
An Efficient Inf ormed Embedding Scheme Using Systematic Nested
Block Codes over Gaussian Channel

Chi-Yuan Lin, Sheng-Chih Yang, Jyun-Jie Wang and Cheng-Yi Yu
Department of Computer Science and

Information Engineering, National
Chin-Yi University of Technology,

Taichung 411, Taiwan, ROC
chiyuan@ncut.edu.tw

Abstract: We present a high-capacity informed embedding scheme based on a trellis structure for a nested linear
block code. This scheme can embed adaptive robust watermarked messages for various applications. Instead
of using randomly generated reference vectors as arc labels, this scheme uses the codewords of a nested block
code to label the arcs in the trellis structure so that each codeword can carry different amounts of hidden payload.
The proposed algorithm attempts to achieve two objectives: first, to minimize the modified position for each
watermarked image; second, to perform the proposed embedding algorithm to minimize the amplitude distortion
for these modified positions. Additionally, the proposed algorithm can perform iteration to determine a tradeoff
between robustness and fidelity using numerous controllable parameters. Finally, the experimental results report
the robustness and fidelity performance of this algorithm in AWGN attack channels. The experiment also simulates
computational complexity and the proposed section-based informed embedding, which requires less operational
complexity compared with Miller’s informed embedding.
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1 Introduction

Because of the large number of applications of the
internet and other public communication networks,
information hiding has received rising interest, and
has played an important role in multimedia technol-
ogy. The encoding process of data hiding codes, also
known as watermarking codes, is to hide or embed a
watermark into another host signal, such as a photo-
graph, music, video, or text. The two main require-
ments of information hiding are fidelity and robust-
ness, that is, the watermark message must not cause
severe degradation on the host signal and must suf-
fer from some common signal processing and chan-
nel attacks. Fundamental tradeoffs occur among pay-
load, robustness, and complexity. This study devel-
oped practical algorithms by analyzing these trade-
offs, robustness, fidelity and complexity. Other design
criteria for digital watermarking are payload, security,
and detectability.

Referring to [1] and [2] for a comprehensive sur-
vey of data hiding codes, the considered watermark-
ing system had no knowledge of the host signal in the
receiver, that is, a watermarking system with a blind
detector. To embed a watermark in such a system,
a host signal can be viewed purely as noise, called
blind watermarking, or exploited as side information,

called informed watermarking. The corresponding
system with blind detector and informed watermark-
ing can be modelled as communication with side in-
formation at the transmitter [3], and allows more ef-
fective watermark embedding and detection methods.
In general, the encoding process of informed water-
marking is divided into informed coding and informed
embedding. The purpose of informed coding is to
choose a message codeword from a collection of pos-
sible candidates to represent this watermark. This
message codeword must have minimal perceptual dis-
tortion to the host signal compared to other candi-
dates. The informed coding is also known as dirty
paper codes [4, 5] or channel coding with side infor-
mation [6, 7, 8], in which the binning scheme is used
to achieve the information-theoretic capacity [9, 10].
In informed embedding, the message codeword from
informed coding is subsequently modified according
to the host signal, attempting to attain an optimal
tradeoff between fidelity and robustness in the water-
marked image [11, 12, 13, 14, 15]. This study fo-
cused on the informed embedding method, in which
the watermarked image is a function of the water-
marked message and the host signal to achieve near
optimal robustness and maintain constant fidelity, or
vice versa. Miller et al. [13] proposed a suboptimal
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trellis-basedembeddingalgorithmthat starts with the
host signal and iteratively constructs an updated wa-
termarked signal toward to the interior of the Voronoi
region of the message codeword. In [13], an informed
embedding algorithm used randomly generated refer-
ence vectors as arc labels. A disadvantage is that the
generated reference vectors can be selected randomly;
therefor, the trellis code is not an optimally struc-
tured code. In addition, modification of trellis struc-
ture modifies such generated reference vectors. Thus,
it is impractical to use generated reference vectors as
arc labels. Although this [13] trellis-based algorithm
can achieve an excellent tradeoff between the fidelity
and robustness in watermarked images, this method is
computationally intensive and difficult to implement.

