
An Efficient VLSI Computation Reduction Scheme in
H.264/AVC Motion Estimation

Shikai Zuo, Mingjiang Wang, Liyi Xiao
Microelectronics Center, Key Laboratory of the Technology of the Internet of Things

Harbin Institute of Technology
Harbin, Heilongjiang

 China
zuoshikai@yahoo.cn, http://www.hitsz.edu.cn

Abstract: - The variable block sizes motion estimation in H.264 is key technique to remove inter-frame
redundancy. This technique not only requires huge memory bandwidth but also its computation complexity is
higher. Therefore, this paper proposes one efficient sub-pixel search algorithm for reducing computation
complexity and bandwidth utilization, and a novel VLSI architecture for this algorithm which simplifies variable
block sizes motion estimation. The proposed method is efficient compared with those of existing methods which
have negative effects on compression, with respect to chip area, operation frequency, and throughput rate. The
proposed sub-pixel search architecture decreases the numbers of search pixels of full pixels motion estimation
by around 70% and the chip area by around 40% than the others search algorithm. Besides, an optimized motion
estimation MV prediction algorithm is used to remove data dependency, and optimization storage policies are
used to save hardware resources. The proposed sub-pixel search architecture can work at 200 MHz with 530k
gate count, which supports high-definition television 1920×1080 format.

Key-Words: - sub-pixel search, systolic array, H.264 encoder, motion estimation, 1080P, HDTV, VLSI

1 Introduction
The H.264 Advanced Video Codec is an ITU
standard for encoding and decoding video with a
target coding efficiency twice that of H.263 and with
comparable quality [1]. An increasing number of
services and growing popularity of HDTV are
creating much more need for higher coding
efficiency. An important coding tool of H.264 is the
variable block size matching algorithm for the ME
(Motion Estimation) which is a part of the prediction
step [2]. Because of the use of variable
block-matching motion estimation (Variable Block
Sizes Motion Estimation, VBSME), multiple
reference frame motion compensation (Motion
Compensation, MC) and Lagrange rate-distortion
optimization (Rate Distortion Optimization, RDO)
and other advanced coding techniques, making the
integer pixel motion estimation (IME) and fractional
pixel motion estimation (FME) consisting of
inter-frame motion estimation process takes up more
than 70% of the entire encoder encoding computing
time [3]. So the integer pixel motion estimation is the
bottleneck of H.264 encoder hardware
implementation [4]. The key problem of the H.264
encoder for HDTV is that the bandwidth of memories
access is limited.

Many efficient techniques have been used to
reduce the complexity, for example Full-Search
motion estimation, UMHexagon search, NTSS

search etc by JM software. At the same time many
hardware architecture have been proposed by some
researchers. The authors researched full-pixel search
motion estimation hardware implementation includes
Anchao Tsai, Mohammed Sayed and Weifeng He
etc. In paper [5], the authors present an efficient
architecture design based on the search point
reduction for HDTV variable block size ME of
H.264/AVC. The hardware architecture is
implemented with the 2-D systolic array and it
successfully increases the coding speed at the
expense of hardware cost. The 2-D systolic array
successfully reduces the data reuse for pixel SAD
computation, but it increased the number of control
circuits for its complexity. In paper [6], the authors
researched parallel-pipelined architecture based on
full search block matching algorithm, proposed an
architecture consisting of two main parts: the SAD
computing part and the SAD comparing part with
pipeline registers between them and a control unit to
control their operation. Using the techniques of
pipeline circuit and reducing supply voltage reduce
the power consumption and simplify the control
circuit. But the drawback of this technique is that the
data reuse rate is low for reading data from storage.
The full-search algorithm exhaustively computes all
candidate blocks to find the best match within a
particular window [7]-[9]. Therefore, this technique
has enormous complexity. In order to reduce the

WSEAS TRANSACTIONS on SIGNAL PROCESSING Shikai Zuo, Mingjiang Wang, Liyi Xiao

E-ISSN: 2224-3488 178 Volume 10, 2014

motion estimation complexity, many fast searching
algorithms are presented [10]-[13], but they have not
perfect solutions. In paper [10] and [11], the authors
use fast ME algorithm called HMDS to reduce
bandwidth, but the hardware implementation of
HMDS algorithms need more logic circuits. In paper
[12] and [13], the modified three step search (TSS)
algorithm is used to reduce the computational cost
and the memory access in the motion estimation
part. Those fast ME algorithm can dramatically
reduce the search points, but the efficiency of VLSI
architecture is decreased because of the lack of
regularity. So the most VLSI implementations of
motion estimations adopt full-search mode for
regular designs [14] [15].However, such full-search
chips are not suitable for portable systems due to
more bandwidth and power consumption for HDTV.

