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Abstract: - Side-scan signals collected from the seabed are constructed based on elements of bottom roughness, 
which vary in texture and in the time they are collected. Image denoising, A procedure used for extracting 
image texture information and removing or reducing as much noise as possible, is a difficult problem. This 
study proposes a denoising algorithm based on an elaborative approach for measuring image roughness as an 
alternative to the fractal-wavelet (FW) coding process. By using this approach, texture similarity can be 
effectively captured. Because roughness is a property used to qualify image texture and a fractal dimension 
(FD) can be used to indicate the degree of complexity of image roughness, this study proposed an approach, 
namely the roughness entropy FD (REFD) method, for measuring the distribution of roughness in an image. 
This study applied the REFD algorithm to the FW coding process as the REFD FW algorithm. The proposed 
denoising algorithm approximates the parts of a noise-free image by determining the similarity distance 
between the two REFD values of domain-range subtrees, discarding as much noise as possible. The minimal 
similarity distance is used to quantify the degree of texture similarity between domain-range subtrees. This 
study conducted experiments on three side-scan sonar images of an undersea pipeline that were captured in 
Taiwan using a Polaris camera in various configurations in order to investigate the corresponding quality of the 
images by using two error criteria: mean square error and the peak signal-to-noise ratio. The experimental 
results indicated that the REFD is useful for range-domain matching in an FW coder to approximate the 
experimental images effectively. The proposed REFD FW algorithm is adaptable in denoising side-scan sonar 
images, and the images are more visually appealing. 
 
 
Key-Words: - Fractal dimension, fractal-wavelet denoising, image denoising, image roughness, self-similarity, 
side-scan sonar images 
 
1 Introduction 

Side-scan sonar has become an essential tool for 
canvassing the ocean bottom in ocean geographic 
studies in order to inspect objects on the sea bottom 
and investigate hazards [1]. In addition, side-scan 
sonar is widely used for investigating fishery 
resources in current fishing industries [2]. The 
considerable acoustic noise in underwater 
environments affects sonar signals and interferes 
with the collection process. The presence of acoustic 
noise distorts and degrades the accuracy of 

information extracted from sonar images. 
Eliminating or reducing noisefrom sonar images 
before using those images is critical. Sonar image 
denoising and noise reduction have been commonly 
discussed in the literature (e.g., [3]–[5]). 

 Image denoising techniques are designed to 
suppress noise efficiently while retaining essential 
image features; such techniques could thus 
considerably benefit numerous sonar applications. 
Whether an image can be denoised using fractal 
image coding depends on whether that fractal image 
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coding is lossy. Fractal image coding involves 
identifying a satisfactory collage, which is the 
approximation obtained when all fractal 
transformations are applied to the original image. 
Noise is not self-similar and is eliminated during 
fractal transformation. This explains why fractal 
image denoising is accompanied by a lossy 
compression process. Compared with optical 
images, sonar images are low-frequency images that 
are characterized by little detail. The background 
noises of sonar images are high-frequency impulse 
noises that yield higher amplitudes compared with 
those of echoes from the target area. Since the 
previous decade, the wavelet coding technique has 
been successfully applied to sonar image denoising 
and recognition [6], [7]. The wavelet coding 
technique consists of both transform and subband 
coding. The wavelet transform decomposes images 
into multiple levels at multiple resolutions and 
frequencies. The characteristics of inherently noisy 
sonar images suggest that wavelet-based 
compression is a viable choice for denoising sonar 
images. Recently, a study investigated the ability of 
fractal image coding to denoise images other than 
compression images [8]. To use fractal image 
coding to denoise an image, noise cannot be self-
similar or must be eliminated during fractal 
transformation. Fractal-wavelet (FW) schemes are 
inspired by applying the fractal image coding 
technique in the wavelet domain during the wavelet 
transformation of noisy images [9], [10]. The FW 
technique has been successfully applied to reduce 
noise in side-scan sonar images [3], [11]. 