Instead of using randomly generated reference
vectors as arc labels as in [13], we modified this trellis
structure using the codewords of a nested block code
to label the arcs in the trellis. The advantage of us-
ing such codewords is that they can be easily obtained
in the tradeoff between embedding capacity and mes-
sage robustness. We subsequently applied the charac-
teristic of the linear nested block codes to the trellis
partition. We proposes a modified trellis structure, in
which each arc is labeled with nested block codewords
for each trellis section. By using the input number and
the memory state of a convolutional code, the embed-
ded structure can modify the capacity and robustness
of embedded messages. By adjusting the controllable
parameters, the user can flexibly make a tradeoff be-
tween the embedding fidelity and embedding robust-
ness.

The proposed algorithm is intended to meet two
objectives. The first is to minimize the position of
the changes of watermarked images in a trellis sec-
tion by using an optimal quantized algorithm based
on a nested block code (Subsection 3.1). The second
is to embed a message based on the low-complexity
section-based informed embedding (SBIE) algorithm,
to minimize the amplitude of watermarked images.
The SBIE algorithm is section-based, rather than us-
ing an entire trellis in one iteration. The section-based
method enables algorithm performance in each sec-
tion with iterative operation to find the suitable em-
bedding watermarked images. The experiment indi-
cated that the algorithm achieves a lower degree of
complexity and excellent results under an AWGN at-
tack, at the cost of robustness. The proposed algo-
rithm can be easily implemented with less complex-
ity, compared with other informed embedding meth-
ods. The experiment with the proposed algorithm
was compared with that in [13]. First, considering
embedded distortion and capacity, the parameters are
simulated as a function of watermarked image qual-
ity. Second, we report the robustness performance of

this algorithm in terms of Gaussian noise. Finally, we
briefly tabulate the complexity comparison.

The rest of the paper is organized as follows: Sec-
tion 2 presents a brief review of trellis-based informed
embedding in [13]; Section 3 provides a description
of our major work on informed embedding; Section 4
provides experimental results and constructive discus-
sions; and finally, Section 5 offers conclusions.

2 Basic Informed Embedding for
Miller’s Work

The main goal of informed embedding is to find a
good watermarked image, which is inside the decod-
ing region of the message codeword, and has minimal
perceptual distortion from the host signal. In general,
it is difficult to find this optimal watermarked image.
However, several approaches are used to find other
suboptimal watermarked images, such as trellis-based
informed embedding by Miller et al. [13]. Assum-
ing that each path in the trellis corresponds to a mes-
sage codeword of a watermark, the trellis-based in-
formed embedding in [13] uses the Viterbi decoder to
find a good watermarked image. The geometric inter-
pretation of suboptimal embedding algorithm, as il-
lustrated in Fig. 1, requires iterative updating of the
watermarked signal by running the Viterbi decoder to
identify a vectorc1 in the first iteration that has the
highest correlation with the current watermarked sig-
nal,x0 = v.
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Figure1: A trellis-based informed embedding [13].

By using vectorsc1 andx0, we subsequently ob-
tained a new watermarked signalx1 closer to the
decoding region of the message codewordw. The
embedding process does not terminate until the fi-
nal watermarked image falls inside the interior of the
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Voronoiregion ofw. The final watermarked image of
this algorithm,x2 in Fig. 1, may not be the same as
the optimal image,x in Fig. 1.

This embedding process is time consuming be-
cause Viterbi decoding is usually repeated several
times before a final watermarked image is obtained.
This paper proposes a trellis-based informed embed-
ding with controllable parameters by modifying the
arc labels of the trellis structure in [13]. The ba-
sic block diagram of proposed embedding method is
shown in Fig. 2.

Message

coding xk=f(wk,vk, , )
DCT

inverse
Message

M
Image Iw

mk wk

x=(x1,...,xk,...,xL)

Embedder

DCTImage I0

vk

Figure 2: Block diagram of informed embedding
based on controllable parameters.

