multifractal analysis describes signals that are more 
complex than those fully characterized by a mono-
fractal model, but it requires many local and 
theoretically infinite exponents to fully characterize 
their scaling properties. 

 

 

3.4 Approximate entropy and sample entropy 

Entropy refers to system randomness, 
regularity, and predictability and allows systems to 
be quantified by rate of information loss or 
generation. Approximate Entropy (ApEn) quantifies 
the entropy of the system. More specifically, it 
measures the likelihood that runs of patterns that are 
close will remain close for subsequent incremental 
comparisons. An intuitive presentation is shown in 
(Fig. 8). It was calculated according to the formula 
of Pincus [30]: 

𝐴𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) =
1

𝑁−𝑚+1
∑ log𝐶𝑖

𝑚(𝑟)⁡−𝑁−𝑚+1
𝑖=1

⁡
1

𝑁−𝑚
∑ log𝐶𝑖

𝑚(𝑟)𝑁−𝑚
𝑖=1                (8) 

where 

𝐶𝑖
𝑚(𝑟) =

1

𝑁−𝑚+1
∑ 𝜃(𝑟 − ‖𝑥𝑖 − 𝑥𝑗‖)
𝑁−𝑚+1
𝑗=1     

               (9) 

is the correlation integral with θ the Heavy side step 
function. xi and xj are respectively the ith and jth RR 
interval from the tachogram of length N. The values 
of the input variables are chosen fixed, namely m = 
2 and r = 0.2 as suggested by Goldberger et al [31] 
(m being the length of compared runs and r the 
tolerance level). High values of ApEn indicate high 
irregularity and complexity in time-series data. 

Sample Entropy (SampEn) was developed 
by Richman and Moorman [32] and is very similar 
to the ApEn, but there is a small computational 
difference. In ApEn, the comparison between the 
template vector and the rest of the vectors also 
includes comparison with itself. This guarantees that 
probabilities 𝐶𝑖𝑚(𝑟) are never zero. Consequently, it 
is always possible to take a logarithm of 
probabilities. Because template comparisons with 
itself lower ApEn values, the signals are interpreted 
to be more regular than they actually are. These self 
matches are not included in SampEn leading to 
probabilities 𝐶𝑖′𝑚(𝑟): 

𝐶𝑖
′𝑚(𝑟) =

1

𝑁−𝑚+1
∑ 𝜃(𝑟 − ‖𝑥𝑖 − 𝑥𝑗‖)
𝑁−𝑚+1
𝑗=1 ⁡⁡⁡⁡⁡𝑗 ≠ 𝑖 (10) 

Finally, sample entropy is defined as: 

𝑆𝑎𝑚𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) = − ln[
𝜑′𝑚(𝑟)

𝜑′𝑚+1(𝑟)
]                (11) 

 

 

Figure 7 The principle of detrended fluctuation 

analysis (DFA). 
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SampEn measures the complexity of the 
signal in the same manner as ApEn. However, the 
dependence on the parameters N (number of points) 
and r is different. SampEn decreases monotonically 
when r increases. In theory, SampEn does not 
depend on N where ApEn does. In analyzing time 
series including <200 data points, however, the 
confidence interval of the results is unacceptably 
large. For entropy measures, stationarity is required. 
In addition, outliers such as missed beats and 
artefacts may affect the entropy values. The sample 
entropy of the tachogram example given in (Fig. 1) 
is 4.4837. 

 

 

3.5 Correlation dimension 

To describe the complexity of a system, 
often a transition is needed from the time domain to 
the so called phase space. In mathematics and 
physics, a phase space is a space in which all 
possible states of a system are represented, with each 
possible state of the system corresponding to one 
unique point in the phase space. In a phase space, 
every degree of freedom or parameter of the system 
is represented as an axis of a multidimensional 
space. For every possible state of the system, or 
allowed combination of values of the system’s 
parameters, a point is plotted in the 
multidimensional space. Often this succession of 
plotted points is analogous to the system’s state 
evolving over time. In the end, the phase space 
represents all that the system can be, and its shape 
can easily elucidate qualities of the system that 
might not be obvious otherwise. A phase space may 
contain many dimensions. The correlation 
dimension (CD) can be considered as a measure for 
the number of independent variables needed to 
define the total system, here the cardiovascular 
system generating the RR interval time series, in 
phase space [34]. 