Side-scan signals collected from the seabed 
primarily reflect several elements of the seabed and 
represent its roughness, which is related to texture. 
Texture is regarded as a similarity grouping in an 
image. Efficiently extracting texture is an effective 
approach to classifying and identifying no table 
information on areas. Fractal dimensions (FDs) are 
widely used in texture analysis [12]. Roughness is 
one of the perceived properties of image texture and 
is both irregular in shape and randomly distributed. 
FDs are suitable for estimating roughness and have 
been successfully applied to measure texture 
quantitatively [13].In addition, roughness is one of 
the perceived properties used to qualify image 
texture. A newly designed FD for extracting and 
analyzing image roughness is introduced by 
considering the roughness entropy FD (REFD) 
algorithm. The REFD value represents the 
distribution of image roughness so that the feasible 
FD representing the texture features can be 
extracted from the images. This study was 

motivated by an observation: an FD is an expression 
of an image in surface stability and the texture 
information of an image can be described by the 
distribution of image roughness; once this is 
performed, FD texture features can be extracted. 

This study proposes a texture-based FW coding 
algorithm based on the REFD, namely the REFD 
FW algorithm, for denoising sonar images. The 
REFD FW algorithm incorporates the REFD to 
identify each range subtree for the optimal matched 
domain subtree according to the optimal minimal 
distance of texture similarity measurements. The 
minimal similarity distance quantifies the degree of 
texture similarity between domain-range subtrees. 
The REFD FW algorithm may enable a 
multiresolution frequency analysis of image texture 
to be performed. Thus, REFDs of images of various 
frequencies can be received at different scales, and 
texture information can be acquired in the 
horizontal, vertical, and angular directions; few 
other texture analysis methods allow this. Using 
texture similarity, the proposed REFD algorithm 
identifies the appropriate domain subtrees, 
approximates domain-range subtrees, and denoises 
while preserving image texture information. 

The remainder of this paper is organized as 
follows: Section II presents an overview of fractal 
techniques and presents the wavelet-fractal image 
denoising scheme, Section III introduces the 
proposed sonar image denoising algorithm based on 
the wavelet-fractal image denoising scheme, and 
Section IV presents the experimental results and 
concludes the paper. The experimental results are 
discussed in terms of the metric of mean square 
error (MSE) and the peak signal-to-noise ratio 
(PSNR), and a brief conclusion is presented in the 
final section. 
 
 
2 Fractal and Wavelet-based Image 
Denoising Technology  
In the early 1960s, Mandelbrot revealedhow fractal 
sets could be regarded as the limits of iteration 
involving generators based on the concept of self-
similarity [14]. In the late 1980s, Bernesly [16] and 
Jacquin [15] pioneered fractal block coding. 
However, the matching process in fractal block 
coding, which involves determining a match from a 
group of domain blocks to a range block, is 
generally a time-consuming task that occupies most 
of the encoding time. Some improvements were 
achieved by reducing the domain pool size [17], 
[18]. The combination of fractal block coding and 
wavelets has been widely applied. In the early 1990s, 
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Pentland and Horowitz [19] were the first to 
mention such a link. David [20] published a notable 
paper on linking wavelet and fractal image coding in 
1998. Davis was the first to introduce the wavelet 
subtree, which consists of wavelet coefficients of 
the same spatial location and orientation but with 
different resolutions.  
 
 
2.1 Fractal Block Coding and Fractal 
Denoising 
Fractal block coding is used to approximate an 
image based on the subblocks of that image. The 
basic theory of Jacquin’s fractal block coding is 
discussed as follows. 

Let I be a gray-level image. In fractal block 
coding, image I is partitioned into N range blocks

iR I⊆  , for i = 1, 2…, N, and M domain blocks
jD I⊆ , for j = 1,2,…, M, where the size of each 

domain block is twice that of each range block. To 
encode an image according to its self-similarity, 
each range block locates the domain block most 
similar to itself from the domain pool based on 
minimal MSE criteria. The search for the optimal 

matched domain block jD is performed using a local 

affine transformation iw , such that  : i j iw D R→  , for 
i = 1,2, …, N and j = 1, 2, …, M. Theoretically, the 
union of the local affine transformations for all of 
the range blocks forms the affine transformation τ
for the whole image, as expressed in (1).   

