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Abstract: - In this paper, we extend our previous work in investigating the performance of XZ-shape histogram 
for recognizing human performing activities of daily living (ADLs) which focuses on human-object interaction 
activities based on Kinect-like depth image. The feasibility of XZ-shape histogram as well as general 3D shape 
descriptors namely; 1) shape distribution, 2) shape histogram, 3) global spin image and 4) local spin image, in 
recognizing human-object interaction was tested using RGBD-HOI dataset. Moreover, the proposed evaluation 
framework was formulated to infer the descriptors’ performance. It was found that, the XZ-shape histogram 
outperformed other general 3D shape descriptors that compares the performance inferred by the area under 
receiver operating characteristic curve (AUC-ROC). The results of this study not only demonstrate the 
implementation of 3D shape descriptor in the dynamic of human activity recognition but also challenge the 
other general 3D shape descriptor in terms of providing low dimension descriptor that capable in improving the 
discrimination power of human-object interaction activity recognition.      
 
 
 
Key-Words: - human-object interaction; activities of daily living (ADLs); RGBD image; shape distribution; 
spin image; shape histogram. 
 
1 Introduction 
Monitoring activities of daily living (ADLs) plays a 
major part in assessing the health status of a person 
suffering with either cognitive [1] or physical 
impairment[2, 3] which is commonly done  by 
human caregiver or healthcare practitioner. 
Recently, there are many investigations emerged on 
developing automated system for monitoring the 
activities of daily living (ADLs)  which can be 
divided into vision-based and non-vision based 
system[4]. However, a rapid growing of the  vision-
based ADLs monitoring system development in this 
few years has promised the practicality of this 
sensing modality [4] over the non-vision based 
ADLs monitoring system: 1) manage to track and 
sense gross and fine human movements that 
represent ADLs; 2) provide rich of information such 
as spatial information, patient characteristics and 
anomaly actions  obtained using a single vision-
based sensing agent; 3) easily  set up according to 
the conditions and environments; and 4) has high 

user or patient acceptance due to the non-invasive 
modality.  

Vision based ADLs monitoring system has been 
investigated widely within the computer vision 
community [5-7]. However, most of the previous 
studies emphasized more on the activities without 
the manipulation of objects such as walking, 
running and jumping; which are out of healthcare 
community’s interest. This is because the 
community of healthcare focuses on monitoring the 
home and indoor ADLs such as drinking, reading or 
answering a phone which are categorized into the 
activities that involve object manipulation or 
human-object interaction.  

Microsoft Kinect sensor was introduced initially 
for the purpose of gaming and uses a clever 
combination of RGB and depth camera. Due to its 
controller-free characteristics, its role was extended 
to several other fields such as automated sign 
language [8, 9], object recognition [10-12] and 
human detection [13]. However, many studies done 
in recent years focused on implementing the Kinect 
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for human activity recognition [14] especially 
human-object interaction activities [15-17].  

This present study involves with the ADLs 
recognition that focuses on object manipulation 
activities or human-object interaction based on 
Kinect-like depth image. The extensive evaluation 
on the performance of XZ-shape histogram (which 
was proposed in our previous study [18]) that 
compared with general 3D shape descriptors 
(according to [19, 20]) in recognizing human-object 
interaction based on Kinect-like depth image using 
the RGBD-HOI dataset [18]. This study has been 
carried out using evaluation framework from the 
previous study [18] to infer the descriptors’ 
performance.  

The coordination of this paper is as follows. We 
review the existing approach in vision based human 
activity recognition and 3D shape descriptor in next 
section. After that, the formulation of XZ-shape 
histogram and the general 3D shape descriptors 
using RGBD-HOI dataset (see figure 1) as well as 
the evaluation framework are presented in Section 3. 
The evaluation result is explained in Section 4 
before we discuss and conclude in Section 5. 
 

 
Fig.1: Example samples from RGBD-HOI dataset. 

