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Abstract: - Scene classification has been widely utilized in various remote sensing applications. Successful 

image classification depends on several factors, such as availability of data, complexity of available data, 

availability of ancillary data, expertise of an analyst, availability of suitable classification algorithms, etc. There 

is no single best classification method that would be suitable for all applications. This paper aims at 

highlighting the present-day practices of scene classification by summarizing the major scene classification 

categories available in the literature. Research shows that high-level classification outperforms the other 

classification methods for almost any kind of data, however, at the cost of high computation. Further research is 

needed to improve classification accuracy and at the same time reduce computational complexity in order to 

make a classification method more suitable for real time applications. 
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1 Introduction 
Scene classification is an important and challenging 

task in various application areas such as biomedical 

imaging, video surveillance, vehicle navigation, 

remote sensing, etc. Remote sensing images with a 

wide range of spatial, temporal, spectral, and 

radiometric resolutions have been significantly 

utilized to map the land-cover/ land-use information 

on the Earth‟s surface [1-9]. The intent of the 

classification process is to categorize a digital image 

into one of several distinct and exclusive classes or 

categories. This categorized data may then be used 

to produce thematic maps of the details present in an 

image. A classification unit could be a single pixel, 

a group of neighboring pixels, or the whole image. 

The classes of a classification process may be 

predefined by an analyst (in the case of supervised 

classification) or automatically clustered into sets of 

prototype classes (in the case of unsupervised 

classification). Irrespective of an analyst‟s 

importance in constructing the training classes, they 

need to be independent, discriminatory, and reliable.  

Scene classification usually consists of seven 

steps. The first step for successful classification is 

selection of suitable sensor data. If classification is 

performed on a local level, it is preferred to have 

data with high spatial resolution.  However, if 

classification in global level is required, data with 

coarse spatial resolution are helpful [10]. Selecting 

sufficient number of training samples is the second 

step for scene classification. Training samples are 

collected from the respective area of study. The 

third step for scene classification is image 

preprocessing, which includes radiometric 

processing, geometric correction, atmospheric 

correction, noise removal, etc. Extracting 

appropriate features from data is the fourth step for 

scene classification. This feature may be spectral 

signature, vegetation indices, textural or contextual 

details, local or global image descriptors, etc. The 

next step is selection of a suitable classification 

algorithm. Post-process a classified image is the 

sixth step for image classification. Up-scaling and 

raster to vector conversion are the two most 

common post-processing techniques applied to a 

classified map. Performance assessment is the final 

step for scene classification. Evaluation of a 

classification algorithm could be quantitative or 

qualitative. As algorithms are becoming more 

accurate in recent years, quantitative evaluation 

becomes more important. Classification accuracy 

seems to be the most appropriate performance 

evaluation approach. Otherwise, several other 

assessment criteria are available: stability of 

algorithm, robustness to noise, computational 

resources, etc. 

In the literature, several advanced scene 

classification algorithms have been developed [11-

20]. Even though the state of art clearly indicates 

improved accuracy of the recently developed 

classification methods, scene classification still 

remains a challenge because of several factors such 
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as complexity of the scene, availability of the sensor 

data, availability of scene classification algorithms, 

etc. Thus, majority of the recent works is focused 

specifically on dealing with the challenges of the 

scene classification methods. A comprehensive up-

to-date review of the newly emerged classification 

algorithms is mostly overlooked.  Furthermore, none 

of the existing surveys discusses all the major 

classification categories and eventually fails to 

categorize the most recent scene classification 

algorithms. The regular emergence of new 

classification algorithms in present days requires a 

comprehensive review work, which could be a 

valuable guide for selecting a suitable classification 

procedure for a specific application. 

 

 

2 Introduction 
There are several ways of grouping the existing 

scene classification algorithms. Grouping could be 

based on analyst‟s contribution in classification 

methods, or based on parameters on data used, or 

based on pixel information used, or based on 

knowledge available from ancillary data, or based 

on image attributes used. Based or analyst‟s role, 

scene classification can be supervised and 

unsupervised classification. Based on parameters on 

data used, scenes can be classified as parametric and 

non-parametric classification. Based on pixel 

information, scene classification can be per-pixel, 

sub-pixel, per-field, and contextual classification. 

Based on availability of knowledge, images can be 

classified as knowledge-free and knowledge-based 

classification. Finally, based on attributes, images 

can be classified using low-level and high-level 

classification. For convenience, this paper classifies 

the existing algorithms into per-pixel, sub-pixel, 

per-field, contextual, knowledge-based, and high-

level classification. Categories of scene 

classification algorithms are described briefly in the 

following subsection. 

 

 

2.1 Per-pixel Classification 
In per-pixel classification each pixel is assigned to a 

class by considering the spectral similarities with the 

different classes [21]. Per-pixel classification can be 

parametric or non-parametric. In parametric 

classification it is assumed that the probability 

distribution of each of the classes is known. Usually, 

parameters like mean vector and covariance matrix 

are obtained from the training data.  However, the 

assumption of normal probability distribution of 

each class is often violated for complex landscapes. 

Moreover, insufficient training samples may lead to 

a singular covariance matrix. The most commonly 

used parametric classifier is the maximum 

likelihood classifier (MLC). Unlike parametric 

classification, non-parametric classification is 

neither based on any assumption nor uses statistical 

parameters. This classifier assigns pixels to classes 

based on pixel‟s position in discretely positioned 

feature space [22]. Some of the most commonly 

used non-parametric classifiers are nearest neighbor 

(NN), support vector machine (SVM), artificial 

neural network (ANN) based classifiers, and 

decision tree-based classifiers. 

 

 

2.1.1 Maximum Likelihood Classification 
MLC is one of the most common methods for 

thematic mapping using aerial images. Initially, the 

statistical probability of an unknown pixel X with 

multidimensional values (d dimensions) being a 

member of each class is computed using a 

likelihood function. It is assumed that the training 

samples of each class form the Gaussian (normal) 

distribution. Using multivariate normal density 

function in d dimension the likelihood function for 

the pixel X being a member of class c can be 

expressed by LC (X) as: 
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Where    is the variance-covariance matrix of class 

C produced from the training data |  | is the 

determinant of   .   ̅̅̅̅  is the mean vector of class C 

produced from the training data. Finally, X is 

assigned to class c if   ( )    ( )      or X is 

labeled as „unknown‟ if the probabilities are below a 

predefined threshold [23]. When there is large 

number of classes which needs to be classified, 

MLC requires high degree of computation. Also, if 

the sample size for each class is not large enough 

then this method may have large variance and hence 

be unreliable [24]. Furthermore, if the classes have 

heavy overlapping, maximum likelihood generates 

classified map with poor separation among the 

classes. 