As done in [13], the watermark was embedded in
the frequency domain of the host signal, rather than
on the host image.

First, a host signalIo with dimensionsN =
512× 512 was divided into 4096 blocks of size8× 8;
subsequently each block was converted into the fre-
quency domain with the DCT transform. The first12
low-frequency AC coefficients in each block, shown
in Fig. 2 of [13], where extracted and concatenated to
form the extracted vectorv. Everyn coefficients ofv
was subsequently used to embed each bit of anL bits
watermark, whereL = 4096 · 12/n, and forms the
watermarked imagex.

Finally, we replaced the elements ofx into their
respective DCT coefficients, and converted all DCT
blocks back to the spatial domain, calledIw in Fig. 2.
Because the extracted vectorv was available at the
transmitter, the output of the informed embedding was
denoted byx = f(w, v, α, β), where robust factorα
and step factorβ are controllable parameters for mes-
sage codewordw and extracted vectorv, respectively.
The embedding goal aims to satisfy two conflicting
criteria, that is,x must be perceptually indistinguish-
able tov, andx must also be sufficiently close tow to
enhance robustness.

3 Proposed informed embedding al-
gorithm

For the proposed informed embedding scheme, this
study used section-based embedding algorithm in-

stead of the informed embedding algorithm of [13].
The four inputs to the embedder were the extracted
vectors from the host sequencev = {v1, v2, · · · , vL},
the message codewordw = {w1, w2, · · · , wL}, and
the controllable factorsα andβ, where thevk andwk

are vectors of lengthn with 1 ≤ k ≤ L. The para-
metersα andβ control the quality of the watermarked
image regarding fidelity and robustness.

The output of the embedder, watermarked se-
quencex, was subsequently passed through the attack
channels, such as the Gaussian noise, JPEG compres-
sion, and so on, as illustrated in Fig. 2. The decoder
produced the watermark estimatem̂ = g(y), wherey
is the extracted vector of the received signal after the
channel distortion, as illustrated in Fig. 2. The pro-
posed informed embedding algorithm was based on
trellis partition. In timek, the extracted vectorvk of n
components is one of the a real space of dimensionn.
The real space of dimensionn was partitioned into2m

regions by a(n,m) linear block codesΓ in each trel-
lis section. We used a simplex as linear block code.
The purpose of using the simplex code is to obtain
excellent robustness and space partition. Each trellis
section is a mapping from the real space to the code
space, which is represented by a codeword index set.
It is mappedB is mapped as

B : Rn −→ {c1, c2, · · · , c2m} (1)

whereΓ = {c1, c2, · · · , c2m} denotes the set of
2m disjoint regions. Each region in the partition is
associated with a represented codeword. The set of
represented codewords is referred to as the objectwk

of an extracted vectorvk. In this study, the measure of
distortion mean-squared error (MSE) distortion was
as follows:

d (xk, wk) = E
[
|xk − wk|2

]
(2)

wherexk is an arbitrary vector overRn, andwk is
a message codeword in thekth trellis section. In gen-
eral, thed(xk, wk) common choice is the Euclidean
distance or hamming distance.

In the proposed informed embedding, we used a
convolutional code to construct a trellis; and subse-
quently, the codewords of a linear block code as the
arc labels in the trellis. First, the trellis structure of
a binary (nout, kout, ν) convolutional code with2ν

states in every depth was constructed, whereν is the
memory of the convolutional code. Each trellis sec-
tion contained2ν+kout arcs, and these arcs were sub-
sequently labeled by all codewords of a linear block
codeΓ(n, ν + kout, d), whered is the minimal dis-
tance of the code. In this structure, the number of bits
embedded in each section is represented askout. With
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v asthe numberof memory and a controllable para-
meter to tune robustness, the number of trellis state
equals2v. Parameterv can be adjusted to enhance the
robustness, which increases the complexity. In con-
trast, a convolutional code with a larger value ofkout

was chosen to increase the embedding capacity. In
the proposed trellis structure, a real space ofn dimen-
sions was divided intokout + v blocks in each section
corresponding to a simplex codeword. With the outer
codes as the convolutional codes, the change ofkout