 
 
 
2 Related works on Human Activity 
Recognition and 3D Shape Descriptor 
In this section, the existing vision-based human 
activity recognition is discussed as an overview of 
the current approach in extracting meaningful 
feature as well as general 3D shape descriptor that 
has been used for 3D object retrieval. 

2.1 Human Activity Recognition 
Human activity recognition has been widely 
investigated by the computer vision community. In 
general, the proposed approaches can be categorized 
into three level; 1) low-level; 2) middle-level; and 3) 
high-level [4]  in parallel with the three levels of 
taxonomy activity. Since the previous studies were 
based on the RGB camera or video, there were 
several approaches developed according to the color 
or RGB image in extracting meaningful information 
to infer the human activity. The  approaches has 
been reviewed in our previous study [4]. 

However, with the introduction of Kinect  to the 
research community [21],  many studies found 
exploring different perspectives like  the depth 
information or combination between color (RGB) 
and depth information for object classification [10, 
12, 22], human detection [13], automated sign 
language interpretation [8, 9]  and human activity 
recognition [10, 12, 23]. A study done by Lang, [8] 
was the pioneer study in accessing depth 
information from Kinect in order to interpret the 
human activity. It was done by establishing a-bag-
of-3D point from the depth image before inferring 
the human activity from action graph.  

However, there were also a few studies done by 
combining the RGB and depth information in 
recognizing human activities [17, 24-27].  Since, 
spatio-temporal based descriptor generated based on 
the recent research interest in recognizing human 
activity by using the RGB camera or video, there 
were  many studies found [24, 25, 27] that 
implement  such descriptor in RGBD image for the 
similar interest. Study in [24] formulated hyper 
cuboid 4D from gradient which is taken from the 
interest point of RGB and depth image.  Interest 
point was selected based on 2D Gaussian filter in 
spatial domain and 1D Gabor filter in temporal 
domain for both RGB and depth image. However, 
investigation in [25] recommended that, it is 
important to select  the interest point solely on the 
RGB image before the bag-of-words was generated 
as descriptive histogram; while correspondence 
interest point of depth image was used to obtain 
depth information that separates the descriptive 
histogram into several depth channels. In line with 
this study, Zhao [27] performed the Histogram of 
Gradient (HOG) and Histogram of Flow (HOF) 
from the interest point of RGB image. However, 
local depth pattern which is adapted from local 
binary pattern (LBP) was generated from the 
correspondence depth interest point before 
classifying the human activity. Another approach 
was proposed by  [26] which is modeling the 
probabilistic graphical model for human activities 

Answering a phone call Brushing teeth

Drinking from a mug Lighting a flashlight

Make a phone call Pouring from a jug

Spraying from a spray bottle Typing using a keyboard
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based on the joint of 3D point skeleton provided in 
Kinect. However, to our knowledge the only work 
which was focused on the human-object interaction 
activity was proposed by Koppula [17].  The study 
later was extended  as in [26] introduced  features of 
object manipulation as the contextual features to be 
used in improving the human activity recognition.  

Therefore, this study put a highlight on the 
human-object interaction activity recognition. 
However, this study extend the evaluation of 
proposed XZ-shape histogram [18] for interpreting 
the human-object interaction activities and 
compared with other general 3D shape descriptors. 
 
2.2 3D shape descriptor  
3D shape descriptor can be categorized into four 
types: (1) Global based descriptor, (2) Local based 
descriptor, (3) View based descriptor, and (4) 
Graph-based descriptor. Originally, the 3D shape 
descriptor was designed for 3D object retrieval 
which is useful for the field of archeology, biology, 
anthropology and industrial part designing 
community. 3D object in a form of 3D mesh surface 
is commonly used for 3D object retrieval since such 
form has the capability to illustrate complex shape 
in a small memory capacity as compared to the 3D 
point cloud or 3D primitive form [28]. 

