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Abstract: - One of the challenging and important problems that still needs solution within the field of dental 
implant surgery is to monitor the osseointegration process. Therefore, this work aims to achieve a reliable 
noninvasive automatic method to evaluate dental implant stability which is directly related to the grade of 
osseointegration. For this purpose, an experimental phantom study was performed to simulate this process and 
evaluate it. Ultrasonic spectrometry was proposed and used to take measurements that were processed and 
analyzed to estimate the stability of the simulated dental implant. The phantom that was designed and used in 
the experiments simulated a jawbone with a dental implant and was made of a little pool filled with soft-tissue-
equivalent material (with respect to ultrasound waves) and a solid cylinder of fresh oak-wood immersed into it 
to simulate the jawbone. A metal screw was used to simulate the dental implant. By screwing this screw into or 
out of the wooden cylinder, varying grades of stiffness and contact between the screw and the wooden tissues 
were obtained. And by this way, varying screw stability grades which simulate varying osseointegration grades 
were achieved. Pulse-echo ultrasound was used to measure the power spectra of the received ultrasonic echo-
signals. These power spectra were, at first, processed and normalized then analyzed by using the partial least 
squares method to estimate the corresponding implant stability or stiffness grades. The number of screwing 
turns (for the screw into or out of the wooden cylinder) was used as a measure of stiffness grade.The feasibility 
of this approach was investigated through experimental tasks and promising results were achieved. A 
coefficient of determination R2 of 96.4% and a mean absolute error of ±0.23 screwing turns were achieved 
when comparing real and estimated stiffness-grade values, indicating the high efficiency and good accuracy of 
this approach. 
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1 Introduction 
In recent years, dental implant surgeries became 
common among almost all patients categories; 
female, male, young and elderly patients. In general, 
this type of surgeries is performed in a series of four 
phases that are different. The most critical phase of 
such a surgery is the second one, which is called the 
osseointegration phase (Branemarket al., 1969 [2]), 
during which the integration of the dental implant 
into the living jawbone occurs gradually. The 
progression of the osseointegration process depends 
on many factors, such as age, gender, bone tissue 

density and the pathological condition of the patient. 
Therefore, the completion of the osseointegration 
phase may take a longer or a shorter period of time. 
Consequently, it is important to not to disturb the 
osseointegration process as long as that is possible. 
For this reason, as well as other usually desired 
clinical considerations, it is required to use a non-
destructive, risk-free and mobile clinical routine to 
evaluate the osseointegration process by measuring 
the stability or the fixation of the dental implant in 
the jawbone.  

In 1929, Sokolov had already proposed his novel 
idea to use ultrasound for non-destructive testing of 
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castings (Sokolvo, 1929 [18]). About 20 to 25 years 
later, industrial ultrasonic flaw detectors were 
developed and sold by a number of companies in 
different countries and a World-wide competition 
was started. 

In 1981, Fitting and Adler  [6] suggested to use 
ultrasonic spectral analysis for non-destructive 
testing purposes. Eighteen years later, Chambers 
and Tucker (1999) [3] used ultrasonic spectroscopy 
for industrial inspection of bonding quality of 
composites in aerospace products. Therefore, by 
using this technique which fulfills the requirements 
mentioned above, it sounds promising to test the 
hypothesis that ultrasonic spectral measurements 
can be performed to evaluate the biomechanical 
stability or the stiffness of the bone-implant 
interface which is proportional to the 
osseointegration grade. 

Later on, Lin et al. (2001) [10] then after that, 
Pan and Ying (2005) [13] proposed and used the 
resonance frequency analysis (RFA) technique to 
evaluate the grade of osseointegration. They found 
that the resonance frequency was proportional to the 
mechanical stability of the dental implant. The 
frequencies considered in these studies were in the 
range of 60-120 Hz to be able to study the vibration 
of the whole piece of dental implant imbedded into 
Bakelite (which is a gypsum model). The results 
that were achieved and presented by using this 
technique were only showing if the grade of 
stiffness was high or low. 

The results achieved by Valderramaet al. (2007) 
[20] indicated that the recently introduced magnetic 
resonance frequency analysis device could give 
comparable results as the original electronic RFA 
variant. However, Pattijnet al. (2007) [14] 
discovered that the energy of the signal measured by 
the RFA technique was displacement/position and 
angle dependent and could change considerably 
when the measurements were performed at different 
positions or parts of the dental implants and from 
different directions or angles. 

