
Combining spectral and fractal features for emotion recognition on 

Electroencephalographic signals 
 

CAMILO E. VALDERRAMA, GONZALO ULLOA 

Information and telecommunications technologies research group 

Universidad Icesi 

Calle 18 # 122-135, Cali, Valle del Cauca 

COLOMBIA 

cevalderrama@icesi.edu.co, gulloa@icesi.edu.co 
 

 
Abstract: - Recent studies have attempted to recognize emotions by extracting spectral and fractal features from 
electroencephalographic signals; however, up to now none of them have combined these two features to 
recognize emotions. This paper aims at providing a comparison between an accuracy rate of an approach that 
recognizes emotions by extracting both spectral and fractal features with that of those that extract only one of 
these features. To this end, we designed and implemented a procedure that recognizes positive and negative 
emotions by extracting spectral, fractal, or both features. Next, using this procedure, we built three different 

approaches to recognize positive and negative emotions; the first one extracted both spectral and fractal 
features, whereas the other two extracted each type of feature separately. Then, the accuracy rate of the 
approaches was calculated and compared among them. The comparison showed that the spectral-fractal 
approach recognizes emotions more accurately than the spectral and fractal approaches in 96% and 79% of the 
time, respectively. This suggests that it is possible to develop a more effective emotion recognition method by 
extracting both spectral and fractal features than extracting only one type of them. 
 

 

Key-Words: - Affective Computing; Discrete Wavelet Transform; Electroencephalogram; Emotion recognition; 
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1 Introduction 
Emotion is a key aspect of human beings, which 

determines how a human reacts when interacting 

with another being or a specific situation. 

Nowadays, with the current proliferation of 

computers in the human life, humans perform many 

of their daily tasks using computers. However, these 

devices are unable to perceive human emotions, 

disabling the emotional aspect in the human and 

computer interaction. Being conscious of this, recent 

studies in Human-Computer interaction have 

attempted to endow machines with the ability to 

recognize human emotions. The importance of 

accomplishing this late objective is that it will give 

to machines the capacity of properly responding to 

the users’ emotional state, improving thus the 

human-machine interactions and making the 

experience more pleasant for the users [1]. 

To recognize emotions, researchers have used 

many methods. One first method is through facial 

gestures and voice ([2, 3]), but although this has 

obtained high accuracy rates, it is unreliable because 

an individual could easily imitate both facial 

gestures and voice, manipulating the experiment’s 

output. Another method is analyzing physiological 

signals from the Automatic Nervous System (ANS); 

this claims that this kind of physiological signals 

reflect the emotional changes that occur inside the 

body. Thus, skin conductance, pupil dilation and 

heart beat have been used for this purpose ([4, 5]). 

However, the disadvantage of this method is that 

other physiological processes affect the ANS 

signals, adding to them physical activity that is 

different from emotional experience.  

A third method to recognize emotions is the 

analysis of brain activity using neuroimaging 

techniques. These techniques overcome some of the 

limitations that arise with the other two methods 

since it captures the emotional experience occurring 

in the central nervous system, which is less 

influenced by physiological processes and harder to 

manipulate by a person. Regarding the 

neuroimaging techniques, the technique that offers 

more advantages is Electroencephalography (EEG), 

which is less intrusive and has better resolution time 

than other techniques such as 

Magnetoencephalogram (MEG), Positron Emission 

Tomography (PET) and functional Magnetic 

WSEAS TRANSACTIONS on SIGNAL PROCESSING Camilo E. Valderrama, Gonzalo Ulloa

E-ISSN: 2224-3488 481 Volume 10, 2014



Resonance Imaging (fMRI). Consequently, 

conscious of the advantages offered by 

electroencephalography, recent studies have been 

focusing in the analysis and process of 

electroencephalographic signals to recognize 

emotions.   

The way to recognize emotions from 

electroencephalographic signals is by developing a 

procedure that processes the signals, extracts feature 

from the signals, and classifies these features into a 

type of emotion. Thus, Petrantonakis and 

Hadileotiadis [6] developed a filtering procedure to 

decompose the electroencephalographic signals and 

to extract features from them. Then, they used four 

different classification methods to identify six 

emotions, obtaining an accuracy rate of 85.17%. 

Murugappan et al. [7] used the Discrete Wavelet 

Transform (DWT) for signal processing and feature 

extraction, and then, they classified five emotions 

using Support Vector Machines (SVM). Schaaff and 

Schultz [8] extracted features from the alpha 

frequency band to recognize three emotions induced 

by images. 

Generally, most of the previous works have 

recognized emotions by extracting spectral features 

from frequency bands of the signals (e.g., [9], [10], 

[11], [12], [13] and [14]). However, some works 

have started to recognize emotional states by 

extracting features through fractal analysis. Thus, 

Liu et al.[15] extracted fractal features from 

electroencephalographic signals to detect the 

valence and arousal levels induced by musical 

tracks on subjects. Likewise, Sourina and Liu [16] 

developed a serious game that recognizes the 

player’s emotional states by applying fractal 

techniques. 

Up to now, little work has extracted spectral and 

fractal features jointly to recognize emotions. 

Nonetheless, Brodu suggested that combining 

spectral and fractal features allows recognizing 

neural patterns in better manner than using only 

spectral features [17]. Based on this idea and on the 

fact that it is necessary to continue conducting 

research to improve emotion recognition rates and 

develop more effective feature extraction methods 

[6], a comparison between an approach that extracts 

both spectral and fractal with those that extract only 

one type of these features would be of considerable 

interest, particularly with regard to recognize 

emotions in a more accurate manner. 