Global based descriptor describes the 3D object 
in terms of global shape or overall shape. The initial 
attempt of  the descriptor was to generate the 3D 
object volume, moment and Fourier transform 
coefficients[29]. Other than that, a study in [30] 
suggested the convex-hull from the 3D object to be 
the 3D shape descriptor while several other studies, 
concentrated on extracting the shape [31] and shape 
distribution [32, 33]. However, there were also 
several investigations that demonstrate local based 
descriptor, which it describes the shape based on the 
geometric relation between local points in 3D object 
surface with neighbor points. The examples of local 
based descriptors are spin image [34] and curvature 
based descriptor [35, 36]. Graph-based descriptor 
interprets the 3D object shape in a form of simple 
informative skeleton such as Medial Scaffold [37] 
and Reeb Graph[38]. Meanwhile for view-based 
descriptor, the 3D object is illustrated into 2D view 
images first before determining the descriptor from 
the 2D view image. The example of approaches  
used in this category are Light-Field Descriptor 
[39], Characteristic view descriptor [40] and 
elevation descriptor [41]. 

 
 

3 General 3D Shape Descriptors’ 
Extraction and XZ-Shape Histogram 
In this section, the preprocessing formulated for 
depth frame in RGBD-HOI dataset is discussed (in 
Section 3.1) before the extraction of general 3D 
shape descriptors as well as XZ-Shape Histogram 
from the resultant image after preprocessing are 
presented in Section 3.2, 3.3, 3.4 and 3.5.  
    
3.1 Preprocessing 
Before extracting the 3D shape descriptors from 
depth frame in RGBD-HOI dataset, preprocessing 
was carried out on the depth frame as illustrated in 
Figure 2. The RGB frame in Figure 2a was not 
utilized in this work, as it was only for illustration 
purposes. During preprocessing, fixed bounding box 
(see Figure 2b) for each subject was defined 
manually per sample to highlight the region of 
interest for the purpose of avoiding unnecessary 
clutter. After that, multilevel thresholding was 
formulated on the region of interest in order to 
remove the background pixels as well as to retain 
pixels of interest. In this work, the minimum and 
maximum threshold values were set to 680 and 830 
for the entire depth frame in the dataset as the 
subject performing the human-object interaction 
activities was within that range of depth value. The 
retained depth pixel was then converted into 3D 
points cloud (see Figure 2c) using the approach that 
was demonstrated in [12]. 
 

 
 

Fig.2: Preprocessing from depth image 
 
 
3.2 Shape Distribution Extraction 
Shape distribution [32, 33] is one of the common 3D 
shape descriptors that was designed for 3D object 
representation in a form of mesh triangulation 
surface. It computes distribution function based on 
geometric properties of 3D object surface such as 
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angle, distance, areas and volumes from 3D points 
that lies within the 3D surface and are randomly 
selected; named as A3, D1, D2, D3 and D4. 
However, D2 was extracted as in our previous work 
[42] to obtain shape distribution directly from depth 
image since D2 require less computation demand. 
As illustrated in Figure 3a, a pair of 3D points were 
chosen randomly within 3D point cloud and 
Euclidean distance was measured between both 3D 
points. This mechanism was repeated in order to 
obtain a set of distances before the shape 
distribution is generated (see Figure 3b).   
 

 
Fig.3: Shape distribution generated from 3D point cloud 

 
 
3.3 Shape Histogram Extraction 
Another common 3D shape descriptor is the shape 
histogram which can model the 3D object’s surface 
into: (1) histogram based on shell; (2) histogram 
based on sector; or (3) histogram based on fusion 
between shell and sector model  [31]. In this work, 
histogram based on shell was utilized due to its 
invariance to rotation. As can be seen in Figure 4a, 
the extraction of shape histogram begins with first 
localizing the centroid shO for each 3D point cloud 
using the center value of obtained from the 
minimum and maximum values of x, y and z 
coordinates among the 3D points. From there, P  
number of shells is constructed with equal space 
between each other and with respect to the shO . The 
number of 3D points that resides within a shell is 
then calculated in order to obtain shape histogram as 
depicted in Figure 4b. In our work, P=500  and 
P=1000  were used to obtain two sets of shape 
histogram for the purpose of comparison. 
 