Before explaining how CD is calculated 
from a tachogram, the terms attractor, trajectory and 
attractor reconstruction has to be clarified. An 
attractor is a set towards which a dynamical system 
evolves over time. That is, points that get close 
enough to the attractor remain close even if slightly 
disturbed. Geometrically, an attractor can be a point, 
a curve, a surface (called a manifold), or even a 
complicated set with a fractal structure known as a 
strange attractor. Describing the attractors of chaotic 
dynamical systems has been one of the achievements 
of chaos theory. A trajectory of the dynamical 
system in the attractor does not have to satisfy any 
special constraints except for remaining on the 
attractor. The trajectory may be periodic or chaotic 
or of any other type. For experimental and naturally 
occurring chaotic dynamical systems as the 
cardiovascular system is, the phase space and a 
mathematical description of the system are often 
unknown. Attractor reconstruction methods have 
been developed as a means to reconstruct the phase 
space and develop new predictive models. One or 
more signals from the system, here the RR interval 
time series reflecting heart rate, must be observed as 
a function of time. The time series are then used to 
build an approach of the observed states. 

 

Figure 8. Intuitive presentation of the principle of 

Approximate Entropy (ApEn) and Sample Entropy 

(SampEn). For a two dimensional vector AB, the tolerance 

level r can be represented by horizontal red and violet lines 

around point A and B respectively, with width of 2r · SD. 

Then all vectors, say CD, whose first and second points 

(respectively C and D) are within the tolerance ranges of A 

and B (±r · SD), are counted to measure within a tolerance 

level r the regularity, or frequency, of patterns similarly to 

a given pattern of AB. In the figure, five CD vectors are 

close to vector AB. When increasing vector dimension from 

2 to 3 (ABE), two vectors, namely CDF, remain close while 

the other three vectors, CDG, show emerging patterns. 

Thus the likelihood of remaining close is about 2/5. It is 

clear that such likelihood tends to 1 for regular series, and 

produces ApEn = 0 when taking the logarithm, while it 

tends to 0 for white noise and results in infinite ApEn 

theoretically. From [33]. 
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Correlation dimension analysis of HRV 
signals is based on the method of Grassberger and 
Procaccia [35]. As always, we start with a tachogram 
or RR interval time series x(t) of data points xi = x(ti) 
and i = 1 . . . N (the number of heart beats in the 
signal) (Fig. 1). Next, an attractor reconstruction 
takes place. The reconstructed trajectory, X, can be 
expressed as a matrix where each row is a phase 
space vector,      X = (x1 x2 . . . xM )T . For a time 
series of length N, {x1 , x2 , . . . , xN }, each xi is given 
by xi = (xi , xi+τ , xi+2τ , . . . , xi+(m-1)τ ).  

The parameters m and τ are respectively 
called the embedding dimension and the time delay. 
The time delay for the CD is the value of the first 
zero crossing of the normalized (mean = 0 and 
standard deviation = 1) autocorrelation function of 
the time series and the time axis. The embedding 
dimension is usually varied increasingly between the 
values 2 and 30. The distances between the 
reconstructed trajectories xi and xj (i, j = 1 . . . N and 
i < j) are calculated and the total range of these 
distances is divided into discrete intervals, presented 
by r. Based on these distances, the correlation 
integral 𝐶𝑚(𝑟), as already defined in equation (9), is 
calculated as a function of r and this for successive 
values of m. As for a chaotic signal the relation 
𝐶𝑚(𝑟)⁡~⁡𝑟𝐶𝐷 holds, CD can derived by plotting 
𝐶𝑚(𝑟) versus r in a ln – ln scale. This is visualized 
in (Fig. 9 (a)) for different values of the embedding 
dimension m. Next, calculating the slope of such a 
curve results theoretically in the CD, but as can be 
seen in the figure, this slope depends on the choice 
of m. In fact, the slope becomes steeper as m 
increases but will saturate at a certain level of the 
embedding dimension. Therefore, the slope can be 
plotted as a function of this embedding dimension m 
which makes it possible to see from which m on the 
slope is saturated. As shown in (Fig. 9 (b)), the point 
on the y and x axis where this curve (slope versus m) 
saturates is called respectively the  correlation 
dimension CD and the embedding dimension of the 
time series.  