An extension of MLC is Bayesian classification, 

which states that the probability of an unknown 

pixel belonging to class c, given the feature vector 

  is expressed by: 

 

                    ( | )  
 ( | ) ( )
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                                          (2) 

 

Where  ( | ) is the likelihood function,  ( ) is the 

priori probability of class c, and  ( ) is the 
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probability that   is observed. As  ( ) is 

independent of c the aim is to maximize 

 ( | ) ( ) in order to maximize  ( | )  Again, if 

 ( ) has uniform distribution, maximizing 

 ( | ) means maximizing  ( | )   i.e. maximizing 

the likelihood function. Two of the noble 

contributions include land cover classification using 

cloud-contaminated high-resolution images 

proposed by Salberg et al. [25], MLC based on 

bivariate Gaussian mixture model proposed by Liu 

et al. [26]. These methods are discussed briefly as 

below: 

Salberg et al. [25] proposes a two-stage 

classification technique for cloud and snow 

contaminated multitemporal high resolution remote 

sensing data. The first stage consists of identifying 

pixels containing snow and clouds, and the second 

stage uses the information to model a missing 

observation and subsequently performs a pixel-level 

fusion of the cloud/snow map, and the actual sensor 

data. Finally a trained classifier, which can handle 

missing data, is used to classify the land cover. 

Missing data is modeled as: 

 

                           (   )                                       (3) 

 

Where   is the feature vector corresponding to a 

pixel,   is a response indicator of the missing data 

mechanism. If   is 1 the feature vector corresponds 

to land cover observation  , and when it is 0 the 

feature vector corresponds to cloud or snow 

observation    Let the input data matrix be   
,          -, and the corresponding missing data 

indicator matrix be   ,          -. Each   in 

the matrix   is a d-dimensional vector (considering 

there are d number of spectral bands used), and each 

  in the matrix   indicates the missing data in 

corresponding  . Considering missing data to be 

“missing as random” (MAR), interaction 

between   and the observed and missing features 

of   could be expressed as  ( |     )  
 ( |    ).    is the set of observed features from  . 

After the missing data model is formed, in the 

learning phase EM algorithm (expectation-

maximization algorithm) is used to estimate the 

mean vector and the covariance matrix from the 

training data for each land cover class. After this 

learning phase, a cloud/snow map is computed using 

each of the input images. For testing, sequence of 

three Landsat ETM+ images are used. Other than 

MLC, performance is also evaluated using k-nearest 

neighbor (kNN) and Parzen classifiers. It is 

observed that the classification performance is 

improved using pixel-level image fusion. For MLC 

performance is improved from 62.8% to 74.9% and 

for kNN classifier performance is improved from 

63.4% to 77.4%.  

Liu et al. [26] develops a MLC that can handle 

subject variability. Conventional supervised method 

for estimating the unknown parameters of the MLC 

algorithm assumes that the feature values of 

different classes have similar distribution for 

different subjects. However, this assumption is not 

feasible in many real situations. Thus, in order to 

consider the differences across subjects, the 

proposed method formulates a statistical model 

using the intensity values and the mean intensity 

values of each subject as bivariate random variable.  

Assuming Y is the intensity value of each pixel 

denoted by y and K is the class of each pixel 

denoted by k the estimator  ̂ of K is obtained by 

maximizing the probability of each class as: 

 

                 ̂          (   |   )                     (4) 

 

Here y and z are expressed as two groups of random 

variables representing intensity value of a pixel and 

the mean intensity values of each subject 

respectively. Assuming simplified development with 

background and a single object, and assuming y and 

z belong to a bivariate Gaussian distribution, the 

above equation can be rewritten as: 
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Where μk is the mean vector and ∑   is the 

covariance matrix for the k
th
 class.  

Evaluation is performed using several simulated 

image datasets. The qualitative and quantitative 

comparison between the proposed method and the 

classical supervised MLC reveals that the proposed 

method outperforms the classical method when 

there are considerable differences between subjects. 

 

 

2.1.2 Nearest Neighbor Classification 
Nearest neighbor based algorithms are simple but 

effective methods used in statistical classification. 

Categorizing unlabeled samples is based on their 

distance from the samples in training dataset. Let a 

set of n labeled training samples be given as   
*          +, where      . According to the 

nearest neighbor classification rule, an unlabeled 

sample   is assigned to the class of      if 
   happens to be the nearest neighbor of   . Usually 

Euclidean distance is used as a measure of nearest 

neighbor. On the other hand, according to kNN 

classification a set of k nearest neighbors is 
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computed for an unlabeled sample   instead of a 

single nearest neighbor. Then, the test sample is 

assigned to the class that occurs most frequently 

among the k-nearest training samples. If the ranges 

of the data in each dimension vary considerably, this 

can affect the accuracy of the nearest neighbor 

based classifications.  Thus, both the training and 

testing data need be normalized [27].  

 

 

2.1.3 Support Vector Machine Classification 
SVM is an efficient supervised binary classification 

technique. Given a set of labeled training samples, 

SVM outputs an optimal hyperplane which can 

categorize unlabeled samples. An optimal 

hyperplane is the one which has largest distance 

from the nearest training sample of each class. Let a 

set of n training samples with their labels be given 

as   *     +          *    + where    
  . For linearly separable case, hyperplane can be 

expressed as: 

                                                                         (6) 

 

Where   is a normal vector to the hyperplane,   is 

the offset for the hyperplane. The problem of 

finding the optimal hyperplane could be expressed 

as the following convex optimization problem: 

 

Minimize 
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Using Lagrange multipliers   the above 

optimization can be further expressed in a dual 

formulation as: 

Maximize   ∑   
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For nonlinearly separable case, training samples 

are mapped into a higher dimensional space where 

linear separation is possible. Thus a transformation 

function Ф is necessary. The high time consuming 

computation  (  )  (  ) can be avoided by using 

suitable kernel function [28]. Accordingly 

 (     )   (  )  (  )    

Thus for nonlinear SVM, objective is to 

maximize   ∑   
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      and      

Once this maximization problem is solved, 

   and b can be used to classify test point   [29]. The 

decision function can be expressed as: 

 

    ,∑      (    )
 

   
  - 

SVM classification methods have often found to 

provide higher accuracies compared to other 

methods, such as MLC, ANN-based classifications. 