In this paper, therefore, we compare the accuracy 

rate of an approach that recognizes emotions by 

extracting both spectral and fractal features with that 

of approaches that extract only spectral or fractal 

features independently. To this end, we designed 

and implemented a procedure that recognizes 

positive and negative emotions by extracting 

spectral, fractal, or both features. Next, using this 

procedure, we built three different approaches to 

recognize positive and negative emotions. The first 

approach extracted both spectral and fractal 

features, and the other two extracted each type of 

feature separately. Then, we calculated the accuracy 

rate of each approach, and finally we compared the 

rates among them. Our obtained results suggest that 

extracting both spectral and fractal features allows a 

better accuracy rate than extracting only one type of 

these features. 

The remainder of the article is organized as 

follows: Section 2 describes the experiment that we 

used to induce emotions on subjects. Section 3 

presents the procedure we designed and 

implemented to detect emotions. Section 4 shows 

the results, and finally, Section 5 presents the 

discussions and conclusions of the article. 

 

 

2 Experiment design 
In this paper, we compare the accuracy rates of 

emotion recognition approaches that extract spectral 
and fractal features separately and jointly. For this 
purpose, we first designed an experiment to induce 
the emotions used in the comparison process. Thus, 
our experiment induced positive and negative 
emotions using pictures from the International 
Affective Picture System [18], which is a large set 

of colored pictures for eliciting emotions. Since this 
set contains a lot of pictures, we had to carefully 
select the appropriate pictures to induce the desired 
emotions. To this end, we used the valence-arousal 
model, which quantitatively measures emotions 
using two dimensions; the valence axis that varies 
between pleasure and displeasure, and the arousal 

axis that varies between calm and excitement.  
Since we wanted to induce positive and negative 

emotions, which are a general type of emotions, 

before selecting the pictures we established positive 

emotions as pleasant stimuli and negative emotions 

as unpleasant stimuli. According to Lang [19], the 

pleasant stimuli are located in the high arousal and 

high valence subspace of the valence-arousal model 

supplied by the International Affective Picture 

System (Fig. 1a), whereas unpleasant ones are 

located in the high arousal and low valence 

subspace. Thus, to select the pleasant and 
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(a) Arousal-Valence Model of the IAPS pictures 

[20].  

 

(b) Arousal-Valence Model of the selected pictures. 

Fig. 1: Arousal-Valence Model of the pictures. 

 

 

 

Fig. 2 Sequence of images 

 

unpleasant pictures, we first ordered the images in a 

descending manner, taking arousal as the first 

discriminating value and valence as the second 

characteristic. Next, we chose ten images with high 

arousal and valence values as pleasant stimuli, and 

ten with high arousal and low valence values as 

unpleasant stimuli. Figure 1b shows the valence-

arousal diagram of the selected images, and Table 1 

shows the set of images selected. 

Table 1. Selected pictures. 

UNPLEASANT PICTURES 

Id Title 
Valence 

value 
Arousal 

value 

1120 Snake 3,79 6,93 
3000 Mutilation 1,59 7.34 
3001 Headless Body 1,62 6,64 
3080 Mutilation 1,48 7,22 

3170 Baby Tumor 1,46 7,21 
3500 Attack 2,21 6,99 
6230 Aimed Gun 2,37 7,35 
9410 Soldier 1,51 7,07 
9908 Car Accident 2,34 6,63 

3010 Mutilation 1,79 7,26 

Mean 2,02 7,06 
Standard Deviation 0,72 0,27 

PLEASANT PICTURES 

Id Title 
Valence 

value 

Arousal 

value 

4668 Erotic Couple 6,67 7,13 

5621 Sky Divers 7,57 6,99 
8030 Skier 7,33 5,35 
8179 Bungee 6,48 6,99 
8185 Skydivers 7,57 7,27 
8186 Sky surfer 7,01 6,84 
8341 Wing walker 6,25 6,40 
8492 Rollercoaster 7,21 7,31 

8501 Money 7,91 5,22 
8163 Parachute 7,14 6,53 

Mean 7,11 6,93 
Standard Deviation 0,52 0,36 

 

Using these 20 selected pictures, we built a video 

sequence. The sequence was built locating an 

unpleasant picture followed by a pleasant one, 

repeating this pattern until all the pictures were 

placed. In order to neutralize the emotional state of 

the viewer during the transition between two 

pictures, a gray screen was placed in the middle of 

the two. Every picture and every gray screen was 

projected for five seconds, and as result, the 

sequence last a total of 200 seconds. Fig. 2 shows 

the built video sequence. 

The recording of the electroencephalographic 

signals was performed in a laboratory environment 

with proper temperature and illumination. We used 

a device ML 4818 PowerLab T15 to capture the 

signals, and the software LabChart to record these 

signals on a computer (Intel Core 2 Duo, 2.33 GHz); 

both the capture device and the software are from 

the AD-Instrument company. The signals were 

recorded using four electrodes of the International 

10/20 System at a rate of 1000 Hz.  

The four selected electrodes 

were          and    . The electrodes    and    

were chosen because they are located in the 

occipital lobe, which is the brain zone that initiates 

the visual process by perceiving the shape, 

movement and color of the observed object [21], 

and the electrodes     and     were chosen because 

WSEAS TRANSACTIONS on SIGNAL PROCESSING Camilo E. Valderrama, Gonzalo Ulloa

E-ISSN: 2224-3488 483 Volume 10, 2014



 

Fig. 3 Electrodes’ montage. 