This paper proposes an efficient sub-pixel search
algorithm for variable block-matching motion
estimation. The efficiency of the sub-pixel search
cooperated with a simplified predicted MV is verified
for H.264/AVC encoders. We found that the
sub-pixel search ME can reduce
hardware consumption around 40% compared to JM
reference software with negligible video quality loss.
To realize the sub-pixel search algorithm, the
VBSME architecture is designed by using a 1-D
systolic array. Thus, the proposed architecture can
compute the optimal MV more efficiently than the
existing ones found in the literature. The proposed
VBSME architecture with input memory array
includes the sum computation of absolute difference
(SAD) and Lagrangian cost function. Simulation
results demonstrate that the proposed scheme has
better coding performance than conventional
architectures.

The remainder of this paper is organized as
follows. Section II introduces the proposed SPR
algorithm. Section III presents the proposed very
large-scale integrated VLSI architecture for VBSME
implementation using SPR method. Section IV,
presents the experimental results using several video
sequences, in order to verify the effectiveness of the
proposed SPR algorithm. Conclusions are finally
drawn in Section V.

2 Proposed Sub-pixel Search
Algorithms
In video encoding systems, the motion estimation
(ME) can remove most inter-frame redundancy, so a
high compression ratio can be realized. Among
various motion estimation algorithms, fast
full-search algorithm is usually used because of its

perfect effect and regular computation [16]. Thus, we
propose an efficient sub-pixel search algorithm for
variable block-matching motion estimation, in order
to reduce the bandwidth and power consumption.

2.1 VBSME Algorithm
In a typical VBSME, each frame of a video sequence
is divided into a fixed number of no overlapped
square blocks [17]. The search for the best matching
block is compared with the previous frame search
area. The sum of absolute differences (SAD) is used
as the main metric. SAD is shown (1) as below:

|),(),(|),(1

1 1

dyndxmInmIdydxSAD k

Nx

xm

Ny

yn
k ++−= −

−+

=

−+

=
∑ ∑

),(min|),(),(dydxSADyx dydxMVMV = (1)
In the H.264/AVC motion estimation, the current

frame is divided into a number of small
macroblocks(MBs) of size 16×16. The tree structure
motion estimation method is used in the H.264
VBSME. As shown in figure 1, the luminance MB
size of 16×16 may be divided into 16×8, 8×16, 8×8,
and 8×8 block also may be divided into 4×8, 8×4,
4×4 blocks [18]. The tree structure motion estimation
method in VBSME can adopt many combinations of
variable block-sizes to match the shape of different
objects in the video frame [19]. As a result, the
coding efficiency of the tree structure motion
compensation method is better than the previous
approaches. Although it can achieve a higher
compression ratio, it not only requires large
computation complexity but also needs huge memory
bandwidth for HDTV.

(1)16x16

(2)16x8

(3)8x16

(4)8x8

(6)4x8
(7)4x4

(5)8x4

Fig.1. The tree structure motion estimation for H.264

2.2 Proposed Sub-pixel Search Algorithm
In order to reduce the bandwidth and power
consumption, the paper proposed the Sub-pixel
Search Algorithm base on similarity value of
adjacent pielxs.

2.2.1 Sub-pixel Extraction
We compress the variable macroblocks data into a
quarter of original MB of image according to
similarity of adjacent pielxs. Simultaneously, we

WSEAS TRANSACTIONS on SIGNAL PROCESSING Shikai Zuo, Mingjiang Wang, Liyi Xiao

E-ISSN: 2224-3488 179 Volume 10, 2014

obtain sub-pixel(SuP) on the basis of regulation (2),
as below:

[]),max(),,max()1,1(),1()1,(),(++++= jijijiji PPPPMINSuP
--(2)
Accordingly each frame size of M×N of a video
sequence is compressed into to a quarter of original
frame, and the number of each macroblock pixel
ponits is reduced to a quarter of original MB. So the
computing load is enormous reduction in VBSME.
As shown in the figure 2.

(MxN) ¼

MxN
Fig.2. The sub-pixel extraction

2.2.2 Hierarchy search mode
We adopt hierarchy search mode to achieve sub-pixel
search algorithm, which has two steps: First
sub-pixel points search, then full-pixel search.

In the sub-pixel points search, the current MB and
the corresponding reference frame use the sub-pixel
data. In addition, the tree structure motion estimation
method which has 7 partition block patterns can reuse
the smaller blocks’ SADs to calculate the larger
blocks’ SAD of an 8×8 block in parallel. According
to the formula (2), each current MB size is changed to
a quarter of the original MB. As shown in figure 3,
we first calculate the a(2×2) block SAD, then
calculate the b(4×2) and c(2×4) blocks by
combinations of corresponding a(2×2) blocks. So we
can achieve SAD of d(4×4), e(8×4), f(4×8), g(8×8)
blocks by this method.

2x2 2x2 2x2 2x2

2x2 2x2 2x2 2x2

4x2

4x2

4x2

4x2

4x2

4x2

4x2

4x2

4x4

2x4

2x4

2x4

2x4

2x4

2x4

2x4

2x4

4x4

4x4

4x4

4x4

8x8

8x4 8x8(a) 16x8

8x16 16x16

(b) (d) (e)

(f) (g)(c)4x8

4x8 4x8

8x4

8x4

2x2 2x2 2x2 2x2

2x2 2x2 2x2 2x2

Fig.3. Different sub-blocks of a 16×16 MB for
H.264/ AVC

In the full-pixel search, the current MB and the
corresponding reference frame use the full-pixel data.