Almost simultaneously, De Almeida et al. (2007) 
[4] introduced a new approach and called it 
quantitative ultrasound (QUS). Here, a transmission 
ultrasound technique was used to inspect a phantom 
made of a threaded metal piece (which simulates the 
dental implant) imbedded into a metal block (which 
simulates the bone). An ultrasonic transducer with 1 
MHz central frequency was used in this study. The 
results showed that the stiffness of the structure of 
this phantom could be estimated, because it was 

proportional to the mean value of the ultrasonic 
signal detected during a certain (short) time period. 

Mathieu et al. (2011) [12] performed an ex vivo 
study on rabbit femur with titanium dental implant. 
They showed that the QUS technique could be used 
to compute a quantitative parameter which was 
significantly sensitive to the amount of bone tissue 
(rabbit femur) in contact with a cylindrical titanium 
dental implant. The transducer that was used in this 
study had a central frequency of 10 MHz to allow 
for distinguishing different echoes that were 
originating from different implant interfaces. 
Furthermore, it was important to retrieve enough 
information from the dental implant to be able to 
compute that quantitative parameter or indicator. 
Therefore, a long-enough signal duration was 
required to be used in this study; 25 times longer 
than the signal duration that was used by De 
Almeida et al. (2007) [4]. 

In this research work, a new approach is 
proposed aiming at simulating and evaluating the 
microstructure of bone and soft tissues around a 
dental implant. For this purpose, a proper phantom, 
simulating a jawbone with a dental implant, is 
designed and used in the experiments. In these 
experiments, pulse-echo ultrasound is utilized and 
the reflected echo-signals from the phantom are 
measured. Then the power spectra of these 
measurements are computed and analyzed. In other 
words, ultrasonic spectral analysis is utilized to 
detect changes in the shape of the curve of the 
power spectrum of the ultrasonic echo-signals 
reflected from the phantom. An automatic 
statistical-modeling method is developed and 
utilized to analyze each obtained power spectrum 
and estimate the contact and stiffness grade between 
the dental implant simulator and the surrounding 
tissues simulating jawbone and soft tissues in the 
used phantom.In 2012, preliminary results were 
published by the authors, Hamid Muhammed and 
Kothapalli [8], showing how ultrasonic 
spectrometry can be used to estimate the stability of 
a dental implant phantom. 

Regarding the statistical modeling method used 
in this research work, two common problems or 
limitations that are usually associated with this type 
of methods are addressed. These two problems are 
as follows: 1) Large number of variables and few 
observations. 2) Explanatory and dependent 
variables are collinear. The solution proposed in this 
work for these two problems are to, at first, 
preprocess and normalize the data (which are a 
number of power spectra and the corresponding 
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Fig. 1.  (a) A metal screw inserted or screwed into a disc or a solid cylinder of fresh oakwood. (b) The 
experimental setup where the phantom, labeled with (1) and presented in Fig. (1a), is immersed into a little 
pool filled with a soft-tissue equivalent material, labeled with (3), and water. An ultrasonic transducer, 
labeled with (2), is mounted at a distance of 21 mm away from the edge of the phantom, labeled with (1). 

 
 
implant stability measures) in an efficient way, then 
to analyze these normalized data by using a suitable 
Partial Least Squares (PLS) algorithm that is able to 
manage non-linear processes or relationships among 
the data to be able to achieve the desired results. 

 
 

2 Materials and Methods 
 
2.1 Phantom and experimental setup 
A disc or a solid cylinder of fresh oak-wood, 
immersed in water continuously to keep it fresh, 
was used to simulate a jawbone. Using this solid 
wooden cylinder or disc to simulate the jawbone is 
motivated by the following reasons (Hereafter, this 
jawbone simulator is called the wooden cylinder). 
The speed of sound is around 3800 m/s in oak-wood 
(Walker, 2005 [21]), compared to about 3500-4000 
m/s in bone tissue. Hence, it is obvious that the 
acoustic impedance of oak-wood is close to that of 
the jawbone. In addition to that, Tampieriet al. 
(2009) [19] produced bone implants that had the 
same spongy microstructure of wood. They could 
show that these wood-based bone-implants were 
functioning more efficiently, mainly because of the 
spongy microstructure of the (used) wood tissue that 
was retained after the calcification process which 
resulted in a bone implant. 