leads to a simplex code of longer length. Maintain-
ing kout + v constant, that is,n constant,kout was
tuned to increase the capacity, andv was tuned to en-
hance the robustness. Fig. 3 shows the arc labels of
thekth trellis section, in which the arc labelmk/wk

denotes the watermark messagemk and the message
codewordwk. This code trellis was obtained from a
(2, 1, 2) convolutional code, and the labels of the trel-
lis arcs are the codewords of a(7, 3, 4) simplex code.
Using the trellis structure in Fig. 3 can obtain an ade-
quate space partition forn dimension real space.
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Figure3: Trellis with eight arcs labelled by a(7, 3, 4)
simplex code.

The following section demonstrates the two ob-
jectives. The first is to minimize the distortion of the
changes by using the quantizer. The second is to min-
imize the amplitude of stego by using the proposed
embedding algorithm.

3.1 Minimizing the distortion in the binary
domain

Researchers developed numerous embedding algo-
rithms for minimizing the changes in binary embed-
ding [16, 17, 18]. The subsection presents a discus-
sion on minimizing the distortion of the changes of
the watermarking vectorw. We first quantize the ex-
tracted vectorv and watermarking vectorw into bi-
nary symbols asQ2(v) andQ2(w), respectively. To
minimize the distortion of the changes of watermark-
ing vector in the binary domain as follows.

Given a nested block code(C2, C1), whereC2 =
(n, k2), C1 = (n, k1), m2 = n − k2, m1 = n − k1

andk1 > k2, the embedding rateRm is (k1−k2)/n =
(m2 − m1)/n. The primary purpose of theC2 code
is to find the minimum quantization distortion. For
an embedder realized using the nested binary codes,
the average weight of the toggle vectorE[w(eopt)] is
estimated by the coset leader of a good fine codeC2.
The nested block embedding code is constructed as
follows. A (C2, C1) nested binary embedding code
of lengthn bits is characterized by the use of a parity
check matrix

H2 =
[
H1

H∆

]
(3)

, where H∆ ∈ {0, 1}(m2−m1)×n and H1 ∈
{0, 1}m1×n. H2 andH1 are two parity check matrices
of binary linear fine codesC1 and coarse codesC2, re-
spectively, whereC2 is nested inC1, that is,C2 ⊂ C1.
TheC2 code is defined asC2 = {u|H2u = 0}, where
the vectoru ∈ Fn

2 . The set consisting of the vectoru,
corresponding to the identicals2, is referred to as the
coset of the codeC2, defined as

Cs2
2 = {u|H2u = s2} = {c2 + eopt|c2 ∈ C2} (4)

whereeopt denotes the coset leader which repre-
sents the minimal Hamming weight in each coset set.
The Voronoi setV0 = {eopt,i|i = 1, · · · , 2m2} con-
sists of all the coset leaderseopt,i for each coset. The
C1 is partitioned into2m2−m1 coset ofC2 as

C1 =
⋃

H2eT
opt,i∈s∆

C2+eopt,i, i = 0, 1, · · · , 2m2−m1−1,

(5)
wheres∆ = [0 · · · 0 sl] andsl ∈ {0, 1}m2−m1 .

We employ the nested scheme to realize the embed-
ding algorithm and briefly describe the optimal em-
bedding algorithm by using a nested block codes.

Considering the case where, given a host
Q2(v) = u, an optimal stegol′ with syndromesl,
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is aboutto be determined. We assume the existence
of a coset leader vectoreopt = u + l′, closest to se-
quencesu and l′. The hostu and the optimal stego
l′ are of an optimal error vectoreopt with a constraint
E[w(e)] ≤ nδ (0 ≤ δ ≤ 0.5). To describe the quan-
tizer C2 to determine the optimal stego vectorl′, we
introduce the module operation.