 
Fig.4: Shape histogram generated from 3D point cloud 

3.4 Spin Image Extraction 
Spin image [34] is different from the 
aforementioned 3D shape descriptors(shape 
distribution and shape histogram) as spin image is a 
local based shape descriptor. 2D histogram can be 
generated from point, siO  in 3D object surface in 
representing local shape relation between the siO  
and its neighbouring points. This 2D histogram 
illustrates the number of neighbouring points, G that 
resides in each bin in the form of the cylindrical 
coordinates ( ),a b with respect to the normal and 
tangent surface vectors of 3D points siO  (see Figure 
5a and Figure 5b). The mapping of all neighbouring 
points into cylindrical axes with respect to 3D points 

siO  is formulated with the following equation, 
 

→3 2:  oS R R  
 

( ) ( ) ( )( ) (α β → = − − • − •


22, ,oS x x p n x p n x

 

(1
) 

 
where p  and x  are the 3D coordinates (in Cartesan) 
of points siO and G while n is the normal surface 
vector with respect to points siO . In this study, there 
are two types of spin image that are proposed: 

1) Global spin image - a common centroid is 
determined from all 3D points as siO  and 
this centroid is used to generate spin image. 

2) Local spin image - several local centroids 
from local regions were assigned as several 

siO  points before several 2D histograms 
were established as spin image. The local 
region is defined by separating region of 
interest into several equally sized sub 
regions.  

 
Figure 6a illustrates the centroid used as siO for 
global spin image while Figure 6b and Figure 6c 
depict the centroids used as several siO points 
whereas the local spin image was fragmented into 
local spin image with; 1) two local centroids (see 
Figure 6b); and 2) four local centroids (see Figure 
6c). These two types of local spin image were 
considered since simulating local spin image with 
more than four local centroids is rather time-
consuming. 
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Fig.5: Shape image generated from 3D point cloud 

 
 

 
Fig.6: Centroid point assigned as siO  in extracting spin image for; 

(a) Global spin image; (b) local spin image with two local centroids; 
and (c) local spin image with four local centroids 

 

 
 
3.5 Proposed XZ-Shape Histogram 
Extraction 
 

XZ-shape histogram was generated by merging 
the X-shape histogram and Z-shape histogram. X-
shape histogram was formulated based on shell 
model which is in a form of plane with surface 
normal in x-axis direction (see Figure 7). The 
drawback of X-shape histogram is that the 
descriptor incapable in differentiating the left-
handed or right-handed subject (see Figure 8(a)-(d)). 
Figure 8 (b) and (d) display the X-shape histogram 
generated from left-handed subject (see Figure 8(a)) 
and right-handed subject (see Figure 8(b)) which are 
dissimilar in shapes. In order to overcome this 
problem, each generated X-shape histogram was 
flipped on condition that the frequency of the first 
bin is more than the last bin. The output for flipping 
the histogram can be identified in Figure 8(e) that 
was formulated from X-shape histogram in Figure 
8(d).This mechanism managed to correct the X-
shape histogram for depth image in Figure 8 (b) 
which was similar to X-shape histogram generated 
from depth image in Figure 8(a). However, Z-shape 
histogram was prepared based on modeling the shell 
for several planes with surface normal in z-axis 
direction (see Figure. 9). Therefore, with the use of 
this approach, there was no issue of left-handed or 
right-handed subject. 
 

 
Fig.7: X-shape histogram extracted 3D point cloud 
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Fig. 8: The flipping histogram process in order to avoid right-
handed and left-handed subject occur in generating X-shape 

histogram 
 

 
Fig. 9: Z-shape histogram extracted 3D point cloud2. Evaluation 

Framework 
 
 In our previous study [18], the performance 
of X-shape histogram with xP =5, 10, 20, 30 and 40; 
and Z-shape histogram with zP =3, 5 and 10 was 
evaluated. It was found that X-shape histogram with 

xP =5 and Z-shape histogram with zP =5 provide 
excellent performance as compare to other X and Z-
shape histogram configuration. Thus, both 
aforementioned best configurations were used to 
formulate the XZ-shape histogram for this study (by 
concatenating the best X-shape histogram and the 
best Z-shape histogram).  
 