To simulate a dental implant, a metal screw was 
used and screwed into this wooden cylinder, as 
shown in Fig. (1a). Hereafter, this dental implant 
simulator is called the screw. A little pool was filled 
with water and a soft-tissue equivalent material and 
that wooden cylinder was immersed into it. The 
soft-tissue equivalent material, which looked like a 
black-colored mixture, was composed of 93% water, 

4% graphite and 3% agar (Madsen et al., 1978 [11]). 
An immersion ultrasonic transducer was mounted at 
a distance of 21 mm from the edge of the wooden 
cylinder, as shown in Fig. (1b), because the focal 
length of this non-focused transducer was 24 mm 
and the distance between the edge of the wooden 
cylinder and the surface of the metal screw was 
3mm. 

The fundamental or central frequency of the used 
ultrasonic transducer is 2 MHz, and its frequency 
band is ranging from 1.8 MHz to 2.2 MHz, as 
shown in Fig. (2). The central or fundamental 
frequency is defined as the local maximum peak 
frequency of the frequency band which covers the 
frequency region between the two -3dB level 
frequencies around the central or fundamental 
frequency of the ultrasonic transducer. 

 
 

 
Fig. 2.  The power spectrum of the response of the 
ultrasonic transducer (L20) used in the experiments. 

 
 
A pulse generator with an amplifier (an 

ultrasonic pulser/receiver of type 5072PR, from 
Panametric-NDT, Waltham, MA, USA) was used to 
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Fig. 3. The experimental setup consisting of an ultrasonic transducer attached to the phantom labeled with (1), 
an ultrasonic pulser/ receiver labeled with (2), an oscilloscope labeled with (3) and a personal computer labeled 
with (4). 
 
 
excite a single-crystal piezoelectric ultrasonic 
transducer (L20, from Ceram AB, Lund, Sweden) to 
emit an ultrasonic pulse. The same transducer was 
also used to receive the echo signal reflected from 
the phantom through all surrounding environment. 
The detected signal was transferred through that 
amplifier to an oscilloscope (GDS-820c DSO, from 
GW Instek, Taiwan). A power spectrum of the 
received echo signal was generated by the 
oscilloscope by using the fast Fourier transform 
(FFT) technique. This process was repeated 
continuously and a sequence of power spectra was 
generated and obtained in real time. The resulted 
power spectra were directly (in real time) 
transferred to a personal computer (PC) by using the 
freeVIEW ® software (from Innovative 
Elektroniksysteme GmbH, Bad Breisig, Germany), 
where it was saved and finally analyzed (afterwards, 
off-line) by using MATLAB ® (from The 
Mathworks Inc., Natick, MA, USA). Fig. (3)shows 
the experimental hardware setup, including the 
experimental setup presented in Fig. (1), the 
amplifier, the oscilloscope and the PC. It also shows 
the resulted power spectrum of one measurement (of 
the sequence of pulse-echo measurements) plotted 
on the monitor of the PC by using the freeVIEW ® 
software, which shows an identical copy of what is 
plotted on the little monitor of the oscilloscope. 

 
 

2.2 Dataset 
The pulse-echo ultrasound system described 

previously in this paper and illustrated in Fig. (1) 

and (3), was used to acquire 30 measurements. The 
used parameters were a Pulse Repetition Frequency 
(PRF) of 100 Hz and a Gain value of 59 dB. 
Thereafter, 30 power spectra were computed for the 
measured signals and transferred to a PC. Each 
power spectrum was consisting of 660 points (or 
power spectral lines) and was corresponding to a 
certain contact and stiffness grade between the 
screw and the wooden cylinder. The record length 
of the acquired power spectrum was 660 points (not 
equal to power of two) because a dump of the 
display of the oscilloscope was transferred by the 
freeVIEW ® software to the PC-screen (as shown in 
Fig. 3). The contact and stiffness grade is measured 
or expressed in number-of-turns when screwing the 
screw out or into the wooden cylinder. 