                               1
N
i iwτ ==                       

(1) 
In practice, each local affine transformation iw is 

performed such that ( )i i jR w D≈
. Image encoding is 

achieved by first generating a fractal code for each 
range block iR  based on the optimal matched 

domain block jD and then storing the fractal code 
into the codebook. Fractal codes recorded in the 
codebook can later be used in the iterative process 
of range approximation to restore the image. 

Natural image structures exhibit similarities at 
various resolution scales. This feature renders the 
images suitable for encoding using fractal image 
coding methods. However, irregular textures and 
noise structures are unlike other parts of the image 
and therefore are not encoded using fractal block 
coding. The fractal code for denoising an image 
must be constructed such that the original image is 
approximated as much as possible and all of the 
noisy parts are discarded. 

 
 
2.2 Basics of Fractal-Wavelet Denoising 
Quad tree fractal coding, suggested by Fisher [21], 
is a hierarchical segmentation-based coding scheme 
that has been widely used and investigated [9], [20]. 
Primarily, the scheme identifies optimal matched 
domain subtrees and approximates domain-range 
subtrees by using the proper affine transform, 
common scaling factors, and three fundamental 
coefficient trees—the horizontal, vertical, and 
diagonal. However, this method results in a loss of 
image fidelity. Davis [20] provided a frequently 
used tool kit that is considerably useful in 
conducting experiments. 

Ghazelet al. [9] considered the coefficients of 
three subtrees independently in proposing a FW 
denoising scheme. The scheme involves selecting 
the optimal parent subtree such that the collage 
error, which is based on the MSE of the noiseless 
image, is minimized. This ensures the accuracy of 
the criterion for collage-based matching for the 
original noise-free image.  

 
Typically, FW decoding begins with a wavelet 

coefficient tree that contains stored wavelet 
coefficients and zeros. Iterations of the FW scaling 
and copying procedure are performed, producing a 
fixed point wavelet coefficient matrix that 
approximates the original image. A small collage 
distance indicates a favorable approximation [10]. 
The collage coding procedure used to produce the 
FW code for an image proceeds as follows: First, 
consider a fixed set of parent-child level values. 
Then, for each encoded child subtree, locate the 
parent subtree and the corresponding scaling 
coefficient so that the collage distance is minimized. 
 
 
3 REFD FW Denoising 
Roughness is a property used to qualify image 
texture. FDs are useful for measuring the degree of 
roughness of surface texture. Based on these 
concepts, this study proposes a novel FD approach 
for measuring image roughness, namely the REFD 
algorithm. The REFD was designed to extract 
roughness properties efficiently by acquiring the FD 
of an image, which is reflective of the roughness of 
an image texture. The REFD is described in the first 
subsection. 

The REFD FW estimates the domain-range 
matching based on the relative degree of texture 
similarity. In practice, the smallest distance between 
the two REFD values of subtrees is located in high- 
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and low-frequency subbands. The encoding is 
performed in an affine transformation defined using 
Jacquin’s notation [15]. The affine transformations 
between domain and range subtrees somewhat 
reduce the variance in the noise because the noisy 
contents are dissimilar. Denoising is accompanied 
by fractal block coding to eliminate noise that is not 
self-similar or eliminated during the affine 
transformation. The denoising algorithm is 
described in Subsection 3.2. 
 
 
3.1 Roughness Entropy Fractal Dimension 
Method 
The REFD method was designed to extract 
roughness properties by acquiring the FD of an 
image. The development of the REFD was 
motivated by the allometric relationship between the 
roughness node number and path length of 
compounds. The REFD clusters subsequently 
structure the image roughness based on a two-
connectivity rule, in which the structured cluster is 
called a compound. This study determined the FD of 
a compound according to a structure that was 
quantified using the Horton-Strahler order scheme 
[22]. Shannon’s entropy was introduced for 
integrating the FDs of the compound into an FD of 
an image in which the entropy indicated the 
contribution of roughness information on the 
compound; in other words, to reveal the importance 
of the same type of compound for the image 
roughness. The derived FD summarized the 
complexity of image roughness as a single 
numerical value. The REFD is obtained using three 
steps. 

