
FPGA dedicated hardware architecture of 3D medical image
reconstruction: marching cubes algorithm

BOURAOUI MAHMOUD1,2, NADIA NACER1, MANEL MILI1,MOHAMED HEDI BEDOUI1
1Laboratory of Medical Imaging and Technology – Faculty of Medicine at Monastir – University of

Monastir - TUNISIA
2National Engineering School at Sousse – University of Sousse – TUNISIA

Bouraoui.mahmoud@eniso.rnu.tn, nd.nacer@gmail.com; Medhedi.bedoui@fmm.rnu.tn

Abstract: - Generally, the implementation of various treatments of medical images, especially the 3D
reconstruction, should support a real-time execution of the algorithm on the architecture: It is to meet the
constraints of latency and circuit space while minimizing the resource consumption.
We are interested in this project for a 3D reconstruction of medical images on a platform based on an FPGA.
We have as an objective the specification and hardware implementation of the reconstruction algorithm, the
Marching Cubes.

Key-words: - FPGA, Implementation, 3D, 2D Images, Reconstruction, Marching Cubes, Medical image.

1 INTRODUCTION
The 3D reconstruction consists in providing a
volumetric representation of an object from some 2D
images that ensure a description of the 3D volume.
The involvement of these algorithms is important in
various fields, especially in medicine and biology.

The Marching Cubes algorithm is the most used for
the isosurface 3D reconstruction [1]. This algorithm
was designed by William E. Lorensen and Harvey E.
Cline in 1987 [2] to generate a 3D model for an
interesting anatomical structure. For that, it uses a
threshold (characteristic value of anatomical structure
for studying a human organ, which will be defined by
the medical expert; each organ has its proper
threshold) and previously-segmented images [3] [4].

We have known that the application

implementation in processing and the 3D
reconstruction images must often respect real-time
execution, while minimizing the resource
consumption when targeting systems with a low cost.
These later are able to integrate the maximum
processing algorithms.

Our objective is to make the hardware design

FPGA-implementation of a fast and robust 3D
reconstruction by defining a specific hardware
architecture for the Marching Cubes algorithm. In
this article, we describe the modeling and description
of the architecture of the various parts of the

Marching Cubes algorithm for the hardware
implementation on the FPGA. We apply the approach
to a high-level design. We start with the specification
and description of the system and we end with the
implementation of an FPGA of Altera (Cyclone)
through simulation and synthesis. Finally, we report
and discuss the results of this implementation.

We present in the first part of this article the approach
to 3D reconstruction from parallel slices (2D images)
segmented using the Marching Cubes algorithm. In
the second part we present the methodology used for
its implementation on an FPGA circuit, the dedicated
design architecture and the results of synthesis and
implementation.

2 MARCHING CUBES ALGORITHM
The flowchart in Fig. 1 presents the overall operation
of the Marching Cubes algorithm.

2.1 Step 1: Voxel Extracting
Two successive and adjacent images provide 8 pixels
forming a voxel. A system of coordinates of the eight
vertices of the cube must be generated to be used
later to create the triangles of the surface in this
logical cube, determining the intersections of the
surface with the cube and then going to the next cube
(Fig. 2).

WSEAS TRANSACTIONS on SIGNAL PROCESSING
Bouraoui Mahmoud, Nadia Nacer,
Manel Mili, Mohamed Hedi Bedoui

E-ISSN: 2224-3488 411 Volume 10, 2014

mailto:Bouraoui.mahmoud@eniso.rnu.tn�
mailto:nd.nacer@gmail.com�
mailto:Medhedi.bedoui@fmm.rnu.tn�

Fig. 1: Flowchart of the Marching Cubes algorithm

(i, j, k+1)

(i, j, k)

(i+1, j, k)

(i, j+1, k)
 (i+1, j+1, k)

(i, j+1, k+1)
 (i+1, j+1, k+1)

(i+1, j, k+1)

image k+1

image k

pixel

i

j

k

Fig. 2: Voxel extraction

Once the voxel is defined, it should be noted that it is
necessary to choose a convention for numbering the
vertices of the cube and edges. For our algorithm, we
have chosen the convention of Paul Bourke shown in
Fig. 3 [6].

