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Abstract: - In this paper a new method for solving 2D Bearing-only SLAM is proposed. We use only 
Sequential Monte Carlo Methods to estimate current positions of the robot and for determining the landmarks’ 
coordinates. The main advantages of the proposed method are the high speed and the trivial generalization to 
3D case. Our method has linear complexity growth with respect to number of the landmarks.  
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1 Introduction 
Recently, for solving SLAM problem is widely used 
the so-called Fast-Slam method [1, 2]. It uses 
Sequential Monte Carlo Methods (SMC) to estimate 
the robot's current position and Extended Kalman 
Filter (EKF) for determining the landmarks’ 
coordinates. A similar technique, which is called 
Rao-Blackwellisation method, is applied in other 
applications, for instance, see [4, 5]. It is known that 
Fast-Slam is effective in case the mobile robot is 
equipped with a range finder [2]. However, if 
bearing measurements are only available, Fast-Slam 
may not have a good performance. This is because 
the uncertainty in the disposition of the landmarks is 
too high while the linearization used in EKF doesn’t 
yield big errors, in general, for small uncertainties 
exclusively. The main reason for the large errors 
produced Fast-Slam is a failed initialization, which 
takes place if some landmarks are disposed too close 
or too far from the robot. One remedy to overcome 
this problem is Gaussian Sum Filter (GSF) [2, 7] 
which uses the set of EKFs to estimate the 
landmark’s positions. However, GSF has an 
exponential growth of the complexity with respect 
to the number of landmarks [3]. In this paper, we 
propose a fully SMC-based method for Bearing 
Only SLAM, which doesn't use linearization and, 
for this, produces more accurate results than Fast-
Slam. At the same time, our method inherits the idea 
of the state space decomposition from Fast-Slam. In 
this regard, it is like the method proposed in [3], but 
we don’t use the trapezoids to model the 
uncertainties of the landmarks. Instead we are 
modeling landmarks’ uncertainties as a set of the 
separate particle filters [4]. Doing in that way, we 

lately have got three different methods for solving 
Bearing-only problem. For these methods, the 
higher speed of processing per one step of 
estimation, the larger bias of the estimates. However 
at the reasonable values of the noises included in the 
model this bias may be ignored. In this paper, we 
represent a quickest algorithm of all the three 
approaches. It is very effective if system noises are 
moderate. Unlike the GSF, the complexity of our 
method grows linearly with increasing of 
landmarks’ number. We deal with a 2D environment 
but the technique developed can be generalized to 
3D space without any changes.  
 It is worth to note, Bearing-only SLAM is 
attractive choice due to inexpensive equipping of 
the robot, since the range finder is not used but the 
single camera is only required [2]. There are two 
categories of the methods for solving Bearing-only 
SLAM. They are delayed and un-delayed methods. 
In delayed methods, the estimation of the robot’s 
and landmarks positions is postponed until the 
reliable base-line is reached [3, 6]. On the contrary, 
an un-delayed method modifies those positions as 
soon as a new measurement is available. In this 
paper we propose an un-delayed method. 
The paper is organized as follows: in section 2 the 
problem is formulated and denotes are introduced, 
in the section 3 our algorithm and the version Fast 
SLAM used for comparison are described. Section 4 
is devoted to simulation results, and section 5 
concludes the paper. 
 
2 Problem Formulation 
We use the kinematic discrete model of the robot’s 
motion. Let a mobile robot, whose coordinates are 
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( )yx rr ,=r , moves on the yx −  plane along a 
scheduled trajectory (Fig.1).  
 

 
Fig.1 The motion of robot and taking of the 
measurements in bearing-only SLAM. 
 