 
3.1.1 Extraction of Image Roughness 
In this study, image roughness was defined as a 
descriptor of pixel value variation between the 
pixels in a small neighborhood. In selecting the 
extraction method, a small neighborhood around 
each pixel is used to ensure that selection is simple 
and easy to code.  

The surrounding pixels were defined as those 
pixels located adjacent to the current pixel in the 
vertical and horizontal directions. For current pixels 
located at edges or in corners, the nearest-neighbors 
search path, as shown in Fig. 1, was used to define 
the surrounding pixels. The extraction method 
involved setting the maximum and minimum among 
the surrounding pixels as the thresholds. When the 
value of the current pixel is greater than the 
maximum or less than the minimum, the current 
pixel is considered to indicate image roughness. For 

an image the size of M N× , the extraction of image 
roughness is described as follows:  

Let array Pat a size of M N× record the gray 
values of all of the pixels. Let array rP at a size of
M N× record the image roughness, in which 
roughness is 1 and nonroughness is 0. Assume 
( ),P x y is the current pixel, where

0 1,  0 1x M y N≤ < − ≤ < − . Let the surrounding 

pixels be rightP , leftP , downP ,and upP . Consequently, 
the pixel exhibiting a maximal gray value is maxP , 
and the pixel exhibiting a minimal gray value is 

minP . The formula for obtaining maxP and minP  is 
expressed as (2): 

( )
( )

max

min

, , ,

, , ,

right left down up

right left down up

P Max P P P P

P Min P P P P

=

=
              

(2) 

where function ( )Max  and ( )Min disregard any 

null entry. To obtain the value of ( ),rP x y ,(3) 
involves using maxP and minP as the thresholds. 

( )( )
( )

( )

max min, ( , )

, 1

, 0

r

r

if P x y P or P x y P

P x y
else

P x y

> <

=

=  (3) 
After analyzing all of the pixels, the image 

roughnesses are noted in rP . The REFD is then 
used to group the roughnesses that are adjacent to 
each other into rectangular roughness clusters. 
The process of grouping is conducted to compare 
the roughnesses with neighbors. If one of its 
neighbors exhibit sroughness and does not belong 
to any cluster, it can be included in a cluster.  

 

Fig. 1. Locating surrounded pixels 
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3.1.2 Calculation of Fractal Dimension for Each 
Compound 
The REFD is used to construct a compound by 
structuring the image roughnesses in each cluster 
according to the two-connectivity rule. The 
construction procedures are described as follows: 
Let each image roughness have an order that 
defaults to one. Assume that a walker travels 
through the roughness clusters. When the walker 
walks over two adjacent image roughnesses, the 
walker constructs a node based on them. The node is 
called a roughness node, and its order is set one 
order higher than that of its foundation. The walker 
walks over again. When the walker encounters two 
adjacent nodes that have the same order, the walker 
constructs a new roughness node by using these two 
adjacent nodes. The order of the new node is set one 
level higher than that of its foundation. The walker 
repeatedly walks over until all of the roughness 
nodes are explored. In this study, the roughness 
compound was defined as a set of image 
roughnesses and roughness nodes, and all nodes 
were considered to contain elements in the same set. 
At the end of node transversal, the highest node 
order obtained is assigned the order of that 
compound. Consequently, compounds have a binary 
tree hierarchical structure.    

 
Fig. 2. Four image roughnesses may form nine 

various compounds. 
 

The hierarchical structure of a compound depends 
on both the image roughness number and the 
permutation of image roughness. Fig. 2 illustrates 
various structures of compounds that are of the same 
number of image roughness, but of various 
distributions.  

The REFD involves a method derived from 
Horton’s laws [23] for computing the FD by 
considering two essential features, namely the 
number of roughness nodes and path length of 
roughness nodes. In this study, the average path 
length of roughness nodes was defined in the 
following manner: Let the path length of image 
roughness be 1. Let the path length of a roughness 
node of order i , where 2i ≥ , be the product of the 
path length of roughness node of order 1i −  and 2. 
Consequently, the average path length of roughness 
nodes of order i is the total path length of those 
roughness nodes divided by the number of 
roughness nodes of order i .  