V7

V3 V2

V0 V1

V4 V5

V6

a11

a6

a7
a5

a10

a9

a2

a1

a0

a3

a8

a4

ai : Index of the ridge
Vi : vertex index

Fig. 3: Numbering vertices and edges

2.2 Step 2: Calculation of the index
First, we set a threshold or iso-value density and we
browse the cube by a cube space. For each cube, we
distinguish:
• "Internal point": any vertex whose density (gray
level) is below the threshold (iso-value).
• "External Point": any vertex whose density (gray
level) is above the threshold (iso-value).
Once these models are distinguished, we can
recognize them from an index created according to
their vertices. This index is a byte where each bit is
associated with a vertex; the bit is set to "1" if the
point is internal to the surface; otherwise, it is "0".
The surface intersects the edges of the cube when the
two vertices forming the edge have opposite signs
(one is "0" the other is "1").
Fig. 4 shows, from left to right, the index creation
illustration and a concrete example of the index
formation. In this example, we have a cube whose
vertices 6 and 3 are considered internal points on the
surface; hence the index will have a value of 24H.

V8

V7

V6

V5

V4

V3

V2

V1

0 0 1 0 0 1 0 0

Index =

V7

V3 V2

V0
V1

V4 V5

V6

= 24H

Fig. 4: The index creation

Reading 2D images

Reading two successive 2D images

Voxel extraction

Calculating the index

Search edges intersecting

Calculating intersection points by linear interpolation

END voxel

End of two 2D
images

3D reconstructed image

Determination of triangles

WSEAS TRANSACTIONS on SIGNAL PROCESSING
Bouraoui Mahmoud, Nadia Nacer,
Manel Mili, Mohamed Hedi Bedoui

E-ISSN: 2224-3488 412 Volume 10, 2014

This index will be used later as a pointer in the Tri-
Table and Edge-Table [1]. These two tables allow
defining all the intersections on the edges of the
cubes and the topologies of the triangles to draw [1]
[5].

2.3 Step 3: Determining edges intersecting
Once the index is calculated, we can access an array,
denoted as the Edge-Table, which contains all the
possible topologies inside a cube and tells us which
edges cut the surface [1][5]. It just reads the
corresponding value of the cube_index in the Edge-
Table index, which is encoded in 12 bits: if the ith bit
is 1, the surface intersects the ith edge of the cube;
otherwise, it does not cut it. In particular, if the line
number cube_index of the Edge-Table is "0", then the
surface does not cut the cube.
If the vertex number 3, for example, is below the
selected iso-value and all the other vertices are above
this value, then a triangle cuts edges 2, 3 and 11
(Fig. 5) [1][5].

a2

a3

a11

V7

V3 V2

V0
V1

V4 V5

V6

Front of the
isosurface

Fig. 5: Example of the surface intersection with the
cube [5]

The exact position of the vertex of the triangle
depends on the relationship between the iso-value
and the values of the vertex 3-2, 3-0 and 3-7
respectively (Figure 5) [1][5].
The cube_index is: 8H = "00001000", which is in the
table edges to [8H] = "100000001100". Bits 2, 3, and
11 are ‘1‘and the others are ‘0‘; i.e, the edges 2, 3 and
11 are cut by the iso-surface. Then, we have to
determine the positions of the intersections on these
edges [5].

2.4 Step 4: Determining the intersection points
by a linear interpolation
The intersection points are calculated by a linear
interpolation [1][5][6]. Indeed, let P1(X, Y, Z) and
P2(X, Y, Z) be the coordinates of the two vertices of
the edge intersected and V1 and V2 be the scalar
values of the corresponding intensities at each vertex,

then the coordinate of the intersection point P(X, Y,
Z) is given by the following formulas:

 (1)

 (2)

 (3)

V5 = 12

V6 = 9

A

V5 = 12

V6 = 9

A

Fig. 6: Illustration of linear interpolation

In Fig. 6, the iso-value is 10. Before interpolation, the
point A is in the middle of the ridge although
Mathematics 10 is not equidistant between 9 and 12.
After interpolation, the point A is twice close to 9
than to 12.

2.5 Step 5: Determining the triangles inside
the cube
This step of the algorithm is to create triangles inside
the found surface. To determine these triangles, use
the index calculated as entered in the table of
configurations (Tri-table) which will allow us to
define all the intersections on the edges of the cubes.
Each line in the table describes a triangle topology.
Therefore, these triangles allow the surface
representation of the volume to be determined. Such
a process is called triangulation [1][6].