Although the algorithm of Grassberger and 
Procaccia [35] is often used, it has several limitations 
such as the sensitivity to the length of the data, the 
unclear range of embedding dimensions to consider 
and the lack of having a confidence interval. To 
solve these problems, Judd [36] developed another 
algorithm to estimate the CD in a more robust way, 
which was used in this thesis. The CD for the (fig. 2) 
is 3.61 and for the tachogram example given in (Fig. 
1) is 3.7025. 

When a finite value is found for the CD of a 
time series, correlations are present in the signal. To 
conclude whether these correlations are linear or 
nonlinear, a surrogate time series needs to be 
calculated. A significant difference between the CD 
of the surrogate and the original time series indicates 
that there are nonlinear correlations present in the 
signal. The significance level is calculated as:                        
𝑆 = [𝐶𝐷𝑠𝑢𝑟𝑟 − 𝐶𝐷𝑑𝑎𝑡𝑎]⁡/⁡𝑆𝐷𝑠𝑢𝑟𝑟. A value of S > 2 
indicates that the measure reflects nonlinear 
correlations within the time series. In case of S > 2 
the signal can be chaotic, but this is not absolutely 
sure unless other nonlinear parameters like e.g. 
Lyapunov exponents are available and positive 
values found. With S < 2 no significant difference is 
found between the two time series, the signal is not 
chaotic. 

 

 

Figure 9. Example of how to calculate the correlation 

dimension (CD). (a) Correlation integral 𝑪𝒎(𝒓) as function of 

the tolerance level r for different choices of the embedding 

dimension m. As 𝑪𝒎(𝒓)⁡~⁡𝒓𝑪𝑫, the slope of such curve in a ln 

– ln scale results theoretically in the correlation dimension CD, 

but depends on m. (b) Plot of the slopes of ln 𝑪𝒎(𝒓)/ 𝐥𝐧(𝒓) as 

function of m. 
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3.6 Lyapunov exponent 

Lyapunov exponent (Λ) is a quantitative 
measure of the sensitive dependence (SED) on the 
initial conditions. It defines the average rate of 
divergence of two neighboring trajectories. An 
exponential divergence of initially nearby 
trajectories in phase space coupled with folding of 
trajectories, ensure that the solutions will remain 
finite, is the general mechanism for generating 
deterministic randomness and unpredictability. 
Therefore, the existence of a positive Λ for almost 
all initial conditions in a bounded dynamical system 
is widely used. To discriminate between chaotic 
dynamics and periodic signals Lyapunov exponent 
(Λ) are often used. It is a measure of the rate at which 
the trajectories separate one from other. The 
trajectories of chaotic signals in phase space follow 
typical patterns. Closely spaced trajectories 
converge and diverge exponentially, relative to each 
other. For dynamical systems, sensitivity to initial 
conditions is quantified by the Lyapunov exponent 
(Λ). They characterize the average rate of 
divergence of these neighboring trajectories. A 
negative exponent implies that the orbits approach a 
common fixed point. A zero exponent means the 
orbits maintain their relative positions; they are on a 
stable attractor. Finally, a positive exponent implies 
the orbits are on a chaotic attractor [37].  

3.6.1 Wolf’s Algorithm 

Wolf’s algorithm is straightforward and 
uses the formulas defining the system. It calculates 
two trajectories in the system, each initially 
separated by a very small interval R0 . The first 
trajectory is taken as a reference, or ’fiducial’ 
trajectory, while the second is considered 
’perturbed’. Both are iterated together until their 
separation abs(R1 - R0) is large enough, at which 
point an estimate of the Largest Lyapunov Exponent 
LLE can be calculated as Λ𝐿 =

1

Δ𝑡
log2 𝑎𝑏𝑠⁡(

𝑅1

𝑅0
). The 

perturbed trajectory is then moved back to a 
separation of sign(R1) R0 towards the fiducial, and 
the process repeated. Over time, a running average 
of ΛL will converge towards the actual LLE [38]. 
The normal HR signal shown in (Fig. 2) has LLE 
equal 0.505Hz. 