SVM classifiers always deliver unique solutions, 

since the optimality problem is convex. Some of the 

significant contributions in SVM classification 

include cluster-assumption based active- learning 

for classifying remote sensing images proposed by 

Patra et al. [30], fusion of texture and SIFT-based 

descriptors for remote sensing image classification 

proposed by Risojević et al. [31], image 

classification based on linear distance coding 

proposed by Wang et al. [32]. These algorithms are 

presented briefly as follows: 

Patra et al. [30] develops a reliable active-

learning based classification for remote sensing 

images. Collecting labeled samples is time 

consuming and costly. Also, redundant samples 

slow down the training process. Thus, training set 

needs to be kept as small as possible to avoid 

redundancy, and at the same time, patterns with the 

largest amount of information need to be included in 

the training set. The proposed active learning 

method is implemented in the learning phase of the 

SVM classifier. The SVM classifier is first trained 

with a small number of labeled samples. Each 

unlabeled sample is given an output score based on 

how likely or unlikely it is a member of a class. 

These output scores are plotted into a histogram. 

Thus, the most ambiguous samples generate output 

scores located in the valley region of the histogram. 

A threshold is chosen to determine which unlabeled 

samples should be considered. This technique is not 

strongly affected by the initial training samples 

chosen and it is simple in terms of computational 

complexity. Thus, it has important advantage in 

remote sensing applications. 

Risojević et al. [31] proposes a hierarchical 

fusion of local and global descriptors in order to 

classify high resolution remote sensing images. 

They suggest use of a Gabor filter bank at S scales 

and K orientations. An Enhanced Gabor texture 

descriptor (EGTD) is developed based on cross 

correlation between the spatial-frequency sub-bands 

of Gabor image decomposition using the following 

formula: 
                 

      √∬ |      (   )       |
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   (   ) and     (   ) are the responses of a 

Gabor filter at orientation n and scales   and   , 

respectively. The opponent features, which measure 

the cross correlations between the filter responses at 

different scales can be expressed as: 
 

      ∬       (   )    
 

 
                           (9) 

 

Means     ∬ |   (   )|    
 

 
                          (10) 

 
The responses of the filters at same scale but 

different orientations are also correlated. Finally, 

      (and values obtained by using correlation of 

filter responses at same scale but different 

orientations) values are arranged into SK(S+K) 

dimensional column vector to get the EGTD, which 

is mainly texture oriented. Since it averages the 

wavelet coefficients over the image domain, it is 

unable to encode the local information from an 

image. Thus, EGTD is good for classifying images, 

which are mainly texture- based. On the other hand, 

Bag of Words (BoW), which works using SIFT-

based local descriptor, is good at classifying images 

with distinctive structures. Since EGTD and SIFT 

encode complementary information of an image, a 

hierarchical fusion for local and global descriptors is 

used. First, level-0 classifiers are trained for both the 

descriptors. The confidence scores returned by the 

level-0 classifiers are then transformed into 

posterior probabilities and later concatenated to 

obtain mid-level representation. Mid-level 

descriptors are then used as input to the level-1 

classifier (metalearner), which outputs the final 

prediction. The SVM with linear,     and radial 

basis function (RBF) based kernels are used as 

metalearners. It is observed from the evaluation that 

in the absence of any metalearner, i.e., simple 

concatenation of the descriptors performs poorly 

compared to the cases when metalearners are used. 

It is also observed that linear classifiers perform 

equally well when compared to the classifiers using 

kernel.  

Wang et al. [32] develops a linear distance 

coding (LDC) based classification method. Bag of 

Words (BoW) based classifier uses the three-step 

method: extraction of local features of an image, 

generating codebook and then quantize/encode local 

features accordingly, finally pooling all the codes 

together to generate a global image representation. 

However, because of the quantization process, the 

information loss is inevitable in such a feature 

extraction-coding-pooling based method. Naive 

Bayes Nearest Neighbor (NBNN) method tackles 

this information loss by avoiding the 

quantization/coding process. Instead, it uses image-

to-class distance, which it calculates based on local 

features. Since, spatial context of images needs to be 

explored more effectively for better performance of 

a classifier, Spatial Pyramid Matching (SPM) is 

often used as coding-pooling based methods. 

However, SPM strictly requires that the involved 

images exhibit similar spatial layout. The proposed 

method uses the advantages of both BoW and 

NBNN, and at the same time relieve the strict spatial 

layout requirement for SPM. In this method each 

local feature is transformed into a distance vector, 

whose each element represents certain class-specific 

semantics. Since image representation produced by 

LDC is complementary to the one produced by 

original coding-pooling method, their combination 

can result in performance improvement of a 

classifier. Performance is evaluated using both 

Locally-constrained Linear Coding (LLC) and 

Localized Soft-Assignment Coding (LSA) as the 

linear coding method. LLC and LSA are 

individually used as coding methods, whereas max-

pooling is always employed. Original coding-

pooling based image representation, LDC based 

image representation, and their concatenation are 

used for evaluation. It is observed that the 

concatenated representation outperforms the other 

two in terms of classification accuracy. 

 

 

2.1.4 Artificial Neural Network-based 

Classification 

ANN is a computational model inspired by the 

biological neural network.  It could be considered as 

a weighted directed graph in which nodes are 

neurons and edges with weights are connection 

among the neurons. Each artificial neuron computes 

a weighted sum of its   input signals      

          and generates an output, based on certain 

activation functions, such as piecewise linear, 

sigmoid, Gaussian, etc. Use of a sigmoid activation 

function can be mathematically expressed as: 

 

                
 

(     
 ∑

    
  )

                                     (11) 

 

Where    is the connection weight associated with 

the     input, and   is the slope parameter.  