3 IMPLEMENTATION OF THE MARCHING
CUBES ALGORITHM ON FPGA

3.4 Hardware design and description of the
Marching Cubes algorithm
We divide the Marching Cubes algorithm into two
modules named respectively: managing memory and
triangles calculation (Fig. 7).
The access time to the 4 pixels of each image, to form

)(*
)(

)(
12

12

1
1 XXXX PP

VV
VisovaluePP −

−
−

+=

)(*
)(

)(
12

12

1
1 YYYY PP

VV
VisovaluePP −

−
−

+=

)(*
)(

)(
12

12

1
1 ZZZZ PP

VV
VisovaluePP −

−
−

+=

WSEAS TRANSACTIONS on SIGNAL PROCESSING
Bouraoui Mahmoud, Nadia Nacer,
Manel Mili, Mohamed Hedi Bedoui

E-ISSN: 2224-3488 413 Volume 10, 2014

a voxel (8 pixels), is greatly predominant relative to
the calculation time for each cube. The execution
time for calculating 4 pixels is proportional to the
memory access number performed by the computing
operation of the 4 pixels.

Fig. 7: Block diagram of the Marching Cubes
algorithm

 3.1.1 Module memory management
The memory management system allows you to
manage two RAMs to read both successive images
and do a Voxel-by-Voxel scan. At the end, eight
pixel values are generated corresponding to each
voxel. Fig. 8 shows the architecture of the memory

management module.
The image format used is (64 x 64). To store two
images, we have designed two dual-port RAMs with
a size of (64 x 64 x 8)bits. The coordinates (x, y, z)
and the pixel intensities are coded in 8 bits. Z
represents the image number which belongs to the
pixel being processed. That is why an address
generator is designed for the management of two
memories storing the two images for reading the
pixel intensities. This module allows reading the
intensities of 8 pixels (4 pixels in each image) then
storing their respective coordinates (x, y, z) in
registers.
These eight intensity values will then be the inputs of
a comparator that can compare against a threshold
called the iso-value (image segmentation in real
time). An index will be generated by the comparator,
which is noted as the cube_index and coded in 8 bits.
The coordinates (x, y, z) of each pixel are used in the
second part of the algorithm for calculating the
coordinates of the intersection points and the creation
of the triangles of the surface.

Pixel_in 8

Clk pixel

Image 1

RAM

Image 2

RAM

Address

generator

R
egister values of the intensities of 8

pixels

8x3=24
Coordinates for a

cube

Clk

Pixel_out

Fin_pixel

X

Y

Z

Adr (X,Y)

8 pixel values
ready to calculate

Fin_adr

R
egister coordinate values of 8

pixels

Coord_1

Coord_2

Coord _8

Coord _3

Coord _4

Coord _5

Coord _6

Coord _7

Pixel_1 8

8

8

8

8

8

8

8

8

Pixel_2 8

Pixel_3 8

Pixel_4 8

Pixel_5 8

Pixel_6 8

Pixel_7 8

Pixel_8 8

Fig. 8: Architecture of the module memory

management

We have developed a comparison module for
calculating the cube index. Using this index, we can
access a Tri_Table, which contains all the possible
topologies inside a cube and tells us the number of
edges that cut the surface in the ordered construction
triangles from each three intersection points. To do
this, we have used a ROM to record all the
intersection cases (256 topologies), already listed.
Going through this triangles table, for a line of 16

WSEAS TRANSACTIONS on SIGNAL PROCESSING
Bouraoui Mahmoud, Nadia Nacer,
Manel Mili, Mohamed Hedi Bedoui

E-ISSN: 2224-3488 414 Volume 10, 2014

elements, the edge numbers are obtained on which
we must calculate the intersection points to construct
triangles.
For each generated intersected edge number, it must
first find the vertices that form the edge and their
contact information and then proceed to calculate the
intersection points on each edge using a linear
interpolation. Also, the intersection points calculated
for each edge have three values (X, Y, Z). For this
first recording is done in three registers; each stores a
value according to these coordinates. It will then be
divided into three data RAMs for each configuration
so that they can be used to construct the surface.
The architectures of the different modules of the
Marching Cubes algorithm are modeled in VHDL
using modelsim and the Altera Quartus II software
(Fig. 9).