An example is illustrated in Fig. 3. The 
compound illustrated in Fig. 3(a) contains five 
image roughnesses in order 1. Another compound 
illustrated in Fig. 3(b) contains four image 
roughnesses in Order 1. Each compound contains 
two roughness nodes at Order 2, and one roughness 
node in Order 3. Table 1 presents the average path 
lengths for image roughnesses and roughness nodes 
at various orders.  

 
Fig. 3. Diagram of roughness node order. 

 
Table 1. Roughness node numbers of Fig. 3 at each 

order 
order Fig.3 (a) Fig.3 (b) 

Number of 
roughness  

node 

Average 
path length 

Number of 
roughness  

node 

Average 
path length 

1 5 1 4 1 
2 2 2 2 2 
3 1 4 1 4 

 
The REFD is used to obtain the FD of a 

compound based on the ratio of roughness node 
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number and ratio of the average path length, and these 
two ratios are defined as follows: 

Let _od r be the order and _od rN  be the number 

of roughness nodes of order _od r . Accordingly, the 
ratio nR of the number of roughness nodes is defined as 
follows:  

_ +1 _n od r od rR N N=               (4) 

Let _od rL  be the average path length of order

_od r . The ratio LR  of the average path length is 
defined as follows:   

_ 1 _L od r od rR L L+=                   (5) 
When the structure of a compound is a symmetric 

binary tree, by using (4) and (5), nR  and LR are the 
same in each order. Fig. 3(b) shows an example.  

For example, if a compound contains 1N
roughness nodes, then the number of roughness nodes 
in Order 2 is obtained as follows:   

2 1 nN N R= ×  
If the structure of a compound is a symmetric 

binary tree, then the number of roughness nodes 
inOrder k  is indicated as follows:  

1
1

k
k nN N R −= ×                         (6) 

Consequently, the average path length in Order k  is 
indicated as follows: 

1
1

k
k LL L R −= ×                          (7) 

Apply logarithm to both sides of (7):   

( )
( )

( )
( )

1
1

1

1

1

log log

log log 1 log

1 log log log

1 log log

k
k L

k L

k L

k L

L L R

L L k R

k L L R

k L L R

−= ×

= + −

− = −

− =

 

Substitute ( )11 log log logk Lk L L R− = − to (6) and 
obtain 

( )( )1log log
1

k LL L R
k nN N R= ×  

Based on the change-of-base formula of logarithm,
log log logb a ax x b= , 

( )( )

( )

1

1

log log
1

log
1

k L

R kL

L L R
k n

L L
k n

N N R

N N R

= ×

= ×
 

Based on the logarithm formula log logb aa b= ,  
( )1log

1
R kL

L L
k nN N R= ×  

( )log
1 1

R nL
R

k kN N L L= ×  
Apply the change-of-base formula of logarithm again,   

( )( )

( )

log log
1 1

log log log log
1 1

n L

n L n L

R R
k k

R R R R
k k

N N L L

N N L L−

= ×

= × ×
 

Because ( )log log
1

n LR RL− and 1N are constant, let
( )log log

1 1
n LR Rc N L−= × ,  

( )log logn LR R
k kN c L= ×           (8) 

Equation (8), which represents the structure of a 
compound, is a power-law function and similar to the 
FD measure ( ) DN l l−∝ , which represents 
Mandelbrot’s fractal relationship, the details of which 
are described in[14]. Therefore, in this study, the FD of 
a compound was defined as follows:  

( ) ( )log logn LD R R=           (9) 
Equation (9) indicates the relationship between 

the number of image roughnesses and average path 
length that can be described using a power-law 
function. In practice, the LR  is a constant, and the 
linear regression approach is inapplicable for 
calculating the FD. Therefore, this study involved 
applying the geometric mean for calculating the 
average of nR  and subsequently applying (9) to obtain 
the FD of a compound.  

In general, most compounds are asymmetric 
binary trees. Fig. 3(a) illustrates an asymmetric binary 
tree. Although (9) is used to obtain the FD of a 
symmetric binary tree based on ideal numerical 
similarity by using mathematical calculation, Frontier 
suggested that the FD of a non homogeneous tree can 
be obtained using the same method applied to a 
symmetric binary tree [24]. Therefore, (9) is applicable 
to every compound regardless of its structure. 