ANN consists of one input layer, one output 

layer, and depending on the application it may or 

may not have hidden layers. The number of nodes at 

the output layer is equal to the number of 

information classes, whereas the number of nodes at 

the input is equal to the dimensionality of each 

pixel. Feed-forward ANN with the back propagation 
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learning algorithm is most commonly used in ANN 

literature. In the learning phase, the network must 

learn the connection weights iteratively from a set of 

training samples. The network gives an output, 

corresponding to each input. The generated output is 

compared to the desired output. The error between 

these two is used to modify the weights of the ANN. 

The training procedure ends when the error becomes 

less than a predefined threshold. Then, all the testing 

data are fed into the classifier to perform the 

classification.  

For very high dimensional data, the learning time 

of a neural network can be very long, and the 

resulting ANN can be very complex [33]. 

Consequently, several ANN-based classification 

algorithms have been proposed in literature, aiming 

to minimize the complexity. Both  [34, 35] suggest 

use of adaboost algorithm, i.e., building a strong 

classifier, using linear combination of several weak 

classifiers. Both of them use a back propagation 

learning algorithm. A two-layer-ANN with a single 

hidden layer is used in [34] as a weak classifier. It 

uses 50 nodes in the input layer and 25 nodes in the 

hidden layer. The proposed algorithm works by 

using weak classifier in a number of iterations (t) 

and by maintaining a distribution of weights for the 

training samples. Initially the training samples are 

assigned equal distribution. However, in subsequent 

iterations weights of poorly predicted training 

samples are increased. Finally, the weak classifier 

finds a weak hypothesis    which is suitable for the 

distribution of the samples at that iteration. A 

confidence score    for the weak hypothesis is also 

calculated. The final classification result for an input 

vector is based on the      of  ( ) as:  
                                            

    ( ( ))      (∑     ( ) )                                  (12) 

 
AVIRIS data is used in [34] to compare the 

performance of the proposed algorithm with MLC. 

It is evaluated that the maximum likelihood-based 

classifier requires 4,554 parameters for learning, 

whereas the proposed algorithm requires only 975 

parameters for learning but still the proposed 

method outperforms the maximum likelihood-based 

classifier. The INRIA human database is used in 

[35] for evaluation. Three different combinations of 

weak classifiers are tested by varying the number of 

nodes in the hidden nodes from 1 to 3. When more 

hidden nodes are used, the accuracy of the proposed 

classifier is seen to be better. Comparing the 

proposed classifier with global linear SVM, global 

kernel SVM, and cascade linear SVM based 

classifiers show that the proposed algorithm 

performs better than the others. 

In order to address the complexity of the ANN in 

case of high dimensional data, feature reduction 

mechanisms have also been investigated in 

literature. Majhi et al. [36] proposes a low 

complexity ANN for recognition of handwritten 

numerals. The proposed method uses an image 

database of handwritten numerals. Three hundred 

ninety six data for each numeral is used for training 

purposes. At first, binary images of the numerals are 

converted into gray scale images. Then gradient and 

curvature values are computed for each image, and 

subsequently 2,592 dimensional gradient feature 

vectors and 2,592 dimensional curvature feature 

vectors are generated. A principal component 

analysis (PCA) technique is used to compress the 

data and generate gradient feature vectors and 

curvature feature vectors of dimensions 66 and 64, 

respectively. These feature vectors are extended to 

trigonometric terms and fed to a low complexity 

single layer classifier.  Each numeral with 100 data 

is used for testing purposes. The classification 

accuracy obtained using gradient feature vectors and 

curvature feature vectors are 98% and 94% 

respectively. Also, it is evaluated that the 

performance of the proposed algorithm is 

comparable to the modified quadratic discriminant 

function (MDQF) based classifier, but it offers low 

complexity. 

 

 

2.1.5 Decision Tree-based Classification 
A supervised classifier which requires less 

complicated training compared to the ANN is based 

on a decision tree. A decision tree breaks up a 

complex decision into multiple simpler decisions so 

that the final solution resembles the desired solution. 

Decision tree is a hierarchical structure consisting of 

nodes and directed edges. Each node is an attribute 

of an observation that needs to be classified, 

whereas each edge represents a value the attribute 

can take. The root node is the attribute, which best 

divides the training data, whereas each leaf node is 

assigned a class label. Hunt‟s algorithm is the most 

commonly used method for building a decision tree. 

Hunt‟s algorithm recursively partitions the training 

data until all the members of each partition belongs 

to the same class label, or there are no more 

attributes remaining for partitioning [37]. Selecting 

the best split (also known as attribute selection) is a 

challenging task while building a decision tree and 

consequently several measures are proposed in 

literature. The goodness of a split can be measured 

quantitatively by several metrics, such as 

information gain, information gain ratio, Gini index 

etc. While using a large dataset, a decision tree 
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representation can be significantly complex and, 

hence, classification may suffer from substantial 

complexity. As a result, a number of pruning 

methods are employed to reduce the size of the 

decision tree by removing sections of the tree, which 

are insignificant in classifying observations. Two of 

the significant contributions in decision tree based 

classification are discussed as follows: 

Pal et al .[38] proposes the use of a univariate 

decision tree classifier with error-based pruning 

(EBP). They use four different attribute-selection-

measure metrics to verify that the classification 

accuracy is not affected by the choice of attribute-

selection- measure metric. The accuracy of the 

decision tree classifier is measured while using 

different pruning methods, such as reduced error 

pruning (REP), pessimistic error pruning (PEP), 

error-based pruning (EBP), critical value pruning 

(CVP), and cost complexity pruning (CCP). It 

reveals that the EBP outperforms the other pruning 

methods. They also perform a comparative 

evaluation between ANN-based classification and 

the proposed decision tree-based classification. 

Accuracy and processing time are recorded for both 

the ANN-based classifier and the decision tree-

based classifier, using ETM+ and InSAR datasets. It 

shows that for both the datasets, the decision tree-

based classifier performs better than the other in 

terms of both classification accuracy and processing 

time. 

Thangaparvathi et al. [39] proposes a 

modification to the RainForest algorithm, which was 

developed to address the scalability issue when a 

large dataset is used. The data structure used in this 

proposed method IAVC set and IAVC group is the 

improved version of AVC set (attribute-value class) 

and AVC group used in the RainForest algorithm. 