 

3.6 Evaluation Framework 
In order to evaluate the feasibility of the 
aforementioned 3D shape descriptors in recognizing 
the human-object interaction activity, the evaluation 
mechanism from our previous work in [42] was 
used by modifying the evaluation scheme. The 
performance of 3D shape descriptors were 
represented in terms of receiver operating 
characteristic (ROC) and area under ROC curve 
(AUC-ROC).  

From a set of depth frame
{ } { }= = …i fT t  |  f 1, 2, 3 F  representing a subject 

performing an activity class; f  is the frame index in 
an activity class, the correspondence set of 3D shape 
descriptor, { }= ∈' ' ' d

i f fT t  | t   was extracted from 

iT ; where i  is the index number represents each 
sample of activity in the dataset. Each '

iT   later was 
quantized using vector quantization approach in 
order to reduce the 3D shape descriptor from d  
dimension into one dimensional symbol; and 
produced the correspondence { }= ∈q q q 1

i f fT t  | t  . 
This process was computed using K-means to 
cluster each 3D shape descriptor frame into K
number of symbols. In our study, the evaluation was 
simulated based on several numbers of K before 
finding the best K  which is appropriate to be 
incorporated with each type of general 3D shape 
descriptor and to be compared with other 3D shape 
descriptors. Then, the self-similarity matrix S  was 
established and defined as follows, 
( ) ( ) { }= = ×q q

i jS i , j s T ,T  s.t    i, j 1, 2, ...N C  (2) 

where N  is set to 12 as the number of subjects per 
action while C is 8 as the total classes that exist in 
our dataset. ( )q q

i js T ,T  is defined as the similarity 
measurement function that is used for calculating 
the similarity value between two sequences of 
activities, q

iT and q
jT ; as an element in matrix S .  

In this investigation, edit distance [43] was 
implemented as the similarity measurement function 
due to its capability of comparing two entities that 
are represented in the form of features sequence. In 
our work, the edit distance weight constant 
= sub ins delw [w   w  w ]  that represents the weight for 

substitute, insert and delete operation were set 
equally to =w [1 1  1] . 

In establishing self-similarity matrix S , the row 
or column expressed as T  which are based on 
element q

iT  or element q
jT  were arranged and built 

according to the following equations, 
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{ }= = …q q
c n T T  | n {1, 2, 3 .N}  (3) 

{ }= = …q
c T T  | c {1, 2, 3 .C}  (4) 

An example of formulating (3) and (4) to arrange 
row and column elements of S  can be observed in 
Figure 7a. 

Since our intention is to generate the Receiver-
Operator-Characteristic (ROC) curve for each type 
of 3D shape descriptor that incorporates different 
number of symbols K  in vector quantization 
process, self-similarity matrix S  was formulated 
with the correspondence ground-truth matrix GTS . 
An example of the corresponding GTS  for matrix S
in Figure 7a can be seen in Figure 7b. GTS  was built 
with binary numbers consisting of 1(white pixel) 
and 0(black pixel) as indicators for similar and 
dissimilar classes. It is arranged so that white blocks 
of ×N N  pixels are replicated in diagonally within 
the matrix GTS  of the size ( ) ( )× × ×N C N C  pixels. 
Thus, true similar st , true dissimilar dt , false similar 

sf  and false dissimilar df  were calculated from S  
and GTS   using the following equations: 

= ×∑∑
NC NC

'
GT

i j

t {S (i , j) S (i , j)}s  (5) 

( )= − × −∑∑
NC NC

'
GT

i j

t {(1 S i, j ) (1 S (i , j))}d  (6) 

( )= − ×∑∑
NC NC

'
GT

i j

f {(1 S i, j ) S (i , j)}s  (7) 