Initially, the screw was inserted or screwed 
firmly into the wooden cylinder. This case was 
called the initial tight screw state. Thereafter, it was 
screwed out of the wooden cylinder, with a half turn 
each time, to decrease the stiffness and contact 
grade between the wooden cylinder and the screw 
gradually, until reaching 5 full turns. Afterwards, 
the process was reversed and the screw was screwed 
into the wooden cylinder also with a half turn each 
time, until reaching 5 full turns, which corresponds 
to the initial tight screw state. Finally, the process 
was reversed again and the screw was screwed out 
the wooden cylinder also with a half turn each time, 
until reaching 5 full turns. 

Hence, the dataset that was made available for 
this work was consisting of 30 power spectra and 
the corresponding contact and stiffness grades 
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expressed in number-of-turns ranging (with a step of 
0.5 turn) between 0 and 5, which were 
corresponding to the initial-tight-screw-state and the 
loose-screw-state, respectively. By this way, 10 
different contact and stiffness grades, linearly 
distributed between 0.5 and 5 turns, were simulated 
three times and the corresponding power spectra 
were obtained as described previously. 

 
 

2.3 Methodology 
 
2.3.1 Partial Least Squares (PLS) 
Partial Least Squares (PLS) is a multivariate 
statistical framework, which includes a wide class of 
approaches and methods. The PLS technique is used 
for processing, interpreting and analyzing data, 
measurements and observations in a wide range of 
fields and in many applications, including social 
sciences, natural sciences, life sciences, various 
technological fields as well as numerous applied and 
industrial applications. An overview of the PLS 
technique and its applications is presented by 
Rosipal and Kramer (2006) [16]. 

The pioneering work of proposing and 
introducing the PLS technique was mainly 
performed by Herman Wold in 1966 [22] and 1975 
[23], where the first variants of the PLS methods 
and approaches were introduced. Since then, the 
PLS technique has received great attention and 
interest within many research fields. The basic and 
common principle of the PLS algorithms is to find a 
small number of uncorrelated variables (known as 
components or latent variables) and use them to 
explain as much covariance as possible between two 
blocks of variables: the block of explanatory 
variables denoted as X and the block of dependent 
variables denoted as Y; where these X and Y are 
matrices and each column of the X-matrix and Y-
matrices contains one explanatory variable, while 
each column of the Y-matrix contains one dependent 
variable. 

Usually, at the first step of any PLS algorithm, 
the input variables which are X- and Y-variables 
should be preprocessed and normalized to achieve 
the best possible performance and obtain results 
with the highest achievable accuracy. Therefore, it 
is important to make the distributions of the X- and 
Y-variables fairly symmetrical. One efficient way to 
do that is by using the nth root transformation (where 
n is a real number) to compress the dynamic range 
of these variables so that the result of dividing the 
mean value by the standard deviation (of each of 
these variables) will be around one. Thereafter, a 
normalization technique called whitening is utilized 

and it results in scaling the data into values of zero-
mean and unit-variance. Details about whitening can 
be found in Eldar and Oppenheim (2003) [5] and a 
discussion about its efficiency can be found in 
Koivunen and Kostinski (1999) [9]. And the result 
is said to be whitened. 

The general PLS model is described as follows: 
 
X = T PT + E 
Y = T QT + F    (1) 
 

where X is an nxm matrix of predictors, Y is an nxp 
matrix of responses, T is an nxl matrix of factors, P 
and Q are mxl and pxl loading matrices (of weight 
coefficients), respectively, and matrices E and F 
contain error terms. 

There exist a number of PLS algorithms to 
estimate the factor and loading matrices T, P and Q. 
Most of these algorithms estimate the linear 
regression between X and Y as follows: 

 
Y = X B + N     (2) 
 

whereY contains n cases and m dependent variables, 
X contains n cases and p independent variables, B 
contains pxm regression coefficients (reflecting the 
covariance structure between Y and X), and N is a 
noise term of the same size as Y. 