The robot starts at the known point ( )000 , yx rr=r  
and then makes stN  consecutive movements (steps). 
By θ denote the orientation of the robot with respect 
to the x axis. Suppose there are lN landmarks on the 
plane and let ( )s

y
s
x

s ll ,=l , lNs ,2,1=  be their 
coordinates. The robot’s motion can be described as 
follows:  

( ) ( )( )11 sin,cos −− ++=∆ iiiiiii ee θρθρ ρρr ,   (1) 
θθθθ iiii e+∆+= −1 .   (2) 

where iρ , iθ∆  are control parameters forming the 
robot’s path, stNi ,1= . The system noise processes 
ρ
ie , θ

ie  are described by their probability density 
functions (p.d.f.) ( )ρρ σ iie ,N  and ( )θθ σ iie ,N , where 
( )σ,xN  is the p.d.f. of the centered normal 

distribution with variance 2σ  and argument x. The 
random variables ρ

ie and θ
je (for any i, j) as well as 

ρ
ie  and ρ

je , θ
ie  and θ

je  (for ji ≠ ) are assumed to 
be independent of each other. Let ( )yixii rr ,=r  be 
the position of the robot at the step i, then we have 

i1ii rrr ∆+= − ,  (3) 
where ir∆  are defined by (1) и (2). The model 
defined by (1) – (3) is more suitable for a walking 
robot, but it may be also used for a wheeled robot. 
The initial orientation 0θ  is known. Let s

iα  be the 
angle between the vectors ( )iii θθ sin,cos=d  and 

i
s rl − , ( ]ππα ;−∈s

i . More precisely, 

( )
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s
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i rlrl −−
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−

−⋅
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θθ
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sgnarccos

rl
rld

, (4) 

where  is a vector magnitude. For all stNi ,0=  

and lNs ,1=  the noisy measurements s
im are 

supposed to be available and  
αα i

s
i

s
i em += ,   (5) 

where α
ie  are independent random variables with 

p.d.f. ( )αα σ iie ,N .  
Let us introduce the notations ),( iii θrR = , 

),,,( 21 rNlllL = , ( )LRS ,ii = , and 
{ },s

ki m=M where lNs ,1=  and ik ,1= . In this 
paper, our aim is to estimate recursively in time the 
conditional mean if ii

SMS )(E , stNi ,1= , where 

)( iif MS  is the p.d.f. of the posterior distribution 
of the state vector iS . Hereinafter, the estimate of 

if ii
SMS )(E  is denoted as iS .  

 
 
3 Description of the proposed method 
and Fast SLAM. 
The following factorization (6) of the conditional 
p.d.f. is needed for the sequel: 

( ) ( )iiiiii fff MRMRLMS ,)( =    (6) 
The formula (6) follows from the Bayesian rules 
[3,4]. Using (6), we can estimate the parts iR  and 
L  of the state vector iS , in the certain sense, 
separately. 
 
 
3.1 Description of the proposed method 
 
3.1.1 Initialization:  

For all lNs ,1∈  the random vectors 

( )s
yj

s
xj

s
j ll )(0)(0)(0 ,=l , g

lNj ,1= are generated 

according to a prior distribution with p.d.f. ( )sf 0l . 

The estimates ( ) ∑
=

−
=

g
lN

j

s
j

g
l

s N
1

)(0
1

0 ll , lNs ,1∈  are 

calculated. Suppose 0)(0 RR =k , rNk ,1∈ , that is, 
the initial state of the robot is the same for all the 
robot’s trajectories simulated. To sample 

( )s
yj

s
xj

s
j ll )(0)(0)(0 ,=l , at first the random variables 

s
ju )(  are sampled from the uniform distribution over 

the predefined range [ ]maxmin ,uu  of the landmarks’ 
depth. Then, for all lNs ,1∈  sample the random 
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variables s
j)(ϕ  according to ( )ασϕ 0,sN , where sϕ is 

the angle between the x axis and the ray forming 
angle sm0  with the initial vector 

( )000 sin,cos θθ=d . Finally, put 

( )
( )





+=

+=

0)()()(0

0)()()(0

sin

cos

y
s
j

s
j

s
yj

x
s
j

s
j

s
xj

rul

rul

ϕ

ϕ
, g

lNj ,1= , lNs ,1∈  (7) 

 

 
Fig.2 Initialization 
 
Result of applying (7) is shown in Fig.2 for the case 
of the 3=lN . 
 