 
 
3.1.3 Calculation of the Image Fractal 
Dimension 
The REFD is used to classify the compounds based 
on the order and number of image roughness. A set 
of classified compounds exhibiting low presence 
frequency can be the significant texture of that 
image for its specialness. This study involved 
assigning Shannon’s entropy to the set of classified 
compounds based on information theory, in which 
the entropy is the information on the randomness of 
compounds. The REFD was used to obtain the FD 
of an image by summing the products of the FDs 
and entropies of the compounds in order to preserve 
the significances of the compounds in the image.   

Assume that an image contains n  set of classified 

compounds{ }1 2, ,..., nc c c . Consequently, the presence 
frequency of ith (i = 1, 2,..., n)set of compounds in 
that image is expressed as (10):  

_ _ _i iP n c total n C=                 (10) 
where _ in c  is the number of ith set of compounds 
and _ _total n C  is the total number of compounds in 
that image.  

The information of the ith set of compounds 
exhibiting presence frequency iP  is written as 
( ) ( )logi iI c P= − . Shannon’s entropy assigned to the 
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ith set of compounds is the product of iP and ( )iI c . 
Consequently, Shannon’s entropy for the ith set of 

compounds is ( )logi iP P× − . This study involved 
integrating these n FDs of the compound to form an 
FD of image fE . The fE  is obtained by using (11):  

( )
1

log
n

i i i
i

fE P P fD∑
=

= −
                 (11) 

where ifD is the FD of the ith set of compounds 
obtained by using (9). The derived FD summarized 
the complexity of image roughness as a single 
numerical value. 
 
 
3.2 The Roughness Entropy Fractal 
Dimension Fractal-Wavelet Denoising 
Method 
Compare with fractal encoding described in 
Subsection 2.1, the affine transformation does not 
require an offset constant in wavelet domain fractal 
encoding because the wavelet tree does not have a 
constant offset. The size of a domain tree is reduced 
after down-sampling to match that of a range tree. 
The scale factor is multiplied with each wavelet 
coefficient of the domain tree to reach its 
correspondent range tree. A detailed description of 
the down-sampling of a domain tree and scaling 
factor is presented in [25]. The domain tree is then 
searched to locate the optimal matching domain 
subtree for a given range subtree.  

In the method used in this study, the estimation of 
domain-range matching was based on the relative 
degree of texture similarity, as shown in Fig. 4. The 
range subtree is approximated by the affine 
grayscale transformations of domain subtrees, in 
which the byproduct of such approximation is a 
certain level of reduction in the noise. The 
approximation of a range block through a contracted 
domain block in the spatial domain is illustrated in 
Fig.5. The range subtrees were divided using a quad 
tree partitioning scheme into n levels of 
decomposition. Each level included one low-
frequency subband and three high-frequency 
subbands in various directions. Fig.5 shows how a 
subtree is divided into four smaller subtrees by 
using a wavelet transform. Because the collage error 
was used as a dividing criterion, the maximal 
splitting depth could be used to reduce to a limited 
number depending on the image size and block size. 
The affine transformation mapping domain subtree 
into the corresponding range subtree was defined in 
[15]. The encoded parameters included the position 
of the domain tree and scaling factor. In this 

experiment, rotation and flipping were not 
implemented in affine transformation. 

 

 

Fig. 4. Illustration showing REFD works in finding 
the appropriated domain subtrees to match the range 
subtrees. 

 
The REFD FW algorithm is described as follows: 
1) First the wavelet decomposes the image into a 

set of subbands in the LL, LH, HL, and HH 
directions at multiple resolutions. The depth 
of the wavelet decomposition is associated 
with the size of a subband. A subband of size 
l l×  consists of three ( ) ( )2 2l l× smaller 

subbands at Resolution 1, three ( ) ( )4 4l l×  
smaller subbands at Resolution 2, …, and 
three 1 1×  smaller subbands at Resolution 

2log l . The depth d can then be expressed as 
21 logd l= + . An example is illustrated in (1) 

and (2) of Fig. 6.  
2) Split wavelet subbands in each resolution 

level into equal amounts of range blocks. The 
size of a range block is half the size of a block 
in the high subband at one level lower. 
Domain blocks at Resolution 1 are not used. 
Domain blocks are subsampled in the same 
size of a range block at a high frequency band 
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at one level lower. An example is illustrated 
in (3) and (4) of Fig. 6.  