 
 

2.3.2 Using PLS Analysis 
There exist many approaches and different 
algorithms that can be used when performing PLS 
analysis. In this research work the non-linear 
iterative partial least squares algorithm (NIPALS), 
(Wold, 1975 [23]) is used. The first step of the 
NIPALS algorithm (i.e. the starting iteration) is to 
construct the matrices E = X and F = Y , as 
explained in Eq. (1). The columns of matrix X 
contain the measured ultrasonic power spectra 
which are our independent variables, while matrix Y 
contains the corresponding dependent variables or 
the target parameters that are desired to be 
estimated. However, matrix Y consists of only one 
column (i.e. it is actually a vector) because only one 
single target parameter (namely: the contact and 
stiffness grade expressed in number-of-turns) is 
involved in the case study of the current paper. 

The next step, which is very important as 
mentioned previously in this section, is to 
preprocess and normalize both of X and Y. Each 
element of vector Y is transformed by choosing an 
appropriate power value and raising each element of 
Y to this power value. The power value is selected 
so that the result of dividing the mean value of the 

WSEAS TRANSACTIONS on SIGNAL PROCESSING Hamed Hamid Muhammed, Satya V. V. N. Kothapalli

E-ISSN: 2224-3488 198 Volume 10, 2014



transformed Y-vector by its standard deviation will 
be around one. 

After that, the whitening transformation is 
applied to the Y-vector to make its elements have 
values of zero-mean and unit-variance.Matrix X, 
which is two dimensional, is also whitened by 
employing two iterative normalisation approaches 
that are based on utilizing a series of one-
dimensional whitening operations. 

In both approaches, a number of alternating 
spectral-wise (denoted as Sw and performed row-
wise in matrix X) and band-wise (denoted as Bw 
and performed column-wise in X) whitening 
operations are performed, as described by Hamid 
Muhammed (2005) [7]. When performing Sw-
whitening, each spectrum (which corresponds to one 
row in X) is whitened, while each column of X 
(which corresponds to one spectral band) is 
whitened when Bw-whitening is performed. In the 
first iterative whitening normalisation approach, a 
series of alternating Sw- and Bw-whitening 
operations, beginning and ending with Sw-
whitening operations, are performed. On the other 
hand, the second variant of the iterative whitening 
normalisation process starts with a Bw-whitening 
operation and ends with a Sw-whitening operation. 

Thereafter, the training dataset is selected out of 
the preprocessed and normalized data and the 
chosen PLS algorithm, which is also iterative (i.e. 
the operations are performed repeatedly on the data 
until convergence of the result is achieved), is 
applied on this training dataset to estimate the factor 
and loading matrices T, P and Q. finally, these 
factor and loading matrices are fed as input 
parameters to the PLS algorithm to process the rest 
of the (preprocessed and normalized) data samples 
in matrix X which are considered together with the 
rest of the corresponding Y-vector elements as the 
test dataset. At this point, the whole set of latent 
variables are calculated (i.e. estimated values for 
these Y-vector elements are obtained), as explained 
by Abdi (2003) [1]. 

One of the important issues, in order to avoid 
over modeling, is to decide the number of latent 
variables that should be included in the PLS model. 
A general rule of thumb that can be used here is that 
one latent variable can be added and used in the 
final PLS model for each group of additional five or 
six independent observations (which correspond to 
power spectra in our application) that are included 
in the training dataset; Rhielet al., (2001) [15]. 

By this way, an upper limit for how many latent 
variables to include in the PLS model can be 
defined. The remaining question, which is also very 
important, is to know how many of these latent 

variables are enough to be included in the PLS 
model. A popular approach to know the answer to 
this question is by calculating the relative error 
value for the estimated Y-vector elements when 
comparing them to the real Y-vector elements 
values. 

The obtained relative error value is zero when 
perfect prediction or estimation is achieved. 
Otherwise, it is always a positive value. Therefore, 
the PLS model will be improved as long as adding 
more latent variables lowers the resulting relative 
error value. The optimal number of latent variables 
is found when the relative error value begins to 
increase when adding a new latent variable (Abdi, 
2003 [1]). 

Another important issue is to make sure that the 
system of equations is well conditioned. This can be 
simply performed by resampling the power spectra 
vectors to get a quadratic B-matrix (which contains 
the regression coefficients) as explained in Eq. (2). 