 

they are located in the frontal lobe, which is a zone 

that participates in the processing of the emotions in 

the brain [22]. Using these four electrodes, we 

established two brain channels, 

         and          to measure the brain activity 

in both right and left hemispheres. Fig. 3 shows our 

montage using the International 10/20 System as 

reference.  

To carry the experiment out, we selected ten 

mentally sane persons (five males and five females), 

aged between 18 and 28. The experiment was 

individually performed with each participant. Before 

the experiment started, each participant was 

informed about the protocol and details of the 

recording process. When the instructions were clear 

to the participant, we sat him/her in front of a 

computer screen, and then, we placed an 

electroencephalograph’s cap onto his/her head. In 

order to minimize noise and artifacts in the 

electroencephalographic signals, the participant was 

warned to remain as still as possible during the 

projection of the video sequence. Additionally, the 

participant was also warned to avoid blinking during 

this phase.   

Once the participant was ready to start the 

experiment, we projected the video sequence. The 

video sequence started with a gray screen whose 

function was to neutralize the emotional state of the 

participant. Next, an unpleasant picture was showed, 

followed by a new gray screen, and then, it was 

followed by a pleasant picture. These four pictures 

(the two gray screens, the unpleasant picture and the 

pleasant picture) composed a run, and each picture 

lasted five seconds. The video sequence was 

composed by 10 runs, having a total time of 200 

seconds. While the participant was observing the 

pictures, we captured his/her 

electroencephalographic signals using the brain 

channels          and         .  

When the sequence ended, the participant filled 

out a survey, indicating for each pleasant and 

unpleasant picture whether it generated positive or 

negative emotions to him/her. Table 2 shows the 

results of the answers of all the participants. In these 

results, it is observed that in the majority of cases 

the participant perceived the proper emotions. 

Consequently, the selected pictures reliably induced 

positive and negative emotions on the subjects.  

 
Table 2. Self-Assessment of the positive and 

negative emotions induction. 

SUBJECTS' 
ANSWER 

IAPS CATEGORIZATION 

Pleasant 
stimuli 

Unpleasant 
stimuli 

Positive 
emotions 

83,75% 2,50% 

Negative 
emotions 

6,25% 85,00% 

Don't know 10,00% 12,50% 

 
 

3 Procedure 
Once positive and negative emotions were induced 

on subjects, the next step was to design and to 

implement a procedure for recognizing these 

emotions. To this end, we based on a previous 

literature review of emotion recognition made by 

the authors [23]. In this section, we introduce the 

procedure (Fig. 4) used to build all the approaches 

that are compared in this article. The only stage of 

the procedure that differs among all the approaches 

was the feature extraction stage, which in the first 

approach extracted both spectral and fractal features 

whereas in the other two ones extracted each feature 

separately. In the following subsections, we explain 

how each of the stage of the procedure was made.  

 

3.1 Raw signal 

After we project the video sequence to each 

participant, a total of 20 electroencephalographic 

signals were obtained. Since we used the brain 

channels          and           to record the 

signal, the half of these recorded signals were from 

the right hemisphere and the other half were from 

the left hemisphere.  

Later, we created a sample set using the 

electroencephalographic signals. To this end, we 

first created a sample set for each signal by dividing 

the signal into 40 samples of five seconds. Each of 

the 40 samples corresponded to one of the pictures 

of the video sequence; thus, we obtained 20 samples 
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Fig. 4 The Proposed Scheme 

 
for the gray screens, 10 samples for the unpleasant 

pictures and the 10 samples for the pleasant 

pictures. Then, we discarded all the samples 

corresponding to the gray screens, keeping only the 

samples corresponding to the pictures. Once the 

sample set was created for each signal, we 

combined all the individual sets (40 samples 

/participant) into a final set of 400 samples. This 

later set was used as an input for the emotion 

recognition procedure. 

 
 

3.2 Pre-processing Stage 
In this stage, the samples were pre-processed 
removing noises and other brain activities caused by 
the experiment and the reference points (ground and 
Cz electrode).  
 
3.2.1 Noise Elimination 

In order to remove noise and artifacts caused in the 
experiment, we applied threshold techniques based 

on the Discrete Wavelet Transform (DWT). The 
procedure was applied to each sample as follows: 
first, the sample was decomposed into 12 levels 
using the Daubechies-4 as Mother Wavelet. Then, 
the threshold value was calculated and normalized 
using the Eq. 1,  

         
          

   

      
  (1) 

where     
    is the set of wavelet detail coefficients 

of the first decomposition level, and   is the 

number of points of the sample.  
Later, using the calculated threshold value, a soft 

thresholding was performed on the wavelet detail 

coefficients applying the following equation: 

        
        

      
     , (2) 

where   is the  -decomposition level;  ,      

    , specifies the  -coefficient of the   
decomposition level; and     is the sign function. 

Lastly, the sample without noise was obtained 

applying the Inverse Discrete Wavelet Transform to 

the modified coefficients. As an illustration, Fig. 5 

shows what happens after removing the noise on 

one sample obtained in the experiment. 

 
3.2.2 De-referencing 

Besides the noise, the recorded 
electroencephalographic signals are also affected by 
the activity of the reference points used to capture 
the signals. Electroencephalography compares 
voltage measurements between an electrode and a 
reference point. Therefore, the obtained electric is a 
combination of both the electrode and the reference 

activity. 
In our study, the activity caused by the reference 

points Cz and ground was removed applying the 

Current Source Density (CSD) technique. This 

technique defines the brain activity at each electrode 

as the voltage difference between the electrode and 

the weighted average of the surrounding electrodes. 

Thus, the CSD is estimated with the following 

equation: 

     
 

          
      

          

   

  (3) 

where             are neighbor electrodes located 

around the electrode of interest. 