In addition, this step only searches eight points
surround the sub-pixel that computed in step one.

2.2.3 Optimize predictions of motion vector
In H.264/AVC, predicted motion vectors of different
block sizes have different values as described in [20].
However, it is very complex for hardware
implementation, because the data dependency of the
neighboring MBs makes the 1-D systolic array
difficult to implement. In order to reduce the data
dependency of the neighboring MBs, the author
proposed a modified PMV strategy in paper [21].
This strategy is that the PMV values of all types of
block size are calculated from the median of left MB,
up MB, and right-up MB. However, we have to
slightly modify this design for sub-pixel search
implementation. The proposed PMV values of all
types of block size are calculated from the median of
left-down MB, up MB, and right-up MB. Therefore
the predictions of motion vector should have
common values for each MB and its sub-blocks.

3 Hardware Architecture Design

3.1 Overview of the Architecture in
H.264/AVC
The MB is the basic unit of operation in the video
frames processing of H.264 encoder, it includes a
16×16 luminance MB and a 8×8 chrominance [22].
The encoder is organized as a pipeline architecture
processing the data on a MB basis. The pipeline has
four stages. As shown in figure 4, the first stage
consists of the sub-pixel motion estimation (ME), the
second stage involves the integer ME and fraction
ME, the third stage consists of the motion
compensation (MC) and the intra prediction and the
TQ and the Inverse TQ, the fourth stage involves the
Deblocking Filter and Entropy code. At last the code
stream data are output. The Sub-pixel ME and
full-pixel ME module are discussed only in this
paper.

MC

I nt r a
Pr edi ct i on

（ l uma16× 16（
l uma4× 4（
Chr oma8× 8（

T/
Q/
Q- 1/
T- 1

STAGE1 STAGE2 STAGE3 STAGE4

Debl ock
Fi l t er

Ent r opy

Sub_pi xel ME

I nt eger ME

Fr act i on ME

 Fig.4. H. 264 encoder hardware architecture

WSEAS TRANSACTIONS on SIGNAL PROCESSING Shikai Zuo, Mingjiang Wang, Liyi Xiao

E-ISSN: 2224-3488 180 Volume 10, 2014

3.2 Overview of the Architecture in Sub-pixel
To achieve the HDTV (1920 × 1080, 30Hz) video
encoder Motion Estimation, a high efficient data
reusable architecture is presented. Fig. 5 shows the
block diagram of the proposed architecture which
consists of the Sub-pixel ME and Integer ME
module. Additionally, both of the modules are
connected with pipeline registers. The Sub-pixel ME

pipeline scheme is adopted to divide the proposed
architecture into three parts for easy realization. The
first part is the data input system which comprises
two major modules. One is the Cur_Ram which
stores the current data from memory. Another is
Sub_Ref_Ram which stores the sub-pixels reference
data from memory. The second part is the SAD
compute array

SDRAM

Cur
Sram

Ref
Sram

Cur_Ram

Sub_Ref_Ram

PEarry
1

PEarry
2

PEarry
3

PEarry
4

Refdata_ Reassign_Unit

Add_acc

Motion_
cost

+SAD

RDO
Unit

Refaddr
Generate

Unit

Mv_Ram MV_Pred
Unit

SYSTEM_ CONTROL_FSM

BUS

RefMb_data
Reftrol Addr

Data_mb_ position

Data Flow

Control Flow

Ram1 Ram2 Ram3

Sub_Cur_data assign

PEarry
MV_out
Sub_pixel

MV_out
IME

Cur_Data

Ref_Data

Access

Access

Fig.5 The architecture of H.264 VBSME
which includes PEarrays 1-4 and Add_acc. The third
part is the Motion cost and RDO Unit. The System
Control Unit, which schedules the pipeline
operations, completes the encoder architecture. The
pipeline processes each MB as follows: First The
luma pixel of the reference video is input to the
Sub_Ref_Ram by computing sub-pixel. The luma
component of the current MB is input to the
Cur_Ram according to current MB Coordinate. At
the same time, the Refadder Generate Unit compute
the predicted motion vector (PMV) by using the MV
of left MB, up MB, and right-up MB. Then the luma
pixel data is loaded to the Ram1 Ram2 process
element arrays (PEarry) compute the SAD of current
pixel and reference pixel. Firstly, the Add_acc tree is
used to get the sub-macroblock SAD of variable
block-matching. Secondly, the third part computes
each block cost including the Motion cost and the
corresponding SAD. At last, the best matching block
MV is selected by the RDO Unit and output to the
Full-PE which is used to search the full pixel point.