The IAVC group of a node is the set of IAVC sets 

of all attributes at that node. The IAVC set, on the 

other hand, captures class distribution information 

as well as distribution of record IDS. Rather than 

working on the actual dataset, this algorithm works 

on this aforementioned data structure. At a specific 

time, only one IAVC group of a certain node is kept 

in the main memory. This method requires a single 

pass over the dataset instead of a pass over the 

dataset at each level of the decision tree 

construction. Thus, time complexity of the proposed 

method reduces to  ( )from the RainForest 

algorithm‟s  ( ,   -) where L is the number of 

levels of the decision tree, and R is the number of 

records in the database. Two different datasets are 

used for training purposes. Experimental evaluation, 

using datasets with sizes ranging from 100,000 to 

1,000,000, shows that the proposed method 

outperforms the RainForest algorithm in the time 

dimension. 

Several other decision tree-based classifiers have 

been proposed, which use a variation of the Hunt‟s 

algorithm as the decision tree induction method. [40, 

41] use the classification based on the ID3 

algorithm. [42] uses the C4.5 decision tree classifier 

and [43] utilizes the CART based decision tree. 

 

 

2.2 Sub-pixel Classification 
In principle the per-pixel classification methods 

assign each pixel into one category based on the 

assumption that a given pixel can belong only to one 

class. However, in certain situations, the geometric 

resolution of the imaging sensor might not be high 

enough to guarantee that the radiance measurement 

associated with a pixel is the contribution of single 

information class in the scene [44]. Rather, the 

radiance measurement of a pixel could be 

contribution of multiple classes. This is very 

common in medium and coarse spatial resolution 

remote sensing images. In order to overcome this 

mixed-pixel problem, proportional membership of 

each pixel measurement to each information class is 

considered. This method is known as sub-pixel 

classification. Significant contributions in sub-pixel 

classification includes a fuzzy rule classifier for 

classifying satellite images proposed by Prabhu et 

al. [45], classification of very high resolution 

satellite images using fuzzy logic proposed by Jabari 

et al. [46]. These two methods are briefly discussed 

as follows: 

Prabhu et al. [45] recommends a fuzzy rule 

classifier for classifying satellite images into barren 

land, vegetation area, building area, and road area. 

Initially, the satellite images are Gaussian filtered to 

reduce the noise contents and then they are 

converted to Lab color space. Lab color 

approximates the human vision more accurately 

than RGB color. These pre-processed satellite 

images are segmented into building and vegetation 

areas using intensity constraint method. Then a 

modified graph cut is used to segment the barren 

land areas. The modified graph cut considers 

spatially neighboring pixels in addition to the two 

pixels while making a cut. After that some 

thresholding techniques are used to segment the 

road areas. Once the segmentation is over, features 

such as mean, variance, and entropy are extracted 

from those segmented areas. Finally, a fuzzy rule 

classifier is used to classify scenes into barren lands, 

building areas, road areas, and vegetation areas. The 

proposed fuzzy rule classifier has two steps. In the 

first step, the classifier generates the fuzzy rules 
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using an indiscernibility matrix of rough set theory 

and gives those rules in the rule base of the 

classifier. In the second step, a triangular 

membership function is used to convert a test data 

into fuzzified value. Then the fuzzified input is 

matched with the fuzzy rules. Subsequently, a fuzzy 

score is generated to classify a scene into different 

areas. The triangular membership function that is 

used in the proposed method is: 
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                              (13) 

 
Where a, b, c are the vertices of the triangular 

function. a is the lower boundary and c is the upper 

boundary where membership degrees are zero. b is 

the center where membership degree is 1. The 

average classification accuracy is measured as 92%. 

Also, it is evaluated that the modified graph cut 

segmentation increases the accuracy of the 

classification algorithm almost 6% compared to 

when a normal graph cut segmentation is used. 

Jabari et al. [46] proposes a segmentation and 

fuzzy rule-based classification for very high 

resolution satellite images. Classifying very high 

resolution images is very challenging since there are 

uncertainties in the position of the object borders. 

Thus, a fuzzy-rule based classification exhibits more 

promising solution to this challenging task. Initially, 

the input image is segmented into shadows, 

vegetation, and roads using eCognition software. 

Then triangular and trapezoidal fuzzy functions are 

used to assign membership values to those 

segmented regions.  

Triangular fuzzy function: 
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Trapezoidal fuzzy function:  
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Instead of crisp threshold, a lingual variable is 

used by utilizing the aforementioned fuzzy 

functions. Several parameters (e.g. brightness, 

density, normalized difference vegetation index, 

NIR ratio, standard deviation etc.) are used for 

setting up the fuzzy rules in order to classify the 

segmented objects. Since the building areas have 

more complexity compared to the others, they are 

not properly segmented in the initial segmentation 

step. Thus, a second level segmentation is 

performed using FbSP (Fuzzy-based segmentation 

parameter) optimizer. This segmentation is 

performed as a supervised manner and thus training 

data is required. A fuzzy rule is set up using four 

different parameters (rectangular fit, elliptical fit, 

area, and shadow neighborhood) in order to classify 

the segmented regions into buildings. Finally, a 

contextual check is performed in order to classify 

some of the unclassified segments if they resemble 

specific classes. Evaluation is performed using two 

different datasets: GeoEye and QuickBird imagery. 

The proposed fuzzy method achieves overall 

accuracies of 82% and 90% compared to 68% and 

42% for crisp method using GeoEye and QuickBird 

datasets. Evaluation shows that the accuracy for 

building classification is low compared to other 

classes.  However, the accuracy achieved is still 

higher than using crisp method. 

 

 

2.3 Per-field Classification 
Traditional automated classification methods 

consider spectral distribution of the pixels and each 

pixel is assigned to the most similar spectral class. 

However, due to intraclass spectral variation, the 

classification result using a very high spatial 

resolution image often generates a „noisy‟ map. An 

alternative technique is the per-field classification, 

which classifies fields (known as „parcels‟) as 

opposed to pixels as independent units. Per-field 

classifier takes the advantages of GIS data and 

integrates it with raster data. Feasibility of the 

integration process using the image processing 

software packages has helped to gain interests in 

recent research studies on per-field scene 

classification. Two of the important per-field 

classification algorithms are briefly presented as 

below: 

Caprioli et al. [47] proposes a per-field 

classification by integrating very fine spatial 

resolution satellite images with topographic data. 