Since our approach uses only two neural 

channels, one for each brain hemisphere, the CSD 

was performed as follows: 

                                   
where   is the sample obtained in the right 

hemisphere,   is the sample obtained in the left 

hemisphere, and  ,      , is the n-point of 

each sample.  
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Fig. 5 Denoising Process 

 
 

3.3 Extraction Features Stage 
This stage is responsible for extracting features from 
the input samples. Since each of the approaches 
used a different set of features to recognize the 
induced emotions, this stage was different for all the 

approaches. Thus, the first approach extracted both 
spectral and fractal features, the second one 
extracted spectral features, and the third one 
extracted fractal features. At the end of this stage, 
the extracted features were consolidated using 
Principal Component Analysis. In this subsection, 
we explain the methods used to extract spectral and 

fractal features from the input samples and the 
process for consolidating such features. 
 

 

3.3.1 Spectral Features Extraction 

Spectral features are obtained decomposing a signal 
into its frequency components and calculating 
statistical and energy functions over them. In this 

study, we obtained the frequency components of the 
samples using the Discrete Wavelet Transform. This 
transform decomposes a signal in both time and 
frequency resolutions, providing at what time the 
frequency components occur. To this end, the signal 
is decomposed into levels using successive pairs of 
low-pass and high-pass filters (a signal of N points 

can obtain as maximum       levels). At the end 
of each level, the pair of filters halves the signal’s 

frequency and outputs a set of coefficients, which 
are called detail coefficients for the high-pass filter 
and approximation coefficients for the low-pass 
filter. The number of wavelet coefficients obtained 

at the   level is     , where             , and 

  is the number of points of the signal. This process 

is repeated until every decomposition level is 

performed, taking the approximation coefficients of 
the level   as input of the     level.    

In our work, we established the number of 

decomposition levels applying the Nyquist’s 

Theorem, which states that the greatest frequency 

component of a signal is equal to half of the sample 

rate. Therefore, because the samples were recorded 

at 1000 Hz, the greatest frequency component of the 

samples was 500 Hz. Consequently, the samples 

were decomposed into 7 levels using the 

Daubechies-4 Mother Wavelet (Table 3).  

 

Table 3. Frequency Decomposition. 

Level 
Frequency 
Range (Hz) 

Coefficients 
Corresponding 

Subband 

1 250.00-500.00 d1  
2 125.00-250.00 d2  
3 62.50-125.00 d3  
4 31.25-62.50 d4 Gamma 
5 15.63-31.25 d5 Beta 
6 7.81-15.63 d6 Alpha 

7 3.91-7.81 d7 Theta 
7 0-3.91 a7 Delta 

  
Once the sample is decomposed into its wavelet 

coefficients, the next step is to properly choose the 

coefficients that contain the most useful 

information, which, according to wavelet theory, are 

those with the highest amplitude. To this end, we 

applied the Discrete Wavelet to two special 

samples; the first one was the average of all the 

samples recorded on the left hemisphere, and the 

second one was the average of all the samples 

recorded on the right hemisphere.  
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Fig. 6 Discrete Wavelet Transform of the samples 

 
 

Figure 6 shows the obtained wavelet coefficients 

of these special samples. The coefficients with the 

most amplitude were located between 0 and 62.5Hz 

(a7-d4). However, although a high correlation was 

presented in low frequencies, we discarded these 

coefficients because frequencies below 4 Hz are 

associated with eye movements and blinking and 

those below 1.2 Hz are related to cardiac 

movements. Likewise, frequencies above 30 Hz 

were also discarded because they are related to 

muscular reflexes [6]. Therefore, we only 

considered the detail coefficients d5, d6 and d7, 

which correspond to the ranges 3.91-7.81Hz, 7.81-

15.63Hz and 15.63-31.25Hz, respectively. 

Therefore, we extracted spectral features from 

each of sample as follows: we first applied the 

Discrete Wavelet Transform to the sample, and then 

we used the detail coefficients of levels five through 

seven to calculate the 11 measures shown in Table 

4. Finally, once all the measures were calculated, 

they were concatenated into a vector feature, 

constituting, hence, a final vector of dimension 187.  

 

 
Table 4. Spectral features. 

Feature Description Equation 
Dimension 

Length 

Logarithmic 
Potency 

Measures the 
logarithmic potency 
of the detail 
coefficients at   level. 

        
 

 
    

 
 
 

 

   

  

 : the number of coefficients at j 

level 

3 values, one 

per each 
frequency 
band. 

Logarithmic 

Energy 

Measures the 
logarithmic energy of 
the detail coefficients 
at   level. 

            
 
 
 

 

   

  

 : the number of coefficients at j 
level 

3 values, one 
per each 

frequency 
band. 

Energy 

Measures the energy 
of the detail 

coefficients at   level. 

       
 
 
 

 

   

 

 : number of coefficients at j level 

3 values, one 
per each 
frequency 
band. 

Continue in the next page 
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Table 4 - Continuation of the previous page 

Feature Description Equation 
Dimension 

Length 

Entropy 

Measures the entropy 

of the signal. It 
represents signal’s 
nonlinearity. 

     
  

  
     

   

  
 

 

   

 

 : number of decomposed levels 

    Energy at   level 

  : Sum of the energy of the three 
selected frequency bands 

1 value for the 
entire sample. 

Alree 
Energy 

Measures the absolute 
logarithmic value of 
the energy efficiency 
at j level. 

            
  

  
   

    Energy at level   

    Sum of the energy of the three 
frequency bands selected 

3 values, one 
per each 
frequency 
band. 