3.3 1-D Processing Element Array
To increase process speed of motion estimation and
reduce the data reuse for pixel SAD compute, the
1-D systolic array is chosen as the basic architecture
of a PEA to compute the SAD of a 2x2 block. As
shown in Fig.6 The motion search engine is formed
by four PEA arrays which are formed by 16

PEA
0 PEA

0 PEA
0 PEA

0

PEA
0 PEA

0 PEA
0 PEA

0

PEA
0 PEA

0 PEA
0 PEA

0

PEA
0 PEA

0 PEA
0 PEA

0

PEA
0 PEA

0 PEA
0 PEA

0

PEA
0 PEA

0 PEA
0 PEA

0

PEA
0 PEA

0 PEA
0 PEA

0

PEA
0 PEA

0 PEA
0 PEA

0

PEA
0 PEA

0 PEA
0 PEA

0

PEA
0 PEA

0 PEA
0 PEA

0

PEA
0 PEA

0 PEA
0 PEA

0

PEA
0 PEA

0 PEA
0 PEA

0

PEA
0 PEA

1 PEA
2 PEA

3

PEA
4 PEA

5 PEA
6 PEA

7

PEA
8 PEA

9 PEA
10 PEA

11

PEA
12 PEA

13 PEA
14 PEA

15

Cu
rre

nt
M

B
Da

ta

Search Region Data

Fig.6 The architecture of PEarrays 1-4

WSEAS TRANSACTIONS on SIGNAL PROCESSING Shikai Zuo, Mingjiang Wang, Liyi Xiao

E-ISSN: 2224-3488 181 Volume 10, 2014

PEAs. So this process engine can obtain the SAD of
four macroblocks and its sub-macroblocks at one
clock. Fig.7 shows the PEA structure, which is
formed by 4 PEs of 16 PEAs. So this structure needs
256 PEs to perform the entire computation. Fig.8
shows the PE structure, which includes the search
pixel data register (SRD-REG) and current pixel data
register (CMD-REG) and the MV input unit.
Because adjacent PEA arrays unit need the same
search data and current pixel data, the SRD-REG and
CMD-REG can be reused by adjacent PEA-arrays.
The SRD-REG is used to hold the corresponding
search region data and to change in next pulse. The
CMD-REG stores the current data, and it is refreshed
once when the Sub-pixel ME compute next MB MV.
Firstly, the SAU is responsible for calculating the
absolute difference between current block pixel and
search area pixel. Then the SRD-REG is propagated
to the next PE search data register (NSR), when the
current block SAD is computed completely.

PE0 PE1

PE2 PE3

Ref-Data

Cu
r-D

at
a

2x
2

SA
D

Fig.7 The architecture of PEA

REGSRD

REGCMD

|C-R|

NSR

Fig.8 The architecture of PE

3.4 Data Flow of PEA arrays
The ME engine needs search pixel data (SRD) and
current pixel data (CMD), which are read from the
Sub_Ref_RAM and Cur_RAM. As shown in fig.9,
the current_MB sub-pixel register of PEA arrays is
assigned in left-to-right order when encoding one
MB. There are 64 CMD-REG per sub-pixel MB,
which is partitioned into 8 columns. For example, the
first column C(i,0) is assigned firstly, next is
C(i,1),...the last is C(i,7). The data is loaded in
CMD-REG registers within 8 clocks cycles.

C(0,0)

C(1,0)

C(7,0)

C(0,1)

C(1,1)

C(7,1)

C(0,7)

C(1,7)

C(7,7)

Current_MB

Fig.9. CMD register

We designed the architecture as shown in fig.6 for
increasing reusability for the search region data. As
shown in fig.10, 88 SRD registers marked as S(0,0),
S(0,1)...S(10,7) are used to store the search region
pixel data. The operating process of VBSME engine
is as following: firstly the SRD data is loaded in
RAM1, RAM2 and RAM3. Then the S(0,0), S(1,0),
S(2,0)...S(10,0) are loaded in first cycle, in the next
cycle the data stored in first column register are
shifted to the second column, and next cycle all data
in the SRD register are shifted to next column.
By this way, the search region data is
refreshed in proper timing.

S(0,0)
S(1,0)
S(2,0)
S(3,0)
S(4,0)
S(5,0)
S(6,0)
S(7,0)
S(8,0)
S(9,0)

S(10,0)

S(0,1)
S(1,1)
S(2,1)
S(3,1)
S(4,1)
S(5,1)
S(6,1)
S(7,1)
S(8,1)
S(9,1)
S(10,1)

S(0,7)
S(1,7)
S(2,7)
S(3,7)
S(4,7)
S(5,7)
S(6,7)
S(7,7)
S(8,7)
S(9,7)
S(10,7)

R
A

M
1

R
A

M
2

R
A

M
3

PEA array 4
PEA array 3
PEA array 2
PEA array 1

Fig.10. SRD register

3.5 Merge Module
The advantage of the Sub-pixel Search Algorithm is
that each block SAD of variable block sizes
partitions can be computed at the same time. By this
means the computation complexity is simplified for
variable block-matching. As shown in fig.11, PEA0,
PEA1,…PEA15 are SADs with each block of 2x2
partition. The merging block of PEA0 and PEA1 is a
SAD of 2x4 partition, the merging block of PEA0
and PEA4 is a SAD of 4x2 partition, the merging
block of PEA0, PEA1, PEA4, PEA5 is a 4x4
partition. The SAD of 8x4, 4x8, 8x8 partition are
calculated in the same way. A carry look-ahead
adder is used to compute the SAD for avoid the long
critical path.