Contextual information is first extracted using 

integrated raster data-GIS data system. This 

approach requires a priori information about the 

boundaries of fields in the image. Boundaries of the 

fields are then digitized and registered to the image. 

Some properties of the pixels lying within 

boundaries of the field are then used to characterize 

those fields. Finally, classification based on those 

fields is performed by developing decision rules 
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with map algebra. IKONOS multispectral images 

having 4m spatial resolution are used as raster data, 

whereas a digital topographic map of scale 1:5000 is 

used as vector data. The data are integrated in a 

geographical information system (ARC/INFO). The 

overall accuracy of their classification procedure is 

measured as 79%.  

Conrad et al. [48] develops a per-field 

classification of crops using SPOT and ASTER data 

with an aim to acquire accurate information on crop 

distribution and crop rotation. At first, field 

boundaries are derived using very high resolution 

SPOT 5 data (ground sampling distance 2.5m) and 

subsequently classified into fields and non-fields 

using Definiens Developer 7. Later, each field-

parcel is classified based on bi-temporal, medium 

spatial resolution ASTER data (ground sampling 

distance 15-30m). A pixel-based basic cover type 

classification is then obtained assuming the tasseled 

cap indices greenness and brightness as 

representative of vegetation density and soil 

wetness, respectively. Within each field-parcel, bi-

temporal information of vegetation density and soil 

wetness is analyzed using ground truth samples and 

cropping calendar to establish a rule-base for the 

final classification. Some of the ground truth 

samples are used for rule generation, while others 

are used for accuracy assessment. The rule-base 

implementation is also developed using Definiens 

Developer 7. The overall accuracy of their per-field 

classification method is evaluated as 80%, with an 

exception of very low accuracy for the class having 

multiple crops. This class has different spatial and 

spectral characteristics and hence an adequate 

number of training samples is essential for better 

discrimination of this class. The use of tasseled cap 

indices greenness and brightness makes this 

classification very flexible and transferrable.  

 

 

2.4 Contextual Classification 
Majority of conventional classification techniques 

only considers pixel‟s spectral information. Their 

results often generate a salt and pepper appearance, 

which leads to misclassification. In remote sensing 

data, adjacent pixels are mostly correlated both 

because imaging sensors acquire significant portions 

of energy from adjacent pixels and because ground 

cover types generally occur over a region that is 

large compared to the pixel size [49]. Thus, instead 

of considering a pixel in isolation as used in per 

pixel classification, a contextual classification 

method considers spatially neighboring pixels, 

which derive more complete contextual information 

for an accurate classification. Notable contributions 

in contextual classification include a frequency 

domain based classification proposed by Farinella et 

al. [50] and a contextual classification based on 

Markov random fields proposed by Kuo et al. [51]. 

Brief descriptions of these algorithms are presented 

as follows: 

Farinella et al. [50] proposes a scene 

categorization method which builds holistic 

representation of a scene by exploiting features 

extracted on discrete cosine transform (DCT) 

domain. Two local features are used to represent 

each 8x8 spatial block of an image: local dominant 

orientation (LDO) of the block and strength of the 

dominant orientation. These local features are 

extracted using the corresponding 8x8 DCT block. 

The LDO is computed as the ratio of sum of DCT 

coefficients corresponding to the vertical and 

horizontal frequencies. The local variance of each 

DCT block (the AC energy) is related to the strength 

of the LDO. The strength of each block indicates 

how much the corresponding LDO needs to be taken 

into account. A holistic representation of an image is 

then built by analyzing the distribution of these 

LDOs. kNN algorithm is used to choose the 

representation parameters like number of bins to 

consider, threshold on strength to consider only 

significant orientations etc. Finally, the proposed 

representation is coupled with term frequency-

inverse document frequency (TF-IDF) weighting 

scheme [52] to select most discriminative LDOs 

between different classes of a scene. Once the 

holistic representation is made, a probabilistic model 

is used for classification. The classifier is trained 

offline considering a dataset is properly collected. 

Then a newly observed scene is classified using a 

simple decision function. For simplicity the 

algorithm focuses on classification of natural and 

artificial classes. A basic assumption made here is 

that the difference between the logarithms of the 

class conditional density functions is linear in the 

vector f representing the images using TF-IDF-

LDO.  

        ( ( |          ))     ( ( |       ))  

       ̂        ̂                                            (16) 

 

Where        ……..     are the TF-IDF weights 

for the d number of bins, and   ̂  is the ith element of 

the d-dimensional feature vector representing an 

image. {         } is the K LDOs and 

{        } is the K AC energies extracted from 

the image.  

                   ̂   
 ( ̂ )

  
                                                (17) 

 

Where  ( ̂ )  ∑     (  )     
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  ̂  ,      - 
    {  | ̂      ̂                 } 

   ∑  ( ̂ )
 
    is the normalization constant 

  is the threshold used to discard marginal 

orientations 

For a binary classification, an observation (f) is 

assigned to one of the two possible classes (natural 

class or artificial class) based on the following 

function: 

           ( )         ̂        ̂              (18) 

 
f is assigned to the class natural if the value of 

the above function is negative, otherwise f is 

assigned to the class artificial. Evaluation is 

performed using number of bins equal to 32 for the 

LDO representation, and the strength threshold � 

equal to 10% of the maximal    extracted from an 

image under consideration. An average accuracy of 

92% is achieved using LDO representation, whereas 

using TF-IDF-LDO representation gives 94% 

average accuracy. Evaluation shows that the 

proposed classification technique can also be 

applied for classification of other classes.  

Kuo et al. [51] proposes a nonparametric 

contextual classification for hyperspectral images. 