An arbitrary u ∈ Fn
2 can be quantized by the

quantizerC2, and the optimal quantization erroreu

can be expressed as a decoding function, as

eu = fopt(su)
= fopt(Hu)
= arg minû∈C2 d(û, u) + u

, u modC2,

(6)

wherefopt(·) represents the maximum likelihood
(ML) decoding for the quantizerC2. Determined
through ML decoding, the optimal quantization error
eu is added tou to recover the codewordc ∈ C2,
which is closest to the vectoru. We further illustrate
the quantizerC2 asC2’s coset,Cs∆

2 = C2 + eopt,i ⊂
C1, whereH2e

T
opt,i ∈ s∆. An arbitrary host vector

u ∈ Fn
2 is quantized usingCs∆

2 as

eu = u modCs∆
2

= u + l mod(Cs∆
2 + l)

= x modC2

(7)

where thel ∈ Cs∆
2 andx ∈ Fn

2 .
We offer a low boundDbound to explain that the

Dopt is limited under the boundDbound. We de-
scribe the useful bound for aC2 code as follows. A
C2(n, k2, λmin) code is capable of correctingt =
b(λmin − 1)/2c number of bits, thus a standard ar-
ray of size 2m2−m1 × 2k can be built in Fig. 4.
Alternatively, the required coset leader can be pre-
cisely determined to perform binary data embedding,
known as optimal embedding. Upon locating all the
(n
t ) sequences in the coset leaders, the remaining are

of a weight larger thant + 1. However, we assume
such weight to be identical tot + 1, leading to a code
referred to as the quasi-perfect code. The average
Hamming code weight of the coset leaders within a
standard array is given as follows.

Dbound =
∑t

i=0 i(n
i ) + (t + 1)(2n−k2 −∑t

i=0(
n
i ))

2n−k2

(8)
The average block distortionDopt of suboptimal

or optimal decoding of arbitrary linear code is higher
thanDbound. However, in the case of a(n, k) perfect
linear code, the preceding equation can be expressed
asDopt = (

∑t
i=0 i(n

i ))/2n−k.
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Figure4: Embeddingprocedure.

We illustrate an embedding scheme with a stan-
dard array for an embedding quantizer. The quanti-
zation module in the embedding module attempts to
determine the optimal toggle vectoreopt. To deter-
mine the optimal toggle vectoreopt, we use a standard
array to explain the embedding procedures. A stan-
dard array (Fig. 4) contains. There exists a host cor-
responding to an arbitrary vectoru ∈ Fn

2 of lengthn
bits in the standard array. The syndromesu = HuT

is referred to as the host syndrome. A known binary
vectors′l = (0 · · · 0 sl) of lengthm2 bits is intended
for embedding. The coset leadereopt ∈ Fn

2 is dis-
covered within a setCsx

2 before a sequence, closest to
u with syndromes′l. The syndromesx is determined
by adding the logo vectors′l to su. From the decod-
ing view-point, the coset leadereopt can be discovered
through a decoding function, expressed as

eopt = fopt(sx)
= fopt(su + s′l)
= fopt(HuT + HlT )
= fopt(H(uT + lT ))
= fopt(HxT ),

(9)

where the stego vectorl = H−1s′l and the nota-
tion f(·) are referred to as the ML decoding function.
Suppose the existence of a vectorx ∈ Csx

2 , which sat-
isfies sx = HxT and represents a cosetCsx

2 of the
codeC2, which is intended to seekx with minimal
weight, that is,eopt, which is expressed as

eopt = x + arg minc∈C2 dH(c, x)
= x + Q2(x)
= x modC2

(10)
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Theabove formula expresses the third step in the
embedding procedures in Fig. 4. Once discovered, the
coset leadereopt is added to the host asu, l′ = u+eopt.

l′ ∈ C
s′l
2 ⊂ C1 is the sequence closest to the sequence

u within Fn
2 dimensional space, and contains the logo

sequences′l.
Although we adopt a goodC2 code quantizer for

optimal embedding, the optimal embedding (i.e. ML
decoding) leads to high decoding complexity for a suf-
ficiently largeC2 code. A large value ofk2 renders the
ML algorithm, combined with a standard array, infea-
sible when performing a binary embedding. As an un-
common approach, it is only viable for a small value
of k2.