WSEAS TRANSACTIONS on SIGNAL PROCESSING Shikai Zuo, Mingjiang Wang, Liyi Xiao

E-ISSN: 2224-3488 182 Volume 10, 2014

PEA0
PEA4
PEA2
PEA6

PEA14

PEA1
PEA5
PEA3
PEA7

PEA15

2x22x4 4x24x48x44x8

8x8

Fig.11 Architecture of the SAD

3.6 Sub-pixel search memory organize
As shown in Fig.12, the proposed hexagon search
region replaces the rectangle region for reducing the
search points in VBSME. The rectangle region is
used in previous design. For example, the rectangle
search region (128x64) is used in paper [23] and
another paper [24] uses the square search region
(65x65). There are 2112 pixels when the hexagon
search region is adopted. The search pixels are
reduced 31.5% from the square search region. So this
method tremendously increases the processing speed
without affecting the performance of video coding.

In scheduling, each PE SRD must propagate its
processed data to the neighboring PE. The
interconnections between neighbor PEs and data
holding memory are required. In order to simplify
the design of SRD memory, we proposed to use three
RAMs to store the SRD. As shown in Fig.10, each
RAM could store 4 lines of pixels. According to the
maximal line of 72 pixels, we used three 2k (72 × 4 ×
8bits) on-chip RAMs for the SRD to store each strip
data at different instants. Consequently, we divided
the search region into 14 independent regions as
illustrated in Fig.12. Each independent region is
called a strip. The search directions are from left to
right and from top to bottom as shown in map.

Just as shown in Fig.13, we need nine steps to
fetch the entire SRD data from memories. In the first
step, the data of 0th, 1th and 2th strips will be
mapped to RAM1 RAM2 and RAM3. In this step,
the SAD of 1th strips MB are calculated
and output the results. The following strips are
required when motion search reaches the next stage.
In step 2, the data of 3rd strip will be mapped to
RAM1 and the reading order for input motion
estimation engine is changed to RAM2 RAM3
RAM1 from top to bottom. By using this method, the
SAD of each pixel point is calculated in the search
region.

72 pixels

56
 p

ix
el

s

4 pixels

4 pixels

0th strip

2nd strip

13th strip

1st strip

F
Fig.12 The search region

Step 1

 0th Strip

 1st Strip

 2nd Strip

RAM1

RAM2

RAM3

Step 2 Step 3

3rd Strip

 4th Strip

Step 11

 13th Strip

 1/2/3 2/3/1 3/1/2 2/3/1 Order

Fig.13 Nine steps of fetching SRD memory
The Table.1 shown the scheduling of motion

estimation engine, all of search points are completed
in 812 cycles.
Table.1 Clock Distribution

CLK SYSTEM_CONTROL
0~15 LOAD DATA

16~47

Position of MB

MB(15,0)~MB(31,3)Process 1st Strip
48~55 LOAD DATA
56~95 Process 2nd Strip MB(11,4)~MB(51,7)
96~103 LOAD DATA

104~151
152~159
160~215
216~223

Process 3rd Strip
LOAD DATA

Process 4th Strip
LOAD DATA

Process 5th Strip224~287
LOAD DATA

Process 6nd Strip
LOAD DATA

Process 7rd Strip
LOAD DATA

Process 8th Strip
LOAD DATA

Process 9th Strip
LOAD DATA

Process 10th Strip
LOAD DATA

Process 11th Strip

Process 12th Strip
LOAD DATA

MB(7,8)~MB(55,11)

MB(3,12)~MB(59,15)

MB(0,16)~MB(63,19)

MB(0,20)~MB(63,23)

MB(0,24)~MB(63,27)

MB(0,28)~MB(63,31)

MB(3,32)~MB(59,35)

MB(7,36)~MB(55,39)

MB(11,40)~MB(51,43)

MB(15,44)~MB(47,47)

289~296
297~360
361~368
369~432
433~440
441~504
505~512
513~568
569~576
577~624
625~732
733~772
773~780
781~812

3.7 Proposed MV cost
The MV cost represents the required bits for the
difference of PMV and current motion vector. The
architecture of MV cost adopted by predecessors is

WSEAS TRANSACTIONS on SIGNAL PROCESSING Shikai Zuo, Mingjiang Wang, Liyi Xiao

E-ISSN: 2224-3488 183 Volume 10, 2014

look-up table, for example in paper [5]. However this
method will use many ROM for look-up table,
especially when the search region is larger. The
whole architecture of MV cost is show in Fig. 14. We
use the multiplexer to generate the data bits of
absolute PMV. Then the results are enlarged by two
times. Finally we obtain the MV cost by adding 1 to
the results of second step. The experimental results
show that the circuit is more rational and valid.