 
 

2.3.3 Cross Validation 
It is necessary to evaluate the usefulness and 
efficiency of the used PLS model. Cross validation 
is a common approach that is utilized for this 
purpose. Leave-One-Out Cross Validation 
(LOOCV) is an efficient evaluation method when 
only few observations are available for the study. In 
the experimental part of this work, 30 power spectra 
each of which consists of 660 elements are acquired. 
Only one pair of variables, consisting of one 
dependent variable and one independent variable, at 
a time is removed from that dataset. The excluded 
dependent parameter is considered as unknown and 
the goal is to estimate it. While the rest of the data 
samples pairs are considered as training data for the 
used PLS model. The excluded measured spectrum, 
which is our independent variable, is fed into the 
trained PLS model to estimate the corresponding 
dependent parameter which is also excluded. 

Obviously, by using the LOOCV approach, all 
data samples are efficiently used in evaluating the 
performance of the PLS model on hand. The 
estimated parameter values (which are Y-vector 
elements) are finally compared to the real values, to 
obtain an evaluation measure of the performance of 
the used PLS model. Both of the relative error Erel 
and the coefficient of determination R2 can be used 
to produce such an evaluation measure. Computing 
R2 requires computing the correlation coefficient R 
(which has a value within the range from -1 to +1) 
and the corresponding P-value for testing the 
hypothesis of no correlation. A rule of thumb is that 
the P-value should be smaller than 0.05 to get a 
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reliable correlation measure R. Otherwise, the 
resulting correlation coefficient R cannot be 
considered as significant and is consequently 
useless. 

 
 

3 ExperimentalResults 
In reality, the gap (which may correspond to bone 
tissue loss) between the jawbone and the dental 
implant may vary between zero and about 50-
100µm when inserting a screw-type dental implant, 
as stated by Schenk and Buser (1998) [17]. The gap-
size variation corresponds to a variation of the 
contact and the stiffness grade between the dental 
implant and the jawbone. However, what is more 
interesting and important to know is if the 
osseointegration process is complete or not, as well 
as whether this process is progressing towards 
decreasing the gap-size and obtaining a better 
intimate contact between the bone tissue and the 
dental implant, or not. When the osseointegration is 
complete, a convergence towards a zero gap is 
supposed to be achieved. This means that it is in our 
study more important to measure and evaluate small 
gaps in the order of few tens of micrometers, down 
to zero. 

Therefore, an efficient method to simulate 
varying grades of osseointegration is to use the 
experimental setup and the phantom described in the 
previous sections. As described previously, the 
metal screw is inserted and screwed into the wooden 
cylinder firmly. Then when it is screwed out 
gradually of the wooden cylinder, the contact grade 
between the screw and cylinder will be decreased, 
because small cavities are generated around the 
threads of the screw. The depth of thread (i.e. the 
height from the root to the crest of the thread) of the 
dental implant screw shown in Fig. (4a) is around 
300µm, while the depth of thread of the screw used 
in our experiments (and shown in Fig. 4b) is around 
450µm. This means that, in reality, the gap between 
the dental implant and the jawbone, may be slightly 
smaller than the gap, obtained in our experiments, 
between the wooden cylinder (which is made of 
fresh wood immersed in water continuously) and the 
used metal screw. However, on the other hand, the 
elasticity of bone tissue is much less of the elasticity 
of fresh wood tissue. Therefore, the gap between 
wood tissue and the threads of the screw may vanish 
and can be considered as being approximately zero 
when the screw is firmly tightened, because the 
continuously-immersed-in-water fresh-wood tissue 
is soft enough to be able to fill in all cavities 
between the threads of the metal screw. 

The experimental setup described previously was 
used to acquire ultrasonic spectral measurements 
from the phantom shown in Fig. (1b). The 
penetration and nonlinear propagation of the 
ultrasonic waves through the wooden cylinder, the 
metal screw and the water-filled gap between them 
will gradually deform the shape and wavelength of 
the ultrasonic waves. Therefore, because of this 
complicated nonlinear process, in addition to the 
effect of Fourier transforming the time-signals that 
are received by the transducer, higher harmonic 
frequencies (defined as integer multiples of the 
fundamental frequency of the ultrasonic transducer) 
appear in the resulting power spectra. 