C
alculating intersection points

on the edges by
linear interpolation

C
alculation of the

index cube

C
alculating the

position of A
_1

isovaleur

Comparator

C
alculating the

position of A
_2

C
alculating the

position of A
_3

C
alculating the
position of

A
_15

R

O
M

T

ri_T
able

C
ube_index

8

A
_1

D
eterm

ination of
vertices A

_1

D
eterm

ination of
vertices A

_2

D
eterm

ination of
vertices A

_3

D
eterm

ination of
vertices A

_15

Registre of
redirection_X

R

A
M

V

ertlist_X

R

A
M

V

ertlist_Y

R

A
M

V

ertlist_Z

Saving R
esults

calculating

A
ddress

counter

A
_2

A
_3

A
_15

P_1X

P_1Z

P_1Y

P_2X

P_2Z

P_2Y

P_3X

P_3Y

P_3Z

P_15X

P_15Z

P_15Y

255

255

255

Selecting from
 intersecting edges

T
ri_T

able
D

eterm
ination of vertices
of the edge

Registre of
redirection_Y

Registre of
redirection_Z

R
egistry values

8 pixel intensities

R
egister coordinate values

8 pixels

8

C
lk

R
eset

17

17

17

17

17

17

17

17

17

17

17

17

P_X

P_Y

P_Z

 Fig. 9: Architecture of the triangles computing
module

4 RESULTS OF THE SYNTHESIS AND
IMPLEMENTATION ON FPGA
We implement the architectures of the Marching
Cubes algorithm on the FPGA circuit Altera Cyclone

family. Table I shows the main characteristics of this
circuit.

Table 1: characteristics of FPGA circuits

FPGA
Circuit

LE
number

Bits select
RAM PLL

Cyclone
EP1C20 20,060 294,919 2

4.1 Results of the synthesis and
implementation on the FPGA Cyclone
To test our application we have spent an
implementation on an FPGA of the Altera family. We
have used a Nios development Kit, Cyclone Edition
Altera firm. This card is built around a Cyclone
EP1C20 FPGA. This development environment
mainly offers a 50MHz clock, 8Mbits flash memory,
static RAM 1Mbit, and 16 Mbit SDRAM.

Table II: Results of the synthesis and implementation

of the Cyclone FPGA circuit modules of the
Marching Cubes algorithm

The data in Table II show the results of the synthesis
and implementation in terms of number of the ELs
and memory space used for the various modules of

Modules of
« Marching

Cubes »

Blocs of
« Marching

Cubes »

Number
of EL

Memory
(bits)

Memory
management

Clock divider 23 0
Generating pixel

location 95 0

Conversion
coordinate

address
17 0

Storage memory
(RAM) 0 128 x 2

Total 135 256

Calculating
triangles

Calculating the
index 24 0

Edge selection
(Tri_Table) 96 16,384

Determining the
vertices 404 0

Calculating the
intersection

points
17,430 0

Saving results 0 255 x 3
Total 17,954 17,405

Marching
Cubes

Total 18,089 17,369

WSEAS TRANSACTIONS on SIGNAL PROCESSING
Bouraoui Mahmoud, Nadia Nacer,
Manel Mili, Mohamed Hedi Bedoui

E-ISSN: 2224-3488 415 Volume 10, 2014

the Marching Cubes algorithm. These results are
given for one voxel.
From Table II, the number of logic elements used for
the implementation of the Marching Cubes algorithm
on the FPGA Cyclone EP1C20 is important. It
occupies almost the entire circuit (20,000 EL). The
memory space of the circuit EP1C20 Cyclone can be
considered sufficient for processing the images of
small sizes (up to 8 x 8), where as for large images,
the space required is very large and we need to
change the circuit or find other optimization solutions
to reduce the size of the application. In this
application, we have used the resources memory of
the FPGA development card beforehand. For the new
FPGA circuit the architecture is very developed
(important resources memory and electronics); there
will be no limit for the implementation of this
application.

4.2 Performance of the implementation of the
Marching Cubes algorithm on the FPGA
Cyclone
The data in Table III show the synthesis result (result
obtained in the synthesis of the Altera Quartus tool)
number of ELs, memory space and execution time
required to implement the Marching Cubes algorithm
on the FPGA for different image sizes as inputs. The
circuit is operating with an internal 50 MHz timing.