6'd
5'd
4'd
3'd
2'd
1'd
0'd

|PMV|

6bit

<<1

1'b

MVcost

Fig.14 The architecture of MV cost

3.8 Full pixel search
In the first stage, the best matching point of sub-pixel
is obtained by the blocks of PEarrays 1-4, Add_acc,
Motion cost and RDO Unit. For example we obtain
the best matching point in located the circle marked
as 4(start) in fig.15. Then the search region data is
mapped into the RAM. Then, we compute the SAD
of full pixel search block by order 0,1,2,5,4,3,6,7,8,
to increase efficiency, for the search data can be
reused by adjacent PE arrays. Additionly, the MV
cost of each point still uses the same results from the
first stage motion cost block, for the MV cost keeps
almost unchanged in the small size range.

0 1 2
3 4 5
6 7 8

Fig. 15 The map of full pixel search
The architecture of full-pixels search shown in

fig.16 can compute SAD of one bock of 4x4 in one
clock. Based on the demand of HDTV encode, the
same architecture numbers of 2 are added in the stage
2. When the stage one ends, the Ref_Data RAM loads
the corresponding data of reference pixle according
to the best match coordinate.

According to the H.264 implementation
principle, we firstly need to obtain the best partition
mode in 8x8,16X8,8X16 and 16x16. If the partition is
8x8 mode, the other sub block partition SAD will be
computed to select the best partition. The order of
partition blcok process is 8x8, 16x8, 8x16 for reduce
the steps of process.

PE0 PE1 PE2 PE3

PE4 PE5 PE6 PE7

PE8 PE9 PE
10

PE
11

PE
12

PE
13

PE
15

PE
14

Ref-Data

C
ur

-D
at

a

SA
D

4x
4

Fig.16 The architecture of full pixel search

4 Results and Discussion
The algorithm presented in this paper is implemented
with C program. It is compared with the fast search
algorithm of JM16.2 in the same condition. The
setting of initial conditions: (1)group of picture
structure is IPPP; (2)Hadamard transform used;
(3)MV search range 128× 96; (4)number of
reference frames equal to 1. (5)RDO ON; (6)quarter
pixel is used for MV resolution; (7)fast search
integer pixel ME; (8) context-adaptive
variable-length coding is enabled.

4.1 Results of the sub-pixels search algorithm
A series of video sequences were used in our
simulations. These sequences cover a wide range of
motion content with two different formats including
QCIF and HDTV. In addition, each video test in
three QP includes 28, 32 and 36.

The simulation result of the sub-pixel algorithm
shown in Table 3 depicts the performance with
different sequences compared to JM16.2. The (+)
sign in BD-BR and (−) sign in BDPSNR indicate the
coding loss. The performance of PSNR and bit-rate
in Table 2 does not significantly degrade which is a
good trade off between performance and hardware
cost. Additionally, the BD-BR is greater for CIF
than HDTV video, for the larger the size of video,
the less MB is divided into sub-block and
the better effect of sub-pixel search algorithm is. The
proposed algorithm can save the search points by
around 70% in ME and yields an acceptable
performance, which is deemed worthy for hardware
implementation.

4.2 Results of the VLSI Architecture
The proposed architecture was synthesized based on
the Synopsys Design Compiler with SMIC 0 .13μm
CMOS technology and Artisan Memory compiler.
The circuit can operate at frequencies reaching 200
MHz, subsequently allowing the VBSME processing

WSEAS TRANSACTIONS on SIGNAL PROCESSING Shikai Zuo, Mingjiang Wang, Liyi Xiao

E-ISSN: 2224-3488 184 Volume 10, 2014

with a search range of 128 × 96. The total clock
cycles required to process an MB is 812 clock cycle.

Table 3 compares the proposed method with
previous works in hardware design of motion
estimation. The search pixels processed per gate in
one second (pixels/(s*gate)) represent the hardware
efficiency. Considering the performance and
efficiency of the proposed sub-pixels search
algorithm, the two level architecture was used in the
ME design. Each level used independent 1-D array
architecture.

Table.2. Simulation results for different video size

The proposed architecture has SAD and MV cost
electric circuit, whereas papers [25], [23], [26] and
[27] have only SAD circuit. The hardware efficiency
of proposed architecture was improved more than 4
times comparing with other method. The proposed
architecture processes an MB within 812 cycles.
Therefore, the resulting values explain why the
proposed method performs better than that in [26]
and [27]. The proposed sub-pixel search ME
intellectual property covered with full search range of
128 × 96 can process 1920 × 1080 video sequence at
200 MHz.