3) Obtain the REFD
RfE and

DfE by using (11) 
for each range subtree and domain subtree.  

4) Then, calculate the ( )min R D
i jfE fE∑ −

for each 
range subtree and domain subtree. The jth

domain subtree that yields the minimal value 

of ( )min R D
i jfE fE∑ −

is referred to as the 
optimal match for the ith range subtree.  

5) To encode the image, the position of the 
optimal matched domain subtree for the 
current range block (i.e., transformed domain 
subtree) and scaling factor are stored in a code 
book. To restrict the experimental conditions, 
rotation and flipping were not implemented in 
this experiment as in [25].  

6) To decode the compressed image, iterate the 
domain subtrees with the scaling factor to the 
destination. Then, inverse the wavelet 
transformation to obtain the approximation. 
The decompression process is based on an 
iterative SIMPLE algorithm and begins with a 
random initial image. This study involved 
using 10 iterations, as in [25], and obtained a 
decoded image. 

 
Fig. 5. The REFD FW algorithm finds each range 
subtree for its optimal matching domain subtree. 
The approximation of a range subtree through a 
contracted domain subtree can be done in the 
wavelet domain. 
 

 

Fig. 6. From the high frequency subbands towards 
low frequency subbands, subband are split into 
range blocks of sizes 8x8 and 4x4, and the down-
sampled domain blocks with the same block size of 
8x8 and 4x4 are mapping the range blocks in the 
subbands with one level less. 
 
 
4 Experimental Results and 
conclusion 
 
 
4.1 Measuring Performance 
The proposed denoising method was used to 
produce an approximation of the original noise-free 
image and its inaccuracy was measured for 
performance evaluation. Quantification is complex 
in practice because perceiving the inaccuracy of an 
approximation is difficult. The error accompanied 
by the approximation is termed the distortion. This 
study involved using two well-defined visual quality 
error criteria, the MSE and PSNR, to judge the 
ability of the procedure to denoise.  

( ) ( )( )1 1 2

0 0

1 , ,
N M

x y
MSE B x y A x y

N M
− −
∑ ∑
= =

= −
×    (12) 
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where ( ),A x y is the gray value expression of the 

original image A and ( ),B x y is the gray value 
expression of the decoded image B. The images are 
of the same size N M× . 

The PSNR is defined based on the MSE. In 
general, if the PSNR is sufficiently large, no 
perceptible difference between the reconstruction 
and original image would occur; a small PSNR 
would suggest that the images are unrelated. The 
PSNR commonly used for measuring the difference 
between two images was evaluated by relation 

2
max

1010log
I

PSNR
MSE

=
                    (13) 

where maxI  is the highest intensity pixel in the image 
[25], which is 256 gray image. 
 
 
4.2 Experimental Results 
In the first experiment, the REFD algorithm was 
applied to two Brodatz’s texture images for 
evaluating the FD obtained by the REFD algorithm 
to determine how effective the algorithmis in 
describing the complexity of image roughnesses. 

Two texture images were set to 640 x640 pixels 
in this study, as illustrated in Fig. 7. Table 2 
presentsthe experimental results of imagesD3 and 
D4. The results revealed the stated correlations. In 
both imagesD3 and D4, the rows of the compound 
orders were 2 and 3, indicating that the FD 
increased in conjunction with the number of image 
roughnesses. The rows of the image roughness were 
4, indicating that the FD of the compound decreased 
as the order of the compound increased. In addition, 
the results indicated that the FD of a symmetric 
compound is an integer, such as the compounds 
presented in Table 2.  

 

Fig.7. Brodatz texture images. 

 

Table 2.  