3.1.2 Updating the robot’s trajectories 

For all rNk ,1∈  the independent Gaussian 
variables ρ

)(kie  и ρ
)(kie  are generated. Applying (1-3) 

to all of the vectors ( )ki 1−R , we get the set of the 

vectors *
)(kiR , rNk ,1∈  whose p.d.f. is 

approximately ( )1−iif MR . Calculate the angles 
s

ki )(α  between ∗
)(kid  and *

)(1 ki
s
i rl −−  (Fig.3). 

 

 
Fig.3 Updating of robot’s trajectories 

 

 Let 
1

1
)()()(

−

=










= ∑

rN

k
kkk QQq are weights, where 

( )( ]( )∏
=

−
−=

lN

s
i

s
i

s
kik hmQ

1
,)()(    , α
ππ

σαN  (8) 

In (8) 1>h  is design parameter. The subscript at 
( )s

i
s

ki mm −)(  means we choose the value of 
angles falling in ( ]ππ ,− .  
Now, the random vectors ( )kiR  are modeled 
according to the p.d.f.  

( )( )∑
=

−
rN

m
mikimq

1

*
)()( RRδ ,    (9) 

where ( ).δ  is the Dirac delta function. The uniform 
discrete distribution based on the set ( ){ } rN

kki 1=
R , 

represents the desired posterior distribution with 
p.d.f. ( )iif MR . At last, we obtain the estimate 

∑
=

=
rN

k
kiki q

1

*
)()( RR .  

 
3.1.3 Updating the landmarks’ positions: 
For all lNs ,1∈ and g

lNj ,1= calculate the angles 
s

ji )(α  between the vectors ( )iii θθ sin,cos=d  and 

i
s

ji rl −− )(1 , where ir and iθ  are components of 

the compound vector iR  (Fig.4).  
 

 
Fig.4 Updating of landmarks 
 

Then, count the weights 

1

1
)()()(

−

=













= ∑

g
lN

j
jj

s
j WWw , 

where  
( )( ]( )   ,

,)()(
α

ππ
σα i

s
i

s
jij mW

−
−= N   (10) 

Now, the vectors s
ji )(l  are simulated according to the 

p.d.f.  
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( )∑
=

−−
g
lN

m

s
mi

s
ji

s
mw

1
)(1)()( llδ   (11) 

The uniform discrete distribution based on the set 

{ } g
lN

j
s

ji 1)( =
l , lNs ,1∈  represents the desired posterior 

distribution, whose p.d.f. is ( )iif MRL , . Finally, 

calculate the estimates ∑
=

=
g
lN

j

s
ji

s
j

s
i w

1
)()( ll and 

( )lN
iiii lllL ,,, 21

= . Finally, the ith estimate of the 
state vector is ( )iii LRS ,= . 
 
3.1.4 Complexity analysis 
It can be seen from subsections 3.1.2 and 3.1.3 that 
we have to evaluate the normal distribution rl NN  
times in (8) and g

ll NN times in (12), total is 
( )g

lrl NNN + . If we considered all of the 
interrelations between robot’s and landmarks’ 
particles we would have a much larger number 

( )g
lrl NNN  and processing would be too slow. 

Using only averages s
i 1−l  in (8) and ir  in (11) for 

evaluating s
ki )(α  and s

ji )(α , we increase speed of 
computation. This approximation produces some 
additional bias of estimate, of course. The design 
parameter h  in (8) is needed to decrease that bias. 
In this paper we use the value 3=h , at which most 
precise results were obtained. If ρσ i  and θσ i  are 
relatively small, the bias may be ignored. For large 
values of ρσ i  and θσ i  it is better to use methods 
based on computing all of the ( )g

lrl NNN  angles 
between ∗

)(kid  and *
)()(1 ki

s
ji rl −− . Then the number of 

measurements should be decreased for the speed. 
Further, it is clear that complexities of the 
resampling processes in (9) and (11) depend on lN  
linearly, therefore we have linear growth of 
complexity our algorithm with respect to thе 
number of landmarks. This fact is also confirmed by 
simulation. 
 