BD-
PSNR

-0.07

-0.07

-0.09

-0.07

-0.05

-0.03

-0.89

-0.02

-0.03

-0.03

Sequences

CIF

HDTV

Bus

foreman

mobile

factory

controlled_burn

touchdown_pass

ducks_take_off

Full search Subpixel search QP

28
32
36
28
32
36
28
32
36

28
32
36
28
32
36
28
32
36
28
32
36

kbits/s kbits/s PSNR PSNR
1657.92

990.77

589.30

35.09

32.08

29.42

1733.9

1032.43

616.85

35.02

32.01

29.33

BD-BR

+4.58%

+4.20%

+4.67%

665.57

409.2

260.2

37.34

35.1

32.84

679.2

418.03

262.9

37.27

35.05

32.81

+2.05%

+2.15%

+1.04%

2735.81

1571.57

870.93

34.42

30.97

28

2811.89

1603.92

875.52

34.32

30.87

27.89

+2.78%

+2.06%

+0.52%

-0.1

-0.1

8505.65

4936.37

2914.99

38.3

35.88

33.84

8577.89

2945.62

38.28

35.85

33.81

+0.85%

+0.98%

+1.05%

57317.04

40121.28

27213.78

38.64

36.04

33.84

57318.19

40125.6

27215.28

38.64

36.03

33.69

+0.002%

+0.01%

+0.005%

0

-0.01

-0.05

31609.78

19431.46

11280. 14

38.77

36.97

35.43

31620.53

19436.11

11287.20

38.77

36.97

35.43

+0.03%

+0.02%

+0.06%

0

0

0

38879.23

20508.00

11260.61

34.69

32.58

30.53

39333.89

20750.02

11366.69

34.65

32.54

30.47

+1.16%

+0.82%

+0.93%

-0.04
-0.03

-0.06

4984.80

Table.3 Comparison of the Proposed Architecture and Previous Works
Paper

Search range

Architecture

Process (um)

Work frequency（ MHz（

Function

Cycles/MB

33x33

[23] [5] [26] [27] Proposed

2-D 1-D

128x64

200 108 200 200 260 200

0.18

160k 330k 597k 210k 530k

SAD SAD+Mvcost

48x32

0.18 0.13

SAD+Mvcost

16x16 16x16 128x96

0.18 0.18 0.13

Area : Gate - count 330k

1129 8270 1614 256 5216 812

Search pixels/s/gate 9973241206 335 1003 4730

[25]

SAD

WSEAS TRANSACTIONS on SIGNAL PROCESSING Shikai Zuo, Mingjiang Wang, Liyi Xiao

E-ISSN: 2224-3488 185 Volume 10, 2014

V. Conclusion

This paper presentes an efficient motion
estimation algorithm based on the fast search
algorithm for HDTV variable block size ME of
H.264/AVC. The proposed algorithm can effectively
complete the motion estimation with a peak
signal-to-noise ratio drop of less than 0.1 dB than
that of the fast search algorithm, and a maximum
video codec bit rates drop of less than 1.16% than
that of fast search algorithm of HDTV. In addition,
the accuracy of the proposed algorithm makes it
highly promising for hardware design
implementation. The hardware architecture is
implemented with the 1-D systolic array and its
related circuits are successfully simulated for the
H.264/AVC. The chip can operate at 200 MHz with a
gate count of 530 k, including the memory modules.
The proposed method is efficient compared with
those of existing methods with respect to chip area,
operation frequency, and throughput rate with
negative effects on compression. The proposed
sub-pixel search architecture decreases the numbers
of search pixels of full pixels motion estimation by
around 70% and the chip area by around 40% than
the previous full pixels search algorithm.

References:
[1] T. Wiegand, G. J. Sullivan, G. Bjontegard, Over

view of the H.264/ AVC video coding standard,
IEEE Transactions on Circuits and Systems for
video technology, Vol.13, No.7, 2003, pp.
560-576.

[2] Advanced Video Coding for Generic
Audiovisual Services, H.264 Standard,
International Telecommunication Union, 2005.

[3] K. M. Yang, M. T. Sun, and L. Wu, A family of
VLSI designs for the motion compensation
block-matching algorithm, IEEE Transactions on
Circuits and Systems, Vol.36, No.10, 1989, pp.
1317-1325.

[4] J. C. Tuan, T. S. Chang, and C. W. Jen, On the
data reuse and memory bandwidth analysis for
full-search block-matching VLSI architecture,
IEEE Transactions on Circuits and Systems for
video technology, Vol.12, No.1, 2003, pp. 61-72.

[5] An-Chao Tsai, K. Bharanitharan, Jhing-Fa Wang,
Effective Search Point Reduction Algorithm and
Its VLSI Design for HDTV H.264/AVC Variable
Block Size Motion Estimation, IEEE
Transactions on Circuits and Systems for video
technology, Vol.22, No.7, 2012, pp. 981-988.

[6] Mohammed Sayed and Wael Badawy, A Fully
Parallel-Pipelined Architecture for Full-Search
Block-Based Motion Estimation, IEEE

Transactions on Circuits and Systems, Vol.30,
No.11, 2002, pp. 24-27.

[7] Roger Porto, Luciano Agostini, Hardware
Design of the H.264/AVC Variable Block Size
Motion Estimation for Real-Time 1080HD Video
Encoding, IEEE Computer Society Annual
Symposium on VLSI, 2009, pp. 115-120.

[8] Weifeng He, Weiwei Chen, Zhigang Mao, AN
EFFICIENT VLSI ARCHITEC TURE FOR
EXTENDED VARIABLE BLOCK SIZES
MOTION ESTIMATION, IEEE Transactions on
Circuits and Systems, Vol.13, No.7, 2010, pp.
560-576.