Alrpe 
Potency 

Measures the absolute 
logarithmic value of 
the potency efficiency 

at j level. 

            
  

  
   

    Energy at level   

    Sum of the potency of the three 

frequency bands selected 

3 values, one 
per each 
frequency 

band. 

Mean 

Measures the mean of 

the detail coefficients 
at   level. 

   
 

 
   

 

 

   

 

 : number of coefficients at   level 

3 values, one 
per each 
frequency 

band. 

Standard 
Deviation 

Measures the standard 
deviation of the detail 
coefficients at   level. 

    
 

   
       

 
 
 

 

   

 

M: mean at j level 
   number of coefficients at   level 

3 values, one 
per each 
frequency 
band. 

Maximum 
Determines the 
maximum detail 
coefficient at   level. 

 

           
 
   

 
     

 
  

 : number of coefficients at   level 

3 values, one 
per each 
frequency 
band. 

Minimum 
Determines the 
minimum detail 
coefficient at   level. 

 

           
 
   

 
     

 
  

 : number of coefficients at   level 

3 values, one 

per each 
frequency 
band. 

SVD 

Measures the square 
root 

of the      matrix’s 
eigenvalues. 

            

   

  

  

  

  

where    is the set of coefficients at   
level 

159 values for 
the entire 
signal. 

 

3.3.2 Fractal Features Extraction 

Fractal features is a suitable indicator to analyze the 
irregular and scaling properties of physiological 

signals [24, 25]. As consequence, in this work we 
extracted fractal features to properly analyze the 
irregular and scaling behavior of the obtained 
electroencephalographic signals. We extracted the 
fractal measures using two fractal techniques: the 
multifractal analysis and the fractal dimension. The 

first technique evaluates a repartition of the different 
irregularities present in a signal, providing a global 
distribution of the signal’s irregularities, and the 

second technique measures the self-similarity of the 
entire signal.    

To calculate the multifractal analysis, the 

wavelet transform is a very attractive technique 

because it can properly quantify the irregularities 

distribution of the signal [26]. Therefore, in this 
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work the multifractal analysis was calculated using 

the Discrete Wavelet Transform following the steps 

proposed by Manimaran et al. [27].  This procedure 

was applied to each sample obtained after the pre-

processing stage.  

At the beginning of the procedure, the profile 

signal of the input sample was determined using the 

following equation: 

             

 

   

          (4) 

where    is the      element of the input sample  , 

   is the average of input sample, and   is the 

number of points in the input sample  . Next, this 

profile signal was decomposed into 10 

decomposition levels using the Discrete Wavelet 

Transform.  

Next, for each of the 10 decomposition levels, 

the fluctuation segments of the level were 

determined. To accomplish this, first the polynomial 

behavior of the level was calculated by applying the 

inverse discrete wavelet transform on the 

approximation coefficients of the level. Then, the 

fluctuation of the level was calculated by 

subtracting the Profile signal with the polynomial 

behavior of the level.  Subsequently, the fluctuation 

of the level was divided into non-overlapping     

segments; here    equals     , where   is the size 

of the sample and s         is the scale of the 

level, which depends of the level    and the 

cardinality of mother wavelet’s filters    . The first 

   segments were determined splitting the sample 

from start to finish, and the last    segments were 

determined splitting the sample from finish to start. 

Table 5 shows the number of fluctuation segments 

that was obtained per decomposition level. 

 

Table 5. Number of fluctuation segments per level. 

Level Scale 
Number of fluction 

segments 

1 4 2500 
2 8 1250 

3 16 624 
4 32 312 
5 64 156 
6 128 78 
7 256 38 
8 512 18 
9 1024 8 

10 2048 4 

 

Later, the     order fluctuation function of each 

scale was calculated. To this end, first the variance 

of each segment of each scale was calculated, and 

then,      order fluctuation function was calculated 

as follows:  

       
 

   
              

   

   

 

   

  (5) 

where the variance of the fluctuation segment 

           of the scale   is represented by the 

notation        . The variable   is the order of 

moments, and it is defined for an interval of 

integers. In our approach, the values of   ranged 

between -41 and 41. Once the     order fluctuation 

function was calculated for each scale   and for each 

order moment  , we obtained the following matrix:   

 

              

              
 
 

          

          

    
                      

 . 

In the obtained matrix, each row was a 

fluctuation function of the   order. Using each 

fluctuation function, the scale exponent (    ) of 

the order moment   was calculated by the 

relation            . Thus, the scale exponent 

     was determined by calculating the slope of the 

logarithmic-logarithmic curve       vs. the scales  . 

When the scale exponent was calculated for every 

order moment  , we obtained the following vector: 

                          . 

Then, the values of this vector were used to 

calculate the singularity spectrum    . First, the 

multifractal scale exponents were determined by the 

relation             , and finally the 

singularity spectrum was determined using the 

Legendre Transform,         and         
    .  

To show the reader what was obtained after 

applying multifractal analysis to a sample and how 

was extracted the fractal features, we performed the 

multifractal analysis to two special samples; the first 

sample was the average of the samples induced by 

unpleasant stimuli, and the second one was the 

average of the samples induced by pleasant stimuli. 

Fig. 7 shows the singularity spectrum obtained. As 

we see at the figure, the singular spectrum is a curve 

that has a maximum value of one.  
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Fig. 7. Singularity Spectrum of the Signals. 

 

 

 
We extracted the fractal features from the 

singularity spectrum as follows: 

1. The maximum value of the singularity 
spectrum was identified.  

2. The singularity exponent (value on the x 
axis), which corresponds to the maximum 
value of the singularity spectrum, was 
identified. 