In the receiver, the received signal is

y = l′ + N, (11)

whereN is the channel attack. We also obtain the
decoder output as

l′ = Q1(y)
= Q1(l′ + N),

(12)

whereQ1(·) is a ML decoding function. Thel′ is
used to extract the embedding messagesl as

sl = H∆l′T . (13)

Finally, the receiver perfectly obtains the embed-
ded messagesl.

In accordance with the aforementioned, the op-
timal togo vector eopt (i.e., the coset leader) is
requested to be found for a nested course code
C2 and is intended, in the syndrome domain, to
solve the equationH2l

T + H2u
T = H2x

T , where
(H2)−1(0, · · · , 0 sl) = l. We consider the follow-
ing a simple and straightforward embedding method.
Adopting a systematic nested coding with parity
check matrixH2 = [P I] in the code domain, the
aforementioned equation is identical tosx = Hsx =
Hs(u + l). Given the arbitrary hostu and the logosl,
the toggle vectorx can be determined immediately,
assuming thatl = (0, · · · , 0, sl), the front of sl is
padded(n−m2 +m1)’s zeros to generate thel ∈ C1,
is a solution andH2l

T = (0, · · · , 0, sl)T . Finally, we
obtain the outputx = u+l of the embedder illustrated
as follows.

Given a (C2(8, 4, 4), C1(8, 6, 2)) nested block
embedding code for binary embedding and consider
a systematic parity check matrix

Hs =




1 1 1 0 1 0 0 0
1 1 0 1 0 1 0 0
1 0 1 1 0 0 1 0
0 1 1 1 0 0 0 1


 =

[
H1

Hδ

]
,

(14)

where theH1 andHδ are size2 × 8. Suppose
that there exists a logo vectorl of length8 bits within
the C1 code. Regardsl = (11) as the logo symbol
of length2 bits intended for embedding into a cover
u = (10001111), and with6 number of 0’s padded to
its left, a vectorl of length0 bits is hence formed as

l = (000000sl) = (00000011), (15)

whereHδl
T = sT

l = (10)T , and the toggle vector
x given by

x = l+u = (00000011)+(10001111) = (10001100)
(16)

The vectorx ∈ Fn
2 , corresponding to the se-

quence of length8 bits, can thus be found. For the sys-
tematic form reason, a vectorl = (00000011) ∈ C1

, corresponding to the syndromesl = (11) , can be
easily determined. Obtaining the toggle vectorx does
not guarantee an optimal one. To determine the op-
timal toggle vectoreopt, the toggle vectorx can be
decoded by ML algorithm as follows.

eopt = x + arg minc∈C2 dH(x, c)
= (10001100) + (10001110)
= (00000010).

(17)

Finally, the stego vector is obtained asl′ = u +
eopt = (10001111) + (00000010) = (10001101) and
Hδl

′T = (11)T .

3.2 Section-based informed embedding
(SBIE) algorithm

Although Subsection3.1 discussed minimizing the
distortion of the changes of the watermarked im-
ages, the distortion measure of the mean-squared error
yielded uncertain minimization. We used the modi-
fied informed embedding algorithm to minimize the
distance between the extracted vector and the object
vector.

Let w = (w1, · · · , wL) from the optimal binary
stego sequencel′ = (l′1, · · · , l′L), which obtained by
minimizing the distortion of the changes, be a valid
path of the trellis, encoded from the watermarkm =
(m1, · · · ,mL), andv = (v1, · · · , vL) the extracted
vector from the host signal. Each vectorwk = 2l′k−1,
wherel′k ∈ {0, 1}n, is a selected object codeword of
length n from the fine codeC1 of the nested block
codesΓ(C1, C2). The embedder produces a water-
marked sequencex = {x1, x2, · · · , xL} by a section-
by-section trellis-based functionxi = f(wi, vi, α, β),
1 ≤ i ≤ L, where step factorβ ∈ [0, 1] and robust
factor α ≥ 1. The geometrical interpretation of the
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proposedembeddingalgorithm in the kth section is
shown in Fig. 5, in which thekth component of wa-
termarked image was iteratively updated toward to the
decoding region ofwk.
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Figure5: A geometrical interpretation of proposed in-
formed embedding inkth trellis section.