[9]Shih-Chang Hsia, VLSI Implementation for
Low-Complexity Full-Search Motion
Estimation, IEEE Transactions on Circuits and
Systems for video technology, Vol. 12, No. 7,
2002, pp. 613-619.

[10] Obianuju Ndili and Tokunbo Ogunfunmi,
Algorithm and Architecture Co-Design of
Hardware-Oriented, Modified Diamond Search
for Fast Motion Estimation in H.264/AVC, IEEE
Transactions on Circuits and Systems for video
technology, Vol. 21, No.9, 2011, pp. 1214-1227.

[11] Yiqing HUANG, Qin LIU and Takeshi
IKENAGA, VLSI Oriented Fast Motion
Estimation Algorithm Based on Macroblock and
Motion Feature Analysis, IEEE Signal
Processing, 2009. pp.166-171.

[12] Tarek Darwish, Amit Viyas, Wael Badawy,
Magdy Bayoumi, A LOW POWER VLSI
PROTOTYPE FOR LOW BIT RATE VIDEO
APPLICATIONS, IEEE Transactions, 2000.
pp.159-167.

[13] Donglai Xu and John Bentley, VLSI- BASED
PARALLEL ARCHITECTURE FOR BLOCK
MATCHING MOTION ESTIMATION IN LOW
BIT-RATE VIDEO CODING, IEEE
Transactions, 2001.

[14] A.V. PARAMKUSAM and V.S.K. REDDY,
An Optimal Fast Full Search Motion Estimation
Algorithm In Video Coding, IEEE Transactions,
2011. pp.598-603.

[15] Xuan Jing and Lap-Pui Chau, Partial Distortion
Search Algorithm Using Predictive Search Area
for Fast Full-Search Motion Estimation, IEEE
Signal Processing Leters, Vol.14, No.11, 2007,
pp. 840-843.

[16] Zheng Zhaoqing, Sang Hongshi, Huang
Weifengand and Shen Xubang, High Data Reuse
VLSI Architecture for H.264 MotionEstimation,
IEEE, 2006. pp.188-191

[17] L. Funucci, R. Saletti, L. Bertini and P. Moio, S.
Suponara, High-Throughput, Low Complexity,

WSEAS TRANSACTIONS on SIGNAL PROCESSING Shikai Zuo, Mingjiang Wang, Liyi Xiao

E-ISSN: 2224-3488 186 Volume 10, 2014

Parametrizable VLSI Architecture for Full
Search Block Matching Algorithm for Advanced
Multimedia Applications, IEEE, 1999.

[18] Cao Wei, Mao Zhi Gang, A Novel VLSI
Architecture for VBSME in MPEG-4
AVC/H.264, IEEE. Vol.2, No.7, 2005, pp.1794-
1797.

 [19] Chien-Min Ou, Chian-Feng Le and Wen-Jyi
Hwang, An Efficient VLSI Architecture for
H.264 Variable Block Size Motion Estimation,
IEEE. Vol.51, No.29, 2005, pp.1291 - 1299

[20]ITU-T, SERIES H: Audiovisual and Multimedia
systems: Infrastructure of audiovisual services -
Coding of moving video, ITU-T Rec. 2003.

[21] Bin Qi, Duoli Zhang, Yukun Song, Gaoming
Du, Yong Zheng, Design and Implementation of
a New Pipelined H.264 Encoder, IEEE, Vol.1,
No.10, 2011, pp.130-133.

[22] Joint Video Team, Draft ITU-T
Recommendation and Final Draft International
Standard of Joint Video Specification, Geneva:
ITU-T Rec H264 ISO/IEC 14496-10 AVC, 2003.

[23] C. Y. Chen, S. Y. Chine, Y. W. Hung, T. C.
Chen, T. C. Wang, and L. G. Chen, Analysis and
architecture design of variable block-size motion
estimation for H.264/AVC, IEEE Transactions
on Circuits and Systems for video technology,
Vol.53, No.2, 2006, pp. 578–593.

[24] L. Deng, W. Gao, M. Z. Hu, and Z. Z. Ji, An
efficient hardware implementation for motion
estimation of AVC standard, IEEE Transactions
Consumer Electron, Vol.51, No.4, 2005, pp.
1360–1366.

[25] C. Wei, H. Hui, T. Jiarong, L. Jinmei, and M.
Hao, A high-performance reconfigurable VLSI
architecture for VBSME in H.264, IEEE
Transactions Consumer Electron, Vol. 54, No. 3,
2008, pp. 1338–1345.

[26] J. Kim and T. Park, A novel VLSI architecture
for full-search variable block-size motion
estimation, IEEE Transactions Consumer
Electron, Vol.55, No.2, 2009, pp.728–733.

[27] C. M. Ou, C. F. Le, and W. J. Hwang, An
efficient VLSI architecture for H.264 variable
block size motion estimation, IEEE Transactions
Consumer Electron, Vol.51, No.4, 2005, pp.
1291–1299.

WSEAS TRANSACTIONS on SIGNAL PROCESSING Shikai Zuo, Mingjiang Wang, Liyi Xiao

E-ISSN: 2224-3488 187 Volume 10, 2014