3.6.2 Rosenstein algorithm 

The first step of this approach involves 
reconstructing the attractor dynamics from the RR 
interval time series. The method of delays is used 

which is already described in detail when explaining 
the correlation dimension. After reconstructing the 
dynamics, the algorithm locates the nearest neighbor 
of each point on the trajectory. The nearest neighbor, 
x'j , is found by searching for the point that 
minimizes the distance to the particular reference 
point, xj . This is expressed as: 

𝑑𝑗(0) = min⁡||𝑥𝑗 − 𝑥𝑗/||⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑥𝑗/            (12) 

where 𝑑𝑗(0) is the initial distance from the 𝑗𝑡ℎ point 
to its nearest neighbor and || ... || denotes the 
Euclidean norm. An additional constraint is 
imposed, namely that nearest neighbors have a 
temporal separation greater than the mean period of 
the RR interval time series. Therefore, one can 
consider each pair of neighbors as the nearby SD 
initial conditions for different trajectories. The LLE 
is then estimated as the mean rate of the SD 
separation of the nearest neighbors. More concrete, 
it is assumed that the 𝑗𝑡ℎ pair of nearest neighbors 
diverge approximately at a rate given by the LLE ΛL: 

𝑑𝑗(𝑗) ≈ 𝑑𝑗(0)𝑒
Λ(𝑖.∆𝑡)               (13) 

By taking the ln of both sides of this equation: 

ln 𝑑𝑗(𝑗) ≈ ln𝑑𝑗(0) +Λ𝐿(𝑖. ∆𝑡)              (14) 

which represents a set of approximately parallel lines 
(for j = 1, 2, . . . ,J), each with a slope roughly 
proportional to the ΛL. 

The natural logarithm of the divergence of 
the nearest neighbor to the jth point in the phase space 
is presented as a function of time. The LLE is then 
calculated as the slope of the least squares fit to the 
’average’ line defined by: 

Λ𝐿(𝑡) =
1

∆𝑡
〈ln 𝑑𝑗(𝑡)〉              (15) 

where〈ln 𝑑𝑗(𝑡)〉 represents the mean logarithmic 
divergence over all values of j for all pairs of nearest 
neighbors over time. This process of averaging is the 
key to calculating accurate values for the LLE using 
smaller and noisy data sets compared to other 
algorithms [39]. The LLE computed using the 
Rosenstein algorithm is 0.7586 Hz for the HR signal 
shown in (Fig. 2). 
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3.6.3. The Mazhar-Eslam Algorithm 

The Mazhar-Eslam [3, 40] algorithm uses 
Discrete Wavelet Transform (DWT) considering the 
merits of DWT over that of FFT. Although the FFT 
has been studied extensively, there are still some 
desired properties that are not provided by FFT. 
There are some points are lead to choose DWT 
instead of FFT. The first point is hardness of FFT 
algorithm pruning. When the number of input points 
or output points are small comparing to the length of 
the DWT, a special technique called pruning is often 
used [41]. However, it is often required that those 
non-zero input data are grouped together. FFT 
pruning algorithms does not work well when the few 
non-zero inputs are randomly located. In other 
words, sparse signal does not give rise to faster 
algorithm. 

The other disadvantages of FFT are its speed 
and accuracy. All parts of FFT structure are one unit 
and they are in an equal importance. Thus, it is hard 
to decide which part of the FFT structure to omit 
when error occurring and the speed is crucial. In 
other words, the FFT is a single speed and single 
accuracy algorithm, which is not suitable for SED 
cases. 

The other reason for not selecting FFT is 
that there is no built-in noise reduction capacity. 
Therefore, it is not useful to be used. According to 
the previous ,the DWT is better than FFT especially 
in the SED calculations used in HRV, because each 
small variant in HRV indicates the important data 
and information. Thus, all variants in HRV should 
be calculated. 