Visual inspection of the obtained power spectra 
shows that the local-maximum-peak frequency of 
the first harmonic (which is the fundamental of 
central frequency of the used ultrasonic transducer) 
was shifted from 2 MHz down to 1.92 MHz. The 
local-maximum-peak frequency of the second 
harmonic was around 3.84 MHz, the third one was 
around 5.76 MHz and so on, as shown in Fig. (5a). 
Low pass filtering was used extensively to suppress 
the noise and obtain the smooth spectra shown in 
the figures. A large number of measured power 
spectra were acquired, for exactly the same stiffness 
and contact grade and by using exactly the same 
experimental setup and holding the same conditions, 
during 20-30 seconds in realtime by the oscilloscope 
and transferred to a computer where the mean power 
spectrum was computed. In addition, the resulting 
mean power spectrum was further smoothed by 
using average filtering. 

 

 
Fig. 4.  A microscopic image showing two screws: 
(a) The metal screw used in the phantom. (b) A 
titanium dental implant screw. Two screw-thread 
regions, one from each screw, are zoomed-in with 
the same grade to show a comparison between the 
depth-of-thread values in both cases. 
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Fig. 5.  (a) Three overlapping power spectra of the 
same experimental settings (the same stiffness and 
contact grade). (b) Histogram showing the standard 
deviations for these three spectra. 
 

 
It is essential to ensure the repeatability and 

reproducibility of the experiments to validate the 
capability and robustness of the ultrasonic 
measurement system. Therefore, the experimental 
tasks (during each of which, power spectra were 
acquired in realtime in 20-30 seconds) were 
repeated using different initial conditions. The 
resulting mean power spectra were compared by 
using MATLAB ®. Fig. (5b) shows a histogram of 
the standard deviations for the power spectra 
obtained from repeating one of the experiments 
(exactly the same experiment) three times; when 
screwing out the screw with the same number of 
turns, which corresponds to the same stiffness and 
contact grade between the metal screw and wooden 
cylinder. This figure shows that the obtained 
standard deviations were mainly limited to 1%. This 
result indicates the robustness of the used method in 
achieving reproducible measurements, because the 
power spectra can be obtained with sufficient 
accuracy. 

Fig. (6) shows a comparison between two power 
spectra; one corresponds to the tight screw state and 
the other one is obtained in the case of loose screw. 
It is possible to observe differences between these 
spectra, at the higher harmonics, by using visual 
inspection. These differences are automatically 

utilized by the PLS algorithm to be able to estimate 
the corresponding stiffness or contact grade which is 
measured in number-of-turns when screwing the 
metal screw out or into the wooden cylinder. Before 
applying the PLS algorithm, the power spectra were 
preprocessed and normalized according to the 
guidelines mentioned previously in this work. 

Fig. (7) presents a comparison between real and 
estimated stiffness and contact grades expressed in 
number-of-turns, as explained previously. The 
correlation coefficient R between the resulted two 
curves of the real and the estimated values in this 
figure is 0.982 (i.e. 98.2% correlation) and the 
corresponding P-value is 1e-21 (too small; near 0). 
This R-value corresponds to a coefficient of 
determination R2 of 96.4% and a mean absolute 
error of ±0.23 turns for the screw into (-) or out of 
(+) the wooden cylinder; i.e. a tighter or a looser 
state. In this experiment, the screw was gradually 
screwed out (made looser from 0.5 up to 5 turns), 
then gradually screwed in (made less loose or tighter 
from 5 down to 0 turns) and finally screwed out 
again in the same manner, as shown in Fig. (7). 

 
 

4 Discussion and Conclusions 
The success story of the approach proposed in this 
research work begins the smart design of the used 
phantom (a metal screw screwed into a solid fresh-
wood cylinder) which made it possible to efficiently 
simulate slightly varyingosseointegration grades by 
screwing in or out the metal screw gradually. 
Thereafter, when the reproducibility and 
repeatability of the measurements were proven by 
simply looking at the standard deviations (which 
were mainly limited to 1%) for repeated 
measurements acquired by using the same 
experimental setup and correspond to identical 
grade of stiffness, conditions and constraints. An 
essential issue is, of course, to preprocess and 
normalize the data properly to achieve the best 
possible performance and accuracy of the system. 