Since, classification of a high dimensional data 

requires higher number of training samples, the 

input images are initially reduced in dimension by 

using some feature extraction technique. The spatial 

information of an input image is then obtained on 

the basis of Markov random field (MRF) and finally 

combined with nonparametric density estimation 

obtained by kNN or Parzen. A decision rule to 

determine which class a given d dimensional pixel 

belongs to is formulated based on MAP estimation 

which combines both spectral and spatial 

information and it could be expressed as: 
                      

 ( )        , * ( )| (  )+ * ( )| ( )+-     (19) 
 

Where X is a multivariate image having d 

dimensional pixels, s is a pixel to be classified, and 

u denotes the field that contains the classification of 

each pixel in X. The first term indicates the joint 

probabilities of the class of s and its spatial 

neighbors    and it is modeled by MRF. Whereas, 

the second term indicates the class conditional 

density function, which is modeled by kNN and 

Parzen density estimations and denoted as Bayesian 

contextual classification_kNN (BCC_kNN) and 

Bayesian contextual classification_Parzen 

(BCC_Parzen) respectively. Evaluation is performed 

using three different datasets. Discriminant analysis 

feature extraction (DAFE), and nonparametric 

weighted feature extraction (NWFE) are used in 

order to reduce data dimensionality. The 

performance of the proposed classification method 

is compared to SVM, kNN, Parzen, BCC_Gaussian 

classifications. Testing reveals that the BCC_Parzen 

along with DAFE outperforms the other 

classification methods. 

 

 

2.5 Knowledge-based Classification 
In addition to the high resolution aerial and satellite 

images, several ancillary data has readily been 

available these days. They include digital elevation 

model, soil map, housing and population density, 

road network, temperature, and precipitation [10]. 

These kinds of data can be used in a classification 

process to generate highly accurate classified map. 

Scene classification methods which integrate 

knowledge gained from ancillary data into the 

classification process are known as knowledge-

based classification. Important contributions in 

knowledge-based classification include modeling 

vegetation in urban areas from high-resolution aerial 

imagery proposed by Iovan et al. [53], knowledge-

based classification for finding the unstructured road 

boundaries proposed by Chern [54]. Their methods 

are discussed as below: 

Iovan et al. [53] proposes a vegetation modeling 

method using multiview high resolution color 

infrared aerial images. Initially, digital surface 

model (DSM) is computed using multiview 

matching algorithm. Cadastral data is used to obtain 

digital terrain model (DTM). A normalized digital 

surface model (nDSM), containing the height of 

above ground objects, is computed as the difference 

between DSM and DTM. A SVM with linear kernel 

is then used in order to extract vegetation. For all 

pixels in the training dataset, the feature vector 

contains four characteristics, namely, the reflectance 

values of each pixel in the infrared (IR), red (R), 

green (G), and blue (B) bands.  Local height 

variance is then computed in those vegetation areas 

corresponding to the DSM as: 
 

                               ∑
(     ) 

(   )
                                 (20) 

 

Where     is the height value of pixel (   ) on 

DSM,   equals to the number of pixels in a 11 x 11 

sliding window, and   is the mean value of the 

moving window. The height variance values are 

separated into low and high level values to separate 

trees from vegetation areas. Once trees are detected, 

individual tree crown is delineated using a two-step 

approach: seed point detection and region growing 
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(RG) algorithm. Subsequently, the crown diameter 

is measured. Three-height is also computed using 

the nDSM. Finally, first and second order texture 

measures are computed to classify different species 

of trees. Evaluation shows that the SVM based 

classifier outperforms normalized difference 

vegetation index (NDVI) with a vegetation 

extraction accuracy of almost 99% compared to 

88% of NDVI. Use of normalized DSM attains a 

tree detection accuracy of 97%. The proposed RG 

algorithm shows 78% accuracy in tree crown 

delineation. Finally, the texture analysis achieves an 

accuracy ranging from 96% to 100% using feature 

vectors computed at different color spaces and also 

using different texture measures. 

Chern [54] proposes a knowledge-based region 

classification for locating unstructured road areas. In 

order to reduce the processing time, input images 

are downsampled first. After that an unsupervised 

color classification method is used to classify pixels 

of similar color and brightness. A region growing 

technique is then used to cluster local pixels of 

similar color into small regions. During this process 

the color mean value of each region is updated. The 

small regions are then merged into larger 

homogeneous regions by applying Fischer‟s 

criterion. If    and    are the mean values of two 

small regions and    and    are their variance 

values, the Fischer between these two regions 

is |     | √  
    

 . The Fischer distance 

between two regions is expressed as: 
                        

           

√                                              (21) 
 

Where                   and          are the 

Fischer values in the three color channels. If the 

Fischer distance between two neighboring regions is 

smallest among all others, then those two regions 

can be merged. Once the scene is segmented into 

regions using the above method, a set of rules are 

proposed based on the knowledge of human 

judgment of “road” and “off-road” in various road 

scenes. Using these rules, the segmented regions are 

mapped into seven categories. Then the borders of 

the appropriate neighboring regions are considered 

to find the edge points for the unstructured roads. 

For each edge point detected in this step, a score is 

assigned to the corresponding edge using the scene 

with segmented regions as:   

                      edge_score = max (     )               (22) 
 

Where    = Σ |r, g, b diff. between the edge‟s left 

and right region| 

   = Σ |r, g, b diff. between the edge‟s upper and 

lower region| 
 

   
 

(     )
   

 

(     )
   

 

(     )
 

 
The boundary edge points are traced and then the 

merit of each traced edge-link sequence is evaluated 

based on edge score. A path searching algorithm is 

used to acquire possible edge-link sequences (road 

border candidates). Finally, the candidate with 

smallest deviation from simple approximation curve 

is regarded as road border. More than hundred road 

scenes are tested using this proposed method with 

satisfactory results. 

Yi et al. [55] proposes a knowledge-based 

classification for urban mapping. Their method uses 

three modules: primitive extraction, explicit 

knowledge representation, and contextual reasoning. 

Initially, object oriented segmentation is achieved 

by combining nearest neighbor classification with 

canny edge detection and garbo filter. Then 

semantic networks are used to represent the 

knowledge for different pattern understanding tasks.  

These networks are implemented in ERNEST [56]. 

The nodes in the network represent the concepts 

expected to appear in the scene with respect to the 

object, whereas the links indicate the relationship 

between the concepts. Data structures called 

attributes are used to describe the properties of 

concepts. The contextual reasoning integrates a 

bottom-up and a top-down search algorithm within 

the semantic network. A goal concept is first 

selected and then the concepts on lower levels are 

expanded until the concept on the lowest level is 

reached. The correspondences of this concept with 

an extracted segment along with its attributes are 

calculated. Analysis is then done in a bottom-up 

approach. Several true color aerial images are used 

for evaluating the comparative performance of the 

proposed method and maximum likelihood-based 

method. The classification result shows that the salt-

an-paper appearance in the maximum likelihood-

based classified map is significantly improved in the 

proposed method based map. 