Table III: Synthesis results of the hardware
implementation of the Marching Cubes algorithm on

FPGA
 « Marching Cubes »

Image
number

Image
Size

Number
of(EL)

Memory
(Mbits)

Execution
time (µs)

Un
Voxel

Un
Voxel 18,089 0.017 0.085

24

64 x 64 18,089 70.955 1,826.2
128 x
128 18,089 287.04 31,533

256 x
256 18,089 1,156.44 127,121

4.3 Discussion and performance of the proposed
system
The high-level design of the integrated circuits
appears to be an extremely powerful tool to explore
the architectures and perform the 3D reconstruction
systems of medical images in real time. In an FPGA,
prototyping allows validating the description. The use
of a high-level synthesis reduces the design time,

exploring several architectural alternatives. However,
the integration of a medical imaging application in a
programmable integrated circuit (FPGA) is connected
to the satisfaction of the performance designer from a
cost, power consumption, or flexibility point of view.
We note that a hardware implementation of the
reconstruction algorithm of the 3D Marching Cubes
has given good results in terms of execution and
space recovery time, which is the main characteristics
of the FPGA (parallelism and speed performance)
that has contributed much to reduce the processing
time of the reconstruction system reads, where most
of the algorithm modules have an architecture of a
parallel operation.
To apply the Marching Cubes algorithm of 24 images
with a size of 256 x 256 we need
1,156.44 Mbps, which requires the use of FPGAs
with an internal memory above 1GB or use an
external memory FPGA which will penalize the
execution time (increase of the external memory
access time).

4.3 The 3D image reconstructed result
We used 24 images (64 * 64) scintigraphic of the
heart. The 24 images are previously segmented (Fig.
10). We have stored the 24 images in an external
memory on the FPGA development board. The Fig.
11 shows the reconstructed 3D image after the
execution of the Marching Cubes algorithm in the
FPGA circuit.

Fig. 10: 24 images (64 * 64) scintigraphic of the heart

WSEAS TRANSACTIONS on SIGNAL PROCESSING
Bouraoui Mahmoud, Nadia Nacer,
Manel Mili, Mohamed Hedi Bedoui

E-ISSN: 2224-3488 416 Volume 10, 2014

Fig. 11: The reconstructed 3D image of the heart

5 CONCLUSION
In this paper, we have introduced the modular design
of the Marching Cubes algorithm for hardware
implementation on an FPGA programmable circuit.
The necessary steps have been taken, namely the
system, simulation, synthesis and implementation on
an FPGA specification.
The developed Marching Cubes algorithm has been
divided into two major modules and each module is
divided into several modules. The first module allows
the management of cuts and the generation of voxel-
by-voxel data. The second allows us to perform the
necessary calculations and record the results in
memory.
The time required to run the application on a physical
medium processing is greatly reduced. This is due to
the fact that the FPGA circuits fully exploit the
potential parallelism of a given algorithm. In
addition, the results of the synthesis and
implementation on the FPGA Cyclone generation has
shown the extended capabilities in terms of speed of
the achieved system.

References
[1] William E. Lorensen and Harvey E. Cline.

Marching cubes: “A high resolution 3D surface
construction algorithm”. Computer Graphics,
21(4), July 1987, pp. 163–169.

[2] A. Lopes, K. Brodlie, Improving the Robustness
and Accuracy of the Marching Cubes Algorithm
for Isosurfacing. IEEE Transactions on
Visualization and Computer Graphics, 9(1),
2003, pp. 16-29.

[3] Timothy S. Newman_, Hong Yi , “A survey of
the marching cubes algorithm”, Elsevier,
Sciencedirect, Computers & Graphics, 30, 2006,
pp. 854–879.

[4] V. Gelder, J. Wilhelms, Topological
considerations in isosurface generation. ACM
Trans Graph; 13, 1994, p: 337–75.

[5] Paul Bourke, Polygonising a scalar field Also
known as: "3D Contouring," "Marching Cubes,"
"Surface Reconstruction;" May 1994,

[6] Adriano Lopes and Ken Brodlie, « Improving the
robustness and accuracy of the marching cubes
algorithm for isosurfacing » . IEEE Transactions
on Visualization and Computer Graphics, 9(1),
2003, pp.16.29.

WSEAS TRANSACTIONS on SIGNAL PROCESSING
Bouraoui Mahmoud, Nadia Nacer,
Manel Mili, Mohamed Hedi Bedoui

E-ISSN: 2224-3488 417 Volume 10, 2014