The Mazhar-Eslam algorithm depends to 
some extend on Rosenstein algorithm’s strategies to 
estimate lag and mean period, and uses the Wolf 
algorithm for calculating the MVF (Ω𝑀) except the 
first two steps, whereas the final steps are taken from 
Rosenstein’s method. Since the MVF (Ω𝑀) measures 
the degree of the SED separation between 
infinitesimally close trajectories in phase space, as 
discussed before, the MVF (Ω𝑀) allows determining 
additional invariants. Consequently, the Mazhar-
Eslam algorithm allows to calculate a mean value for 
the MVF (Ω𝑀), that is given by 

Ω𝑀
̅̅ ̅̅ = ∑

Ω𝑀𝑖

𝑗

𝑗
𝑖=1                 (16) 

Note that the Ω𝑀𝑖s contain the largest Ω𝑀𝐿 
and variants Ω𝑀s that indicate to the helpful and 
important data. Therefore, the Mazhar-Eslam 
algorithm is a more SED prediction quantitative 
measure. Therefore, it is robust quantitative 
predictor for real time, in addition to its sensitivity 
for all time whatever the period.  

Apply the Mazhar-Eslam algorithm to the 
HRV of the normal case given in        (Fig. 2), it is 
found that the mean MVF ( Ω𝑀

̅̅ ̅̅  ) as 0.4986 Hz, 
which is more accurate than Wolf (0.505 Hz) and 
Rosenstein (0.7586 Hz). Figure 10. shows the 
flowchart for calculating the Mazhar-Eslam MVF 
algorithm.  

Figure 10. shows the flowchart steps for 
calculating the Mazhar-Eslam MVFM algorithm. 
First Start to select an initial condition. An 
embedded point in the attractor was randomly 
selected, which was a delay vector with dE elements. 
A delay vector generates the reference trajectory 
(nearest neighbor vector). Then another trajectory is 
selected by searching for the point that minimizes 
the distance to the particular reference point. After 
that the divergence between the two vectors is 
computed. A new neighbour vector was considered 
as the evolution time was higher than three sample 
intervals. The new vector was selected to minimize 
the length and angular separation with the evolved 
vector on the reference trajectory. The steps are 
repeated until the reference trajectory has gone over 
the entire data sample. The divergence and Ω𝐿𝑖𝑠  are 
calculated. Consequently, the Ω𝑀 is calculated by 
using equation (16). 
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Figure 10 The flowchart of the Mazhar-Eslam 

algorithm. 

Table (1) shows the different results of the 
normal case among Mazhar-Eslam, Wolf, and 
Rosenstein algorithms. From this table it is seen that, 
the Rosenstein algorithm has the lowest SED 
because of its quite high error (D = 51.72 % ) 
comparing to the optimum, while the Wolf algorithm 
takes a computational place for SED (D = 1 % ). 
However, the Mazhar-Eslam algorithm shows more 

sensitivity (D = 0.28 %) than Wolf algorithm as 
shown in (Fig. 11).  The patient case deviation D for 
normal HRV case is calculated as: 

𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛⁡(𝐷) = |Ω𝑀𝑛𝑜𝑟𝑚𝑎𝑙 − Ω𝑀𝑐𝑎𝑠𝑒|          (17) 

the cases percentage deviation is to be calculated 
as: 

𝐷% =
𝐷

𝑛𝑜𝑟𝑚𝑎𝑙⁡
× 100%              (18) 

and, the variance for algorithms should be 
calculated as  

𝑣𝑎𝑟 = (Ω𝑀𝑛𝑜𝑟𝑚𝑎𝑙 − 𝐷)2                         (19) 

The bar diagram in (Fig. 12) shows the 
percentage deviation of the three algorithms. From 
this figure it is seen that the Mazhar-Eslam algorithm 
gives the best result as it has the lowest percentage 
deviation (D = 14). At the same time, when 
calculating the variance to determine the accurate 
and best method, Mazhar-Eslam algorithm gives the 
best value. Figure 13. shows the bar diagram of the 
variance for normal control case using the HRV for 
Wolf, and Mazhar-Eslam algorithms. It is clear that 
the Mazhar-Eslam algorithm is more powerful and 
accurate than Wolf, because its variance better than 
Wolf by 0.0036. This result comes because the 
Mazhar-Eslam considers all the variability mean 
frequencies Ω𝑀

̅̅ ̅̅ s unlike the Wolf method as it takes 
only the largest. Each interval of the HRV needs to 
be well monitored and taken into account because 
the variant in HRV is indication of cases. 