 

 

2.6 High-level Classification 
The conventional classification methods take into 

account only the physical features on the input 

images. High-level classifications consider not only 

the physical attributes, but also the pattern formation 

of the input data. Thus, high level classification 

approaches are based on human visual perception 

which uses both high and low levels classification in 
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order to identify the patterns according to the 

semantic meaning of the input data. As a result, 

these type of classifiers exhibit improvements in the 

performance accuracies when compared to the 

traditional classifiers. Significant contributions 

include scene classification based on an improved 

standard model feature proposed by Huang et al. 

[57], network-based high level classification 

proposed by Silva et al. [58]. These two algorithms 

are presented as below: 

Huang et al. [57] proposes a scene classification 

algorithm based on improved version of standard 

model feature (SMF), which works on the basis of 

human visual cognition system. Even though local 

descriptors perform satisfactorily in scene 

classification, most of them suffer either from weak 

robustness or poor selectivity. Basic SMF, on the 

other hand offers higher robustness and selectivity. 

Feature extraction using SMF has four steps namely 

S1, C1, S2, and C2 [59]. Output vectors of SMF 

consist of minimum distance between C2 output and 

learned prior patches. However, patch 

extraction/learning procedure in basic SMF is 

completely random, which causes computational 

complexity of the SMF model. Inspired by the fact 

that humans usually pay more attention on salient 

features, an energy function is used to represent 

patch saliency instead of choosing patches 

randomly. Since Gabor filter responses are salient, 

they are used in local maximum operation in the 

first stage of SMF. 
                                 

 (   )     . 
(  

      
 )

   
/        (

  

 
  )         (23) 

 
Where                and           
     . Filter orientation is    aspect ratio 

is    effective width is    and wavelength is  . Based 

on the idea that the sum of local mask area 

represents energy density, a local energy 

measurement is conducted after the S1 stage and the 

result is used for patch extraction/learning. The 

procedure of computing local energy distribution is 

time-consuming and hence dynamic programming is 

used. Finally, a SVM-based classifier is trained 

based on the features extracted using the 

aforementioned improved SMF model.  Evaluation 

is performed using both a public database having 13 

categories of natural scenes, and a self-built 

database. Experimental results show that the 

proposed model outperforms SIFT and original 

SMF, particularly in the presence of occlusion and 

disorder. The proposed model achieves 70% 

accuracy in the occlusion and disorder database and 

81% in the illumination change and view angle 

change database. 

Silva et al. [58] proposes a network-based hybrid 

classification technique, which combines both low 

and high level classification. The low level classifier 

is implemented by a classification technique 

presently available (kNN, Bayesian decision theory, 

neural network, decision tree, committee machines), 

whereas the high level classifier is realized by the 

extraction of features of the underlying network 

constructed from the input data.  The low level 

classifier classifies the input data by its physical 

features or class topologies. The high level classifier 

measures the compliance of the input data to the 

pattern formation. The training phase of the high 

label classifier maps labeled training datasets into a 

graph/network using a network formation technique. 

The graph is composed of vertices (�) and edges 

(E), where each vertex represents one training data. 

Edges are created between vertices using a 

combination of Є-radius (used for dense regions) 

and kNN (used for sparse regions) network 

formation technique. The neighborhood of a training 

vertex    is given by: 
      

         (  )  

{
         (      )    |         (      )|   

   (      )                                                             
 

                            (24) 
 

Where     is the class label of the training 

instance             (      ) returns the set 

2        (     )             3,    (      ) 

returns the set containing the k nearest vertices 

having the same class as   . Using this graph 

formation technique each class will have a unique 

graph component. In the classification phase the 

compliance of each unlabeled instance is measured 

to each class pattern using number of complex 

topological features. Combining the membership of 

a test instance with respect to a given class obtained 

using low label and high level classifiers gives the 

membership using a hybrid classifier as: 
 

               
( )

 (   )  
( )
    

( )
                              (25) 

 

Here   
( )
 indicates the membership of test 

instance    with respect to the class j.    
( )

 is the 

membership produced by low level classifier, 

whereas   
( )
 is the membership information yielded 

by a high level classifier, and   ,   - is the 

compliance term. A test instance receives the label 
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from the class j that maximizes the above hybrid 

membership function. Performance is evaluated 

using five well-known low label classifiers 

(Bayesian network, weighted kNN, fuzzy C4.5, 

multilayer perceptron, fuzzy multiclass SVM) on 

eight distinct datasets.  Evaluation shows that 

classification accuracy is always less when only low 

label classifiers are used compared to the higher 

classification accuracy when hybrid classifiers are 

used. 

 

 

3 Conclusion 
Scene classification is an important task in the field 

of computer vision. Classification algorithms can be 

per-pixel, sub-pixel, per-field, contextual, 

knowledge-based, and high-level. Success of a 

classification method depends on several factors. 

Per-pixels classification methods are mostly used in 

practice. However, they suffer from mixed pixel 

problem, particularly for medium and coarse spatial 

resolution data. Sub-pixel classification methods can 

overcome the problem associated with mixed pixels 

in medium and coarse spatial resolution data. For 

fine spatial resolution data, the mixed pixel problem 

is reduced. However, the presence of object 

shadows and intraclass spectral variation makes this 

type of data particularly unsuitable for per-pixel 

classification methods. Per-field and contextual 

classification methods are mostly suitable for fine 

spatial resolution data. When ancillary data is 

available, knowledge-based methods are optimal as 

scene classifiers. High-level classification methods, 

which have highest correlation to the human visual 

cognition system, seem to offer best result for 

almost any type of data, but at the cost of 

computational complexity. Thus, success of a scene 

classification method depends on several factors and 

there is no single best classification method. 

Furthermore, the continuous advent of new 

classification methods in recent years makes it really 

difficult to choose a suitable classification method 

for a specific purpose. Hence, this paper aims at 

providing a guide for selecting appropriate 

classification method by giving brief knowledge 

about different classification methods. This survey 

also highlights the evaluation and achievements of 

each of those classification methods.   
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