 
3.2 Description of Fast SLAM 
Below, the particular case of the Fast Slam 1.0 
algorithm is described. The initialization and 
updating for robot’s pathes are depicted as they are 
carried in our numerical examples, updating of the 
landmarks follow [1, 2] 
 

3.2.1 Initialization: The random vectors 
( )s

yk
s

xk
s

k ll )(0)(0)(0 ,=l  ( Nk ,1= ; lNs ,1∈ ) are 

generated according to ( )sss
000 ,,N Σll , where 

( )xΣxx ,,N  is the p.d.f. of Bivariate Normal 
Distribution with mean x , covariance matrix xΣ , 

and argument x . For all lNs ,1∈  the values of s
0l  

and s
0Σ  coincide with the sample mean and the 

sample covariance matrix of the set 
( )s

yk
s

xk
s

k ll )(0)(0)(0 ,=l , which is defined by (7). Put 

0)(0 RR =k , Nk ,1= . Here, N is number of 
“particles” [4]. 

 
3.2.2 Updating 

Updating of the robot’s pathes is the same as 
in the proposed method (subsection 3.1.2) except 
for s

ki )(α  are the angles between ∗
)(kid  and 

*
)()(1 ki

s
ki rl −− , and Nk ,1∈  all over. Suppose the 

parameters s
ki )(1−l and s

ki )(1−Σ  ( Nk ,1= ; lNs ,1∈ ) 
have been already known. If the robot’s state is 

)(kiR , we have s
ki

s
ki )(1)( −= ll ; ( ) αα )()()( ki

s
ki

s
i

s
ki em += l  

and 

( ) ( )

yki
s

ykixki
s

xki

kiki

ki
s

ki

ki
s

kikis
ki

s
i

rlrl )()()()(

)()(

)()(

)()()(
)(

sincos
sgn

arccos

−−
⋅

⋅














−

−⋅
=

θθ

α
rl

rld
l

 (12) 

For any s, consider ( )s
ki

s
i )(lα  from (12) as function 

of only s
ki )(l . Then, for all Nk ,1∈  apply EKF with 

linearization ( )s
ki

s
i )(lα  at the predicted point s

ki )(1−l . 
We have standard equations for EKF: 

( )( )( ]ππ
α

,)()()(1)( −− −+= s
i

s
ki

s
ik

s
ki

s
ki mlKll    (13) 

( )ts
kikk

s
ki

s
ki )(1)()()(1)( −− −= ΣGKΣΣ   (14) 

( ) 12
)()(1)()()(1)(

−

−− 




 += ασ i

t
k

s
kik

t
k

s
kik GΣGGΣK  (15) 

where )(kG is the gradient of the function ( )s
ki

s
i )(lα  

computed at s
ki )(1−l . Note, )(kG  is a 2×1 matrix. The 

uniform discrete distribution based on the set of the 
compound vectors ( )( ){ }N

k
s

kiki 1)(,
=

lR , lNs ,1∈  
represents the desired joint distribution with p.d.f. 
( )iif MS . By definition, put  
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∑
=

=
N

k
kii

1
)(RR , ∑

=

=
N

k

s
ki

s
i

1
)(ll , ( )lN

iiii lllL ,,, 21
= . 

Finally the ith estimate of the state vector  
( )iii LRS ,= . 