= × −∑∑
NC NC

'
GT

i j

f {S (i , j) (1 S (i , j)}d  (8) 

where ∈'S {1,0}  is computed by thresholding the 
matrix S  using threshold value ε  which is varied 
between 0 to 1. Finally, true-positive rate, ( )TPRε  

and false-positive rate, ( )FPRε  are derived as, 

=
+
t

TPR
t f

s

s d

 (9) 

=
+
f

FPR
f t

s

s d

 (10) 

before ROC curve for each case is obtained. In our 
work, ROC curve for each 3D shape descriptor with 
the same K number of symbols is generated three 
times and the average ROC was obtained and the 
area under ROC curve (AUC-ROC) was calculated 
to represent such test case to avoid any clustering 
error caused by K-means in vector quantization 
approach.   
 

 

 
Fig. 7: (a) Self-matching matrix M (partially shown); both row and 

column were formulated using (2) and (3). (b) Ground-truth 
matching matrix, tM which was built for self-matching matrix in (a). 

 
 
4 Results and Discussion 
 
The main purpose of this work is to carry out the 
analysis on the feasibility of XZ-shape histogram 
and general 3D shape descriptors (shape 
distribution, shape histogram, global and local spin 
image) for human-object interaction activity 
recognition based on depth images from our RGBD-
HOI dataset. 

The overall feasibility of shape distribution in 
terms of performance is reported in Table 1. Based 
on the AUC-ROC value, it is found that the 
performance of shape distribution strikingly 
increased once the K  symbols used are more than 
100. At =K 20 , there were a lot of spatial 
information loss during the vector quantization 
process which resulted in different pose frame that 
represents different activity lies on the same cluster 
symbol. However, once K  was increased to more 
than 100, the performance drastically increased but 
with slower increment in performance can be seen 
when K was set to above 100. The best performance 
of shape distribution descriptor in this work was at 
=K 300 (the grey highlighted cell). However, there 

was a trade-off between increasing the performance 
of shape distribution and the complexity of vector 
quantization if the K is increased.  
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Table 1. AUC-ROC for Several Shape Distribution 

based on Different K symbols 
Number of K symbols used in vector 

quantization process 
AUC-ROC 

20 0.6345 

100 0.6460 

200 0.6458 

300 0.6479 

 
On the other hand, it seems that there are a 

variety conditions for testing the performance of the 
shape histogram using several pairs of P  (as the 
number of shells used to formulate shape histogram) 
and K  (as the number of symbols used in vector 
quantization process). The results are represented as 
AUC-ROC value which can be seen in Table 2 (the 
grey highlighted cells are the maximum AUC-ROC 
values within different K number of symbols). When 
P  was set to 500, the trend of shape histogram’s 
performance is almost similar to shape distribution. 
The performance increased significantly at =K 100  
and marginally improved with K above 100. 
However, this behaviour is considerably different 
for shape histogram when =P 1000 . As can be 
observed in Table 2, a remarkable performance 
increment can be observed at =K 200 and higher. 
This is due to the dependency between the number 
of shells P  used in the extraction of shape histogram 
and the number of K  symbols used in the vector 
quantization process. If the P  used is too small, then 
it is insufficient to describe the shape of 3D surface. 
However, increasing P  too much can cause poor 
discriminating descriptor as fewer number of 3D 
points reside within each shell. In deciding the K
symbols to be used in the vector quantization 
process, the number of P shells used to extract shape 
histogram must be considered. It can be found in 
Table 2 that the K  used to produce excellent shape 
histogram performance for =P 500  was different 
from shape histogram for =P 1000 . 

Spin image is one of the local based 3D shape 
descriptors that provides the local shape properties 
based on a single 3D point in 3D surface. In this 
study, two types of spin image descriptors were 
formulated (global and local spin image) for the 
purpose of evaluating the spin image capability.  
Table 3 displays the performance of these two types 
of spin image in terms of AUC-ROC value with 
different number of K symbols used during vector 
quantization process. The trend of global spin image 
performance is inline with the previous 3D shape 
descriptor as the performance significantly 
increased once K is increased to more than 100. 