Table 1 The results of the three algorithms for the 

normal case shown in (Fig. 2) 

   Method                            

parameter 

 Optimum Rosenstein  Wolf  Mazhar-
Eslam  

ΩM 0.500000 0.758600 0.505000 0.498600 
D 0.00000 0.258600 0.005000 0.001400 

D% 0.000000 51.720000 1.000000 0.280000 
Var 0.250000 0.058274 0.245025 0.248602 

From the bar diagram in (Fig. 13) it is seen 
that the Mazahar-Eslam algorithm is most useful and 
sensitive comparing to Wolf and Rosenstein 
algorithms. 
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3.7 Hurst exponent (H) 

 The Hurst exponent is a measure that has 
been widely used to evaluate the self-similarity 
and correlation properties of fractional Brownian 
noise, the time series produced by a fractional 
(fractal) Gaussian process. Hurst exponent is used 
to evaluate the presence or absence of long-range 
dependence and its degree in a time series. 
However, local trends (nonstationarities) is often 
present in physiological data and may compromise 
the ability of some methods to measure self-
similarity. Hurst exponent is the measure of the 
smoothness of a fractal time series based on the 
asymptotic behavior of the rescaled range of the 
process. The Hurst exponent H is defined as: 

𝐻 = log (
𝑅

𝑆
) / log(𝑇)               (20) 

where T is the duration of the sample of data and 
R/S the corresponding value of rescaled range. The 
above expression is obtained from the Hurst’s 
generalized equation of time series that is also 
valid for Brownian motion. If H = 0.5, the behavior 
of the time series is similar to a random walk. If H 
< 0.5, the time-series cover less ‘‘distance’’ than a 
random walk. But if H > 0.5, the time-series covers 
more ‘‘distance’’ than a random walk. H is related 
to the dimension CD given by: 

𝐻 = 𝐸 + 1 − 𝐶𝐷                  (21) 

where E is the Euclidean dimension. 

For normal subjects, the FD is high due to 
the variation being chaotic. And for Complete 
Heart Block (CHB) and Ischemic / dilated 
cardiomyopathy, this FD decreases because the RR 
variation is low. And for AF and SSS, this FD 
value falls further, because the RR variation 
becomes erratic or periodic respectively [42]. The 
H is 0.611 for the HR signal shown in (Fig. 2). 

3.8 Recurrence plots 

In time-series analysis, the dynamic 
properties of the data under consideration are 
relevant and valid only, if the data is stationary. 
Recurrence plots (RP) are used to reveal non 
stationarity of the series. These plots were first 

proposed by Eckmann et al. [43] as graphical tool for 

 

Figure 11 The three algorithms deviation for the normal 

case in (Fig.2). 

 

 

Figure 12 The three algorithms Percentage deviation (D%) 

for  the normal case (Fig. 2). 
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Figure 13 The Variance of Wolf and Mazhar-Eslam 

algorithm for normal case (Fig.2). 
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the diagnosis of drift and hidden periodicities in the 
time evolution, which are unnoticeable otherwise. A 
brief description on the construction of recurrence 
plots is described below.  

Let xi be the ith point on the orbit in an m-
dimensional space. The recurrence plot is an array of 
dots in an 𝑁 × 𝑁 square, where a dot is placed at 
(i,j)whenever xj is sufficiently close to xi . To obtain 
the recurrence plot, m dimensional orbit of xi is 
constructed. A radius r such that the ball of radius r 
centered at xi in ℜ𝑚contains a reasonable number of 
other points xj of the orbit. Finally, a dot is plotted 
for each point (i,j) for which xj is in the ball of radius 
r centered at xi. The plot thus obtained is the 
recurrence plot. The plots will be symmetric along 
the diagonal i = j, because if xi is close to xj, then xj 
is close to xi . The recurrence plot of normal HR 
(shown in Fig. 2) is given in (Fig. 14). For normal 
cases, the RP has diagonal line and less squares 
indicating more variation indicating high variation in 
the HR. Abnormalities like CHB and in Ischemic / 
dilated cardiomyopathy cases, show more squares in 
the plot indicating the inherent periodicity and the 
lower HR variation [44]. 

 

 

4 Conclusion 

This review introduces the mathematics and 
techniques, necessary for a good understanding of 
the methodology used in HRV analysis. After the 
peak detection algorithm and the preprocessing 
methods, the linear methods in time domain, 
frequency domain and the time-frequency 
representations were represented. Also an overview 
of some nonlinear techniques assessing scaling 
behavior, complexity and chaotic behavior were 
given.  
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