3. The two left points that adjoin with the 
selected singularity exponent at step 2 was 
taken. 

4. The two right points that adjoin with the 
selected singularity exponent at step 2 was 
taken. 

5. A vector with the five selected singularity 

exponents was built. 
Thus, for the Fig. 7, the singularity exponents 

was                                      for 

the average of the samples induced by unpleasant 

stimuli (blue curve), whereas they 

was                                      for 

the average of the samples induced by pleasant 

stimuli (red curve). 

On other hand, we also used the fractal 

dimensional to extract fractal features from the input 

samples. The fractal dimension was calculated using 

the Higuchi’s algorithm. This algorithm determines 

the fractal dimension calculating the average length 

of the curve using a segment of   samples.  

We calculated the fractal dimension to every 

sample obtained after the pre-processing stage. We 

proceeded as follows: firstly, the time interval   was 

fixed in 5. Next, a double nested loop was 

performed; the outer loop iterated   times, and for 

each iteration   of the outer loop (       ), 

the inner loop iterated   times. At each step of the 

inner loop, a new time series was calculated using 

the iteration indexes of both loops as follows: 

  
                       

     

 
    , (6) 

where   is the index of the outer loop,   is the index 

of the inner loop (     ), and   is the size of 

the sample. For example, for  =5,  =1, and 

 =5000, we obtained the time 

series:   
                           . Then, the 

length       of this new time series was calculated 

using the following equation:  

                      
 
   

 
 

   

         
   

 
   

 
  
       , 

(7) 

where   and   are the indexes of the loops, and   is 

the size of the sample. 

At the end of outer loop, we obtained the 

following matrix: 

 
 
 
 
 
     
          
     
     
     

     
     
     

     
     
     

     
           

 
 
 
 

. 

Using the values of the matrix, the average 

length value of each row   (     ) was 

calculated as follows:   

       
 

 
       

   . (8) 

Finally, the obtained average length values were 

used to calculate the fractal dimension through the 

relation           . Therefore, the fractal 

dimension was determined by calculating the slope 

of the logarithmic-logarithmic graph of   vs. 

       .   
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At the end of the fractal features extraction 

process, a feature vector of dimension six was built. 

The first five values of this vector were the features 

that were extracted with the multifractal analysis, 

and the last one value was the value that was 

extracted with fractal dimension.  

 
3.3.3 Principal Components Analysis 
As mentioned before, this work compares the 

accuracy rate of an approach that recognizes 

emotions by extracting both spectral and fractal 

features with that of approaches that extract only 

spectral or fractal features independently. Since 

these approaches used a different set of features to 

recognize the induced emotions, the vector feature 

of each approach was built in a different manner. 

Thus, the first approach built the feature vector 

concatenating spectral and fractal features, whereas 

the second one and third one used each type of these 

features separately.  

Moreover, as two electroencephalography 

signals were recorded for each participant, two 

samples and two vector features were obtained for 

each visual stimulus. Consequently, to create the 

final feature vector of a visual stimulus, the two 

feature vectors corresponding to the same visual 

stimulus were concatenated, obtaining, thus, a final 

feature vector set of 200 vectors.   

Column 2 of Table 8 shows the number of 

features and the dimension of the vector features for 

each approach. Since these feature vectors had a 

considerable dimension, we consolidated the more 

useful information of these vectors using Principal 

Components Analysis. This technique creates a new 

sub-space from a vector feature keeping only the 

information that is most pertinent. Column 3 of 

Table 6 shows the new dimension of the feature 

vector after applying Principal Components 

Analysis. These 200 reduced feature vectors were 

used as an input in the classification stage. 

 

Table 6. Number of fluctuation segments per level. 

Approach 

 Dimension 
(number of 

features) of the 
feature vector 

Dimension of the 
feature vector after 

PCA 

Spectral-
Fractal 

386 (26) 6 

Spectral 374 (22) 4 

Fractal 12 (4) 3 

 
 

3.4 Classification Stage 
In this stage, a set of Support Vector Machine 
(SVM) was used to classify the input feature vectors 

between positive and negative emotions. This kind 
of classifier was chosen because according with 
previous works it has a better accuracy rate than 
other classifiers [28]. 

In our approach, the SVMs were built using the 

Gaussian function RBF as a kernel function: 

            

 
        

 

    

. 
(9) 

We determined the success rate of each SVM 

using the Bootstrapping technique. This technique 

requires testing the SVM with every input feature 

vector, and therefore, each SVM was tested iterating 

over all the 200 feature vectors. Therefore, at each 

iteration step, one of the vectors was selected as test 

set, and the remaining 199 vectors were used as 

training set. Next, we built three different SVMs, 

whose parameters (  and      ) were selected by 

performing a k-cross-validation onto the training 

set. Then, the success rates of these SVMs were 

calculated using the test set. Since the test set was 

compound by only one sample, the classifier’s 

success rate was of 0% (failure) or 100% (success). 

This procedure was repeated until we took every 

feature vector out as a test set. At the end of the 200 

iterations, a total of 200 individual success rates 

were obtained for each SVM. Finally, the final 

success rate of each SVM was calculated averaging 

its 200 individual success rates.  

As mentioned above, we applied k-cross-

validation onto the training set of each iteration step. 

To this end, the k-cross-validation process was 

performed fixing   value in 10. Hence, the input set 

was divided into 10 samples. Next, a loop iterated 

over all subgroups, selecting at each step the best 

pair of parameters that classified the subgroup. To 

select the best pair of parameters (  and      ), the 

selected subgroup was used as validate set, and the 

other nine subgroups were used as training set. 