However, both local spin image descriptors with 
two local centroids and four local centroids only 
performed exceptionally at =K 20 before 
insignificantly degrading when =K 100 or higher. 
 

Table 2. AUC-ROC for Several Shape Histogram 
based on Different K symbols and P number of Shells 

 
  Number of cells used to 

establish shape 
histogram, P 

  500 1000 

Number of 
K symbols 

used in 
vector 

quantization 
process 

20 0.6402 0.6339 

100 0.6457 0.6393 

200 0.6431 0.6452 

300 0.6436 0.6455 

 
Overall, based on the maximum AUC-ROC 

value (grey cell in Table 3) in each type of spin 
image, local spin image manages to outperform 
global spin image since the local spin image is 
capable of extracting the meaningful local shape 
properties from depth frame that represents the 
human-object-interaction activity. However, an 
attempt to increase the local shape properties from 
local spin image by increasing the number of local 
centroids used from two to four points is 
unworkable. This is due to the active region in 
performing human-object-interaction is hand. Thus, 
only few local regions where hand is located will 
produce significant shape changes in completing 
human-object-interaction cycle while other local 
regions (passive regions) will remain with same 
shape properties. Increasing the number of local 
centroids formulated from local regions might 
reduce the performance of local spin image as the 
obtained local spin image is established by merging 
between descriptors from active and  passive local 
regions. This might cause the sensitivity of active 
regions in representing the human-object-interaction 
activity to reduce as the passive region influences 
the descriptor. 
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Table 3. AUC-ROC for Several Types of Spin Image 
based on Different K symbols used. 

  Type of spin image 
  Global 

spin 
image 

Local spin 
image with 
two local 
centroids 

Local spin 
image with 
four local 
centroids 

Number of 
K symbols 

used in 
vector 

quantizatio
n process 

20 0.6337 0.6479 0.6410 

100 0.6418 0.6369 0.6311 

200 0.6455 0.6379 0.6400 

300 0.6445 0.6398 0.6386 

 
 
The overall performances of 3D shape 

descriptors are summarized in Table 4 whereas each 
type of 3D shape descriptor is represented by the 
one that showed excellent performance (based on 
AUC-ROC value) among the same type of 3D shape 
descriptor. This includes with proposed XZ-shape 
histogram which was formulated according to the 
previous study [18]. It is evident that by utilizing the 
local spin image, the meaningful local shape 
properties which are comparable to shape 
distribution that extracts global shape properties 
from the depth frame. However, the proposed XZ-
shape histogram consists of less dimensional space 
achieved a remarkable performance compared to 
both shape distribution and local spin image in 
interpreting the human object interaction.  
 

Table 4. AUC-ROC for different types of 3D shape 
descriptors 

3D Shape Descriptors AUC-ROC 

Shape Histogram. P=500, K=100 0.6457 

Shape Distribution, K=300 0.6479 

Global Spin Image. K=200 0.6455 

Local Spin Image, K=20 0.6479 

XZ-shape histogram. K=300 0.6484 

 
 
5 Conclusion 
In summary, this study extend the evaluation of 
proposed XZ-shape histogram compared to other 
general 3D shape descriptors in recognizing the 
human-object interaction activity based on Kinect-
like depth image using RGBD-HOI dataset. The 
proposed XZ-shape histogram achieved a 
remarkable performance as compared to other 
general 3D shape descriptors especially shape 
distribution and local spin image which are the close 

competitors. Shape distribution and local spin image 
suffer with high dimensionality and complexity 
while the proposed XZ-shape histogram manages to 
solve the problem and capable to improve the 
discrimination power of human-object interaction 
recognition.   

This study also provides the framework for 
future studies especially in incorporating classifier 
mechanism with 3D shape descriptors to develop 
whole system for human activity recognition based 
on the Kinect camera. This can eventually lead to 
the embedment of Kinect as the vision-based sensor 
used in medical and rehabilitation for accessing 
subject performing activity of daily living (ADLs) 
in home and healthcare centers.      
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