 
 
4 Simulation 
 We consider the discrete model of circular 
motion. The robot carries 36 steps trying to stay on 
the unit circle during its walking. The noises make 
the robot change its path a bit. It starts at (1,0) and 
plans return to the same point. For it, the length of 
its steps 174,036

2 == πρ i  and angles 
10=∆ iθ (see Section 2). In our experiment all of 

the linear sizes are expressed in relative numbers, so 
if other step length is needed one can just multiply 
by appropriate factor all of the model linear 
parameters. The values of the parameters are 

36=stN ; 6=lN ;  500== NN r ; 800=g
lN ; 

1=ασ i ; 005.003.0 == ii ρσ ρ ; 3.0=θσ i ; 
5.0min =u ; 6max =u . The landmarks are sampled 

from the uniform distribution so that their distances 
from the robot are within [ ]maxmin ,uu  for all 

stNi ,1= . We randomly choose the 3 landmarks into 
the unit circle and 3 landmarks out of one. Modeling 
has shown the position of a landmark with respect to 
the circle affects the estimation accuracy.  The 
typical results after running the proposed method 
and Fast Slam are shown in Fig. 5.  
 

Fig.5 The consecutive estimates of the robot’s 
positions and the localization of the landmarks 
estimated at last step. red− the proposed method; 
green− Fast Slam, blue− the true values.  
 
Fig.5 shows that the proposed method works more 
accurately than Fast SLAM. Moreover, the worse 
situation for Fast SLAM, when a landmark is close 

to the robot is depicted in Fig.6. In Fig.6, one can 
see that the error produced by Fast Slam is 
extremely large, while the proposed method 
estimates the landmark’s position very precisely. 
The main reason is failed initialization which is 
shown in Fig.7. Since the proposed method has 
stochastic nature, we 2000 times randomly 
generated sets of the 6 landmarks (3 into and 3 out 
of the circle). The results are represented as mean 
and median of absolute error and shown in Table 1. 
 

Fig.6 The estimated position of the landmark 
located at (1.6, 0): red − the proposed method; green 
−Fast Slam, blue− the true values. 
 

 
Fig.7 Failed initialization for Fast SLAM 

  
Table 1. Results of 2000 running of the 

proposed method 
Estimator 
of abs 
error/ 

Landmarks 
into the 
circle 

Landmarks 
out of the 
circle 

The 
robot’s 
position 

Mean 0.022 0.12 0.025 
Median 0.019 0.085 0.022 
 
As it follows from Table 1, for both type of the 
landmarks the relative errors are not bigger then 3% 
typical linear size of the corresponding areas. To 
estimate the accuracy of the robot’s coordinates 
computation, consider the prior distribution of the 
final points of the robot. We have modeled 100000 
trajectories (without taking of measurements) at the 
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noise values 005.003.0 == ii ρσ ρ ; 3.0=θσ i  and 
the set of the final points and the prior mean is 
shown in Fig.8. The mean distance these points 
from the prior mean is 0.15, therefore the proposed 
method decreases the prior uncertainty more than 7 
times. We used Matlab and the run time was 
approximately 0.06 s. per one step in the case of 6 
landmarks. (The CPU clock speed was 3GHz). 
Apparently, this value can be improved by program 
optimization. 
Additionally, we carried set of computational 
experiments at the different values of the noises 

ασ i ; ρσ i ; θσ i . These experiments have shown that 
our method estimates reliably standard deviation for 
the current final robot position, but doesn’t yield a 
good estimate for the current final landmarks 
standard deviations. In our next work, we are going 
to represent the SMC-based fast method which will 
estimate properly landmarks’ uncertainties.  
 

 
 
 

5 Conclusion 
We have proposed the fast method for solving 
Bearing-only SLAM, which has linear complexity 
growth with respect to number of the landmarks. 

The main advantages of the proposed method are 
the high speed and the trivial generalization to 3D 
case, which can be seen from the algorithm 
structure. In the future, we intend to modify this 
method in order to achieve a reasonable accuracy in 
estimating of the current uncertainties landmarks’ 
position. 
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