In the kth section of the trellis, we modified the
kth component of the extract vectorvk to form thekth
component of the watermarked imagexk iteratively.
The proposed informed embedding attempts to find
xk to minimize the degradation ofxk from vk, and
simultaneously be closer toαwk, compared with other
candidatesαc, c ∈ Γ, i.e.,

d(αwk, xk) ≤ d(αc, xk), c ∈ Γ andc 6= wk, (18)

whered(a, b) is the Euclidean distance betweena and
b. The detailed procedure of finding suchxk is illus-
trated as follows.

Lethk be the sign vector betweenvk andwk. That
is for each component ofvk andwk, we define

hk,i = sgn(vk,i · wk,i), 1 ≤ i ≤ n, (19)

where sgn(a) = 1 if a ≥ 0 and sgn(a) =−1 if a <
0. Subsequently, we construct theith component of
xk as follows: if hk,i = 1, thenxk,i = vk,i, and if
hk,i = −1, then

xk,i =
{

vk,i − β · d(αwk, vk), if vk,i ≥ 0
vk,i + β · d(αwk, vk), if vk,i < 0.

(20)

In other words, we movevk toward towk by a dis-
tanceβd(αwk, vk) for those positions in whichvk and
wk are of opposite signs. If currentxk satisfies (18),
we then move on to the(k + 1)-section, otherwise we
substitutevk by currentxk and repeat the procedures

in (19) and (20). The proposed informed embedding
causes perceptual degradation of the host signal for
distinctα andβ, and we can thus adjust the value of
α andβ to achieve excellent tradeoff between the fi-
delity and robustness in watermarked images.

The proposed informed embedding algorithm is
summarized as follows.

1. Let k = 1 and initializexk = vk with a choice
of a robust parameterα ≥ 1 and step parameter
β ∈ [0, 1].

2. If the currentxk satisfies the criterion (18), move
to Step 4, otherwise substitutevk by xk.

3. Update thekth watermarked imagexk by (19)
and (20), and move to Step 2.

4. If k = L then terminate, otherwise letk = k + 1
andxk = vk, and move to Step 2.

4 Simulation Results
As shown in [13], a host signal with dimensions
N = 512 × 512 was first divided into 4096 blocks
of size 8 × 8; subsequently, each block was con-
verted into the frequency domain using its DCT trans-
form. The first12 low-frequency AC coefficients in
each block, shown in Fig. 2 of [13], were extracted
and concatenated, and everyn = 31 coefficient was
subsequently used for embedding each bit of a wa-
termark ofL = 4096 · 12/31 = 1585-bits. The
trellis was constructed by a(2, 1, 226−m1/2) convo-
lutional code, and the labels of the trellis arcs were
a (C2(31, 5), C1(31, 31 − m1)) nested simple code.
The nested simple code has an embedding rateRm =
(26 −m1)/31. The parameterm1 is capable of con-
trolling the tradeoff between watermarking robustness
and embedding rate. The experiment can be divided
into two sections. We minimize the distortion of the
changes of the watermarked images using the algo-
rithm in Subsection 3.1 and then minimize the ampli-
tude of different digital from the extraction using the
SBIE algorithm described in Subsection 3.2. Subse-
quently, the watermarked image quality is defined as

PSNR= 10 log10

2552

MSE
, (21)

whereMSE representsthe mean square error be-
tween the original imageI0 and the watermarked im-
ageIw as

MSE =
1
N

512∑

i=1

512∑

j=1

(Io(i, j)− Iw(i, j))2. (22)
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1. Tradeoff between watermarking robustness and
embedding rate over AWGN channel
Considering real-valuedx and y, the received
pixel y over AWGN channel is given by

y = x + g, (23)

where g is an additive white Gaussian noise
(AWGN), distributed asN(0, σ2

g). Gaussian
noise varianceσ2

g was added to each pixel of the
watermarked images. The experiment was re-
peated for varianceσ2

g , and the bit error rate was
computed. The result is shown in Fig. 6.
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Figure6: Watermark robustness to AWGN