Then, the set {0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100, 

300, 1000, 3000} was fixed as the set of values that 

the parameters   and       could take. Using all 

the 114 possible combinations of the parameter set, 

114 temporal SVMs were built using the training 

set, and then, each SVM was tested with the validate 

set. Finally, the best pair of parameters was the one 

that classified better the validate set. At the end of 

the k-cross-validation process, we obtained a total of 

10 pairs of best parameters (one for every 

subgroup).  
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Finally, the three different SVMs of the 

classification stage were built using the 10 pairs of 

best parameters of the k-cross-validation process. 

To this end, we followed the procedure proposed by 

Anguita et al. [29]. Table 7 describes the three 

models developed.  

 
Table 7. SVM Models. 

Model Description 

SMV 

meanParameters 

The 10 pairs of 

parameters were 
averaged. The final SVM 
was built with the 
average of   and the 

average of sigma: 

        . 

SVM 
bestParameters 

The pair of parameters 
with the best success rate 
in the cross-validation 
process was selected. 
The final SVM was built 
with these parameters: 

        

SVM 
bestScaledParameters 

The best C parameter 
was scaled as follows: 

   
   

      
 

The sigma parameter 
was ignored because it 

depended only on the 
input size, which was 
always the same. 

 
 

4 RESULT 
Based on the fact that extracting spectral and fractal 
features allows to recognize neural patterns more 

accurate than extracting only spectral features [17], 
the aim of this paper was to compare the success 
rate of an approach that recognizes emotions by 
extracting both spectral and fractal features with that 
of those that extract only one of these features. To 
accomplish this, we first selected a set of pictures to 
induce positive and negative emotions, and next we 

projected these pictures to ten individuals. While the 
individuals were observing the pictures, we 
recorded their electroencephalographic signals. 
Once all individuals observed the sequence, we 
obtained a total of 20 electroencephalographic 
signals, 10 per each brain hemisphere.  

Later on, using the method explained in the 

section 3, we built three approaches to recognize the 

induced emotions. Each one of these approaches 

extracted a different feature set to recognize 

emotions; thus, the first approach extracted both 

spectral and fractal features, and the other two 

extracted each type of feature separately. To 

calculate the success rate of each approach, we used 

the bootstrapping technique. Therefore, we left out 

one feature vector as testing set, and then we trained 

a SVM using the 199 remaining vectors. We 

repeated this procedure until we took every feature 

vector out as a test set.    

In this section, we present and compare the 

success rates of the approaches. To this end, firstly, 

we reported the results of each approach. 

Subsequently, we used two-sample proportion tests 

to significantly compare the success rate of the 

approach that recognized emotions by extracting 

both spectral and fractal features with the success 

rates of the other two ones. 

 
 

4.1 Spectral-Fractal Approach 
In this approach, after denoising the recorded 
electroencephalographic signals, we extracted both 
spectral and fractal features. As previously 
explained in section 3, the spectral features were 
extracted by applying the Wavelet Discrete 
Transform to the samples, while, the fractal features 
were extracted by performing the multifractal 

analysis and the fractal dimension. At the end of 
extraction process, we obtained 200 feature vectors, 
whose dimension was reduced from 386 to 6 using 
Principal Component Analysis. 

Later on, we used the three SVMs explained in 

3.4 to recognize the induced emotions. Thus, we 

calculated the success rate of each SVM using 

bootstrapping technique. To this end, we left out one 

feature vector, and then we trained the SVMs using 

the remaining vectors. We repeated this procedure 

for each feature vector, having a total of 200 

individual success rates at the end. Table 8 shows 

the three SVMS’ accuracy rates discriminated for 

each type of stimulus. As can be seen, 

approximately in eight out of ten cases, the three 

SVMs satisfactorily predicted each type of stimulus. 

Furthermore, the average accuracy rates of all the 

SVMs to predict the unpleasant and pleasant stimuli 

were of 86.33% and 89.33%, respectively. 

Consequently, the extraction of spectral and fractal 

features allowed properly recognize the two types of 

stimuli.    

Finally, comparing the SVMs between them, it is 

observed that classifiers SVM_bestParameters and 

SVM_bestScaledParameters slightly predict better 
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than SMV_meanParameters, however these 

difference are statistically not significant.      

 
 

4.2 Separate-Features Approach 
Once we calculated the accuracy rate of the 
approach that extracts both features, we repeated the 

emotion recognition process using other two 
different approaches. Each one of these new 
approaches only extracted one type of features.  
Therefore, we built one approach that recognized 
the induced emotions by extracting spectral features, 
and another approach that extracted fractal features 
for the same purpose. As the spectral-fractal 

approach, we calculated the accuracy rate of these 
new approaches following the procedure explained 
in 3.4.    

Tables 9 and 10 present the accuracy rates of the 

approaches. It can be observed from these tables 

that for the spectral approach the average accuracy 

rates of all the SVMs to predict unpleasant and 

pleasant stimuli were of 77.33% and 85.33% 

respectively, while for fractal approach were of 

87.66% and 82.33% respectively. The majority of 

these rates were lower than the average accuracy 

rate of the spectral-fractal approach; only the 

average accuracy rate to predict unpleasant stimuli 

of the fractal approach was slightly higher than that 

of the spectral-fractal approach. However, to 

determine if those differences were statistically 

significance, we used two-sample proportion test, 

whose results are presented in the next subsection.  

 

Table 8. Model Accuracy. 