Computation results of fractal dimension of 
compounds of image D3 and D4 

D3 

(FD value of REFD is 
0.1389642) 

D4 

(FD value of REFD is 
0.0926242) 

FD of 
comp
ound 

order 
of 
compo
und 

number 
of image 
roughnes
s 

FD of 
comp
ound 

order 
of 
compo
und 

number 
of image 
roughnes
s 

1 2 2 1 2 2 

1.584
9625 

2 3 1.584
963 

2 3 

2 2 4 2 2 4 

1 3 4 1 3 4 

1.160
964 

3 5 1.160
964 

3 5 

1.292
4813 

3 6 1.292
481 

3 6 

1.403
6775 

3 7 - - - 

1.153
1439 

4 11 - - - 

 

 
The experimental results indicated a number of 

correlations between the FDs of the compound, 
compound order, and roughness number described 
as follows:  
1) For those compounds exhibiting the same 

roughness number, the compound in the small 
order carried a large FD.    

2) For those compounds in the same order, the 
compound exhibiting a high roughness number 
carried a large FD.  

3) The FDs were small for those compounds 
exhibiting a large roughness number and those 
in a large order. 
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Subsequently, the performance of the proposed 
REFD FW algorithm was evaluated. A classical 
comparison analysis based on emulated noisy image 
was conducted by using a high quality image as the 
original, adding Gaussian white noise of a given 
variance σ to the original image, and then 
approximating the original image from the noisy 
one by using the denoising method. This study 
involved using three side-scan sonar images of a 
pipeline that were captured using the Polaris 
camera(Taiwan),as shown in Fig.8, as the 
experimental objects. The images were enlarged to 
2048×2048 pixels and transformed to 8-bit gray 
images, and then Gaussian white noise (at zero 
mean and variance σ = 0.01) was added to the 
original sonar image to be the noisy image. The 
REFD FW algorithm and a slightly modified 
generic FW scheme were then employed to reduce 
noises in the noisy sonar images. 

In addition, the proposed method was compared 
with a generic FW compression algorithm 
introduced by Avanakiet al. [23]. Table 3 shows that 
the results obtained from applying the derived FD 
values of the REFD were superior to those obtained 
from the generic FW algorithm. 
 

 Noisy image  
(σ = 0.01) 

De-noised by REFD 
FW 

(a) 
KP27 

  
(b) 

KP30 

  
(c) 

KP57 

  

Fig. 8. De-noising effects for sonar image of the 
pipeline exposure and free span taken by the 
Polaris. 

 

 

Table 3. 

The MSE and PSNR values for the noisy sonar 
image after de-noising  

 σ = 0.01 σ = 0.05 σ = 0.1 

(a) 
KP2

7 

(b) 
KP3

0 

(c) 
KP5

7 

(a) 
KP2

7 

(b) 
KP3

0 

(c) 
KP5

7 

(a) 
KP2

7 

(b) 
KP3

0 

(c) 
KP5

7 
Noisy 
image 
(before 

de-
noising

) 

MS
E 

406
93 

388
52 

341
50 

407
12 

388
71 

341
68 

407
27 

388
86 

341
81 

PSN
R 

(dB) 

2.07
0 

2.27
1 

2.83
1 

2.06
8 

2.26
9 

2.82
9 

2.07 2.26
7 

2.82
7 

The 
REFD 

FW 
algorit

hm 

MS
E 

151 229 187 297 358 270 503 553 396 

PSN
R 

(dB) 

26.3
7 

24.5
7 

25.4
5 

23.4
3 

22.6
3 

23.8
6 

21.1
5 

20.7
4 

22.1
8 

FW 
coding 

[25] 

MS
E 

406
82 

388
51 

341
47 

406
83 

388
52 

341
48 

406
84 

388
53 

341
50 

PSN
R 

(dB) 

2.07
1 

2.27
1 

2.83
1 

2.07
0 

2.27
0 

2.83
1 

2.06
6 

2.27
1 

2.83
1 

 

 
4 Conclusion 
This study proposed a FWdenoising alternative 
based on applying a texture analysis technique to the 
fractal matching process. The performance of the 
REFD FW algorithm was determinedby applying it 
on a sonar image. Ananalysis of theproposed 
algorithm based on texture similarityrevealedthe 
adaptability of the algorithm in denoisingside-scan 
sonarimages. 
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