The promising results, that were obtained with a 
coefficient of determination R2 of 96.4% and a mean 
absolute error of ±0.23 turns, indicate the usefulness 
and efficiency of the approach in this work. 
However, in the experiments, a piece of fresh oak-
wood (a solid cylinder) was used instead of a 
jawbone, and a metal screw was used instead of a 
titanium dental implant. 

Future experiments should be performed in vitro 
on a piece of bone with a dental implant screwed 
into it. Furthermore, the experimental setup was 
designed to work successfully in a well or rather 
fully controlled laboratory environment.
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Fig. 6.A comparison between two power spectra; a power spectrum for the tight-screw state and another one 
for a loose screw. 
 
 
 

 
 

Fig. 7.  A comparison between real and estimated number-of-turns when screwing the screw gradually out of 
the solid wooden cylinder (starting from the tight screw state), then into it (gradually until reaching the tight 
screw state) and finally out of it again. Increasing or decreasing the number of turns corresponds to various 
stiffness grades of the screw-in-wooden-cylinder structure. 
 
 
 

The transducer was attached to the phantom at 
approximately the same position and direction 
during the whole experiment for all measurements. 
Minor changes or variations occurred when trying to 
screw in or out the metal screw. 

Therefore, the challenge is to find a measuring 
procedure and/or a preprocessing and normalization 
method to be able to perform measurements at 
different occasions, where the transducer and the 
phantom are removed totally from the experimental 
setup after each series of measurements then the 
computation of an average power spectrum. A 

successful measuring, preprocessing and 
normalization procedure, which results in a robust, 
repeatable and accurate system, should make it 
possible to perform independent measurements on 
the same implant, then evaluate and compare them 
accurately. 

The spectral measurements acquired, so far, are 
angle and displacement or position dependent. 
Therefore, these measurements will change 
considerably when measuring at different parts of 
the phantom and from different angles or directions; 
e.g. when the transducer is tilted by (even slightly) 
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different degrees with respect to the phantom. 
However, it is possible to normalize the obtained 
average power spectra by using an efficient 
procedure and make it possible to compare such 
spectra anyway. 

Good results were obtained in this research work 
because the method proposed and used in this work 
didn’t rely on comparing amplitudes of one or 
several peaks found at certain frequencies or 
frequency intervals in the average power spectrum 
(as it is the case in many traditional spectral analysis 
approaches). The new method makes instead use of 
the shape of the whole power spectrum curve, which 
resulted in an efficient approach as proven by the 
obtained results. Therefore, it should be possible to 
proceed in the same manner to make this approach 
even more efficient and practical so that it can be 
used and applied on measurements performed 
outside the laboratory environment (i.e. in the 
clinic) without the need for a fixed experimental 
setup and/or well controlled measuring conditions. 

Furthermore, another advantage of using the new 
approach is that it is not necessary to identify (e.g. 
by manual visual inspection or by automated 
analysis) the most useful spectral regions of the 
power spectrum (where e.g. most variations among 
the spectra are visible) to be included in the dataset 
processed by the proposed procedure. The algorithm 
can automatically include or exclude certain spectral 
regions of the power spectrum during the training 
phase. In other words, the system is able to 
differentiate between what is useful of the data and 
improves the performance and accuracy of the 
system to include it in the computations, and on the 
other hand, what is not and might degrade the 
performance of the system and therefore exclude it. 

It is for instance possible to design, develop and 
use a self-optimizing and self-training system that 
can find its way and solve a system of equations as 
efficiently as possible in addition to the ability to 
still learn or to learn more while it is used (i.e. such 
a system can gain more experience the more you use 
it in systematic way, of course). 

The significance of the new method for 
evaluating dental implant osseointegration can be 
summarized in enjoying a number of must-have 
advantages, such as that the new approach is safe 
(risk free), non-invasive, fast, robust, noise 
insensitive, accurate, fully automatic, reproducible/ 
repeatable, that it requires minimal patient 
preparation in addition to that it considerably 
reduces the reliance upon subjective measures. 

The conclusion that can be drawn here is that the 
good correspondence between real and estimated 
dental-implant stiffness-grade values makes this 

approach promising (after further optimization and 
adaptation for in vivo studies) for monitoring and 
tracking the osseointegration process after dental 
implant surgeries. 
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