  
SMV 

meanParameters 

SVM 

bestParameters 

SVM 

bestScaledParameters 

                   

                       Stimuli             

Classifier's  

  prediction 

Unpleasant Pleasant Unpleasant Pleasant Unpleasant Pleasant 

Unpleasant 85% 15% 87% 13% 87% 13% 

Pleasant 10% 90% 11% 89% 11% 89% 

 
 

Table 9. Model Accuracy of spectral-approach 

  
SMV 

meanParameters 

SVM 

bestParameters 

SVM 

bestScaledParameters 

                   

                       Stimuli             

Classifier's  

  prediction 

Unpleasant Pleasant Unpleasant Pleasant Unpleasant Pleasant 

Unpleasant 76% 26% 78% 22% 78% 22% 

Pleasant 14% 86% 15% 85% 15% 85% 

 
 

Table 10. Model Accuracy of fractal-approach 

  
SMV 

meanParameters 

SVM 

bestParameters 

SVM 

bestScaledParameters 

                   

                       Stimuli             

Classifier's  

  prediction 

Unpleasant Pleasant Unpleasant Pleasant Unpleasant Pleasant 

Unpleasant 89% 11% 87% 13% 87% 13% 

Pleasant 17% 83% 18% 82% 18% 82% 
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4.3 Two-sample proportion test 
We proved if the differences between the obtained 
accuracy rates were statistically significance using 

the equations of the two-sample proportion test 
presented by Navidi [28]. Previous to perform the 
tests, we first calculated the global accuracy rate of 
each approach averaging all its individual accuracy 
rates of its SVMs (Table 11).    

 
Table 11. Global accuracy rate of the approaches 

Approach Global accuracy rate 

Spectral-fractal  87.83% 

Spectral  81.33% 

Fractal  85.00% 

 

Next, we performed two tests, the first one 

compared the global accuracy rates of the spectral-

fractal and spectral approaches, and the second one 

compared the global accuracy rates of the spectral-

fractal and fractal approaches. Since in each 

approach we worked with 200 feature vectors, we 

fixed the population of two-sample tests in 200. 

Thus, we compared the spectral-fractal and spectral 

approaches stating the following hypothesis: 

 Null hypothesis:                              

 Alternative hypothesis:                   

           

The p-value of this test was 0.0359. This 

indicates that exists a statistically significance of 

0.04. Consequently, in the majority of the times 

(96%), the spectral-fractal approach predicts better 

the emotions than the spectral approach.  

Likewise, we compared the spectral-fractal and 

fractal approaches stating the following hypothesis: 

 Null hypothesis:                             

 Alternative hypothesis:                   

          

The p-value of this test was 0.2044. This 

indicates that exists a statistically significance of 

0.21. Consequently, in a substantial number of times 

(79%), the spectral-fractal approach predicts better 

than the fractal approach.  

Our results confirm the previous findings of 

Brodu [17]. Thus, we recognized emotions with a 

better accuracy rate by extracting both spectral and 

fractal features than extracting only one of them. It 

should, however, be noted that we proved this 

hypothesis using only our introduced procedure 

(section 3), and also that we detected only two kinds 

of emotions (positive and negative emotions). 

Therefore, future work should prove this hypothesis 

for different procedures of pattern recognition and 

for recognizing many kinds of emotions.  

Nevertheless, our results suggest that combining 

spectral and fractal features allow recognizing 

emotion in a more reliable manner. 

 

5 DISCUSSIONS AND 

CONCLUSIONS 
In recent years, many studies have been attempted 
to endow machines with the capacity of recognizing 
emotions through the analysis of 
electroencephalographic signals. Up to now, those 

studies have obtained effective results, even though 
there are still some aspects that can be improved 
such as the feature extraction methods. Generally, 
studies have been recognizing emotions by 
extracting spectral features to recognize emotions; 
however, Brodu [17] suggested that extracting both 
spectral and fractal features allows recognizing 

neural patterns in a more accurately manner. 
In this study, we presented a comparison 

between an approach that extracts both spectral and 

fractal with two approaches that extract only one 

type of these features. To this end, we developed a 

method that can recognize emotions extracting 

spectral, fractal, or both features. Next, using this 

method, we built three different approaches to 

recognize positive and negative emotions that were 

induced with pictures from the International 

Affective Picture System on ten individual. The first 

approach extracted both spectral and fractal 

features, and the other two extracted each type of 

feature separately. Finally, we calculated and 

compared the accuracy rate of those approaches.   

We found that the accuracy rate of an approach 

that combined spectral and fractal features was 

better than that of approaches that used only one of 

them. Thus, our results indicate, on one hand, that in 

the majority of the times (96%) the spectral-fractal 

approach predicts better the emotions than the 

spectral approach, and on the other hand, that in a 

substantial number of times (79%) the spectral-

fractal approach predicts better than the fractal 

approach. Our results extend the findings of Brodu, 

showing that, as in neural-pattern recognition, the 

combination of spectral and fractal features allows 

increasing the accuracy rate of human-emotion 

recognition.  

Therefore, our study suggest that it is possible to 

develop a more effective emotion recognition 

method by extracting both spectral and fractal 

features than extracting only one type of them. 

However, although our study statistically supported 
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this last fact, we only proved it using our introduced 

emotion recognition procedure. Nevertheless, our 

results are encouraging and should be validated. 

Hence, future work in emotion recognition should 

extract both spectral and fractal features to evaluate 

whether this combination of features allows 

properly recognizing human emotions in different 

contexts. 

Finally, our results could be applied to develop 

brain-computer applications capable of detecting 

emotions in a suitable manner. This would improve 

the interaction between humans and machines 

because computers could detect and respond to the 

emotional state of a user, which makes the 

experience more pleasant for him/her. 
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