Fig. 6 shows the results of testing various noise
levels with variance ranging from 50 to 400 ob-
tained from the proposed algorithm. The experi-
ment fixed the image fidelity with PSNR≈ 30dB
in each case. Although the BER of the proposed
algorithm with respect to parameterm1 is lower
than that of Miller[13] under AWGN noise, the
embedding capacity of the proposed algorithm is
higher than in Miller’s work. In the experimental
result, the proposed informed embedding with a
high embedding rate exhibited inferior BER per-
formance when the controllable parameterm1

decreased.

2. Performance for parametersα andβ
We simulated the fidelity, robustness and com-
plexity by aiming at parameterα and β. The
PSNR, as shown in Table 1, is presented as a
function of α and increased withα. The para-
meterα is a constant controlling the embedding
strength. We choseα to produce various robust-
ness messages. The degradation in fidelity was
measured using MSE distortion. For the largeα

value, the robustness is greater than for the small
α value. Image quality depends on parameterβ,
the iteration step factor. The higher the value ofβ
, the lower average number of iterations required
to reach the expected robustness of the objective
codeword, with degrading image quality. There-
fore, the value ofβ can be varied to change the
operational complexity when the proposed algo-
rithms are performed.

Table 1: Fidelity experiments with variantα andβ

α 0 10
PSNR 29.35 29.33

BER(σ = 200) 1.2 ∗ 10−2 1.35 ∗ 10−2

β 0.025 0.05
PSNR 29.87 29.82

Numberof iteration 8.34 6.32

30 40 50 20
28.38 27.78 26.97 29.02

2.24 ∗ 10−3 8.56 ∗ 10−4 12.34 ∗ 10−5 0.038 ∗ 10−2

0.1 0.125 0.15 0.075
28.65 27.71 26.55 29.25
2.43 1.54 1.26 4.58

3. Computationalcomplexity
We compared the algorithm complexity in [13]
and that proposed in this paper. The pro-
posed algorithms for minimizing the distortion
of the changes of watermarked images (Subsec-
tion 3.1) and minimizing the amplitude of the
watermarked image (Subsection 3.2) incur major
computational complexity. The number of code-
words in the trellis section is restricted to the trel-
lis structure of convolutional codes, and the total
number of arcs is small. Therefore, the proposed
algorithm in Subsection 3.1 easily obtained the
optimal codeword candidate and only consumed
a number of operational complexities.

For the SBIE algorithm in Subsection 3.2, the
Add-Compare-Select (ACS) operation in each
section in the memory or the accumulated Viterbi
algorithm leads to a more complex embedding
algorithm, such as that in Miller’s work, com-
pared to that of a memoryless structure of oper-
ational complexity. Thus, three complexity para-
meters in the trellis structure are defined as fol-
lows: The decoding process in ours and Miller’s
algorithms are both based on the Viterbi algo-
rithm. Assuming that there areCa number of
arcs in each trellis section, it is required to cal-
culate the same number of Euclidean distances.
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With Ce symbolizingthecomplexity in evaluat-
ing each Euclidean distance, a total complexity
of Ca × Ce is required for each section. In addi-
tion, the survival path depends on the ACS oper-
ations in each section, and the different informed
embedding algorithm yields different number of
ACS operations. Consequently, for the same
length of the watermarked images, the computa-
tional complexity is directly related to the aver-
age number of ACS operations in each section. A
larger number of ACS operations yields a higher
complexity and a longer period to perform the
operations. Assuming a trellis with 16 states,
each with 2 arcs, the metric accumulated in the
previous section pertains to the trellis states and
the number of arcs. Because each current state
is connected to two arcs, two adders are thus re-
quired to perform additions, which necessitates
Ca number of adders in each section. Inasmuch
as there are two arcs connected to each next state,
a comparer is thus required for comparison. In
brief, there are 16 next states and 32 arcs in
each section, that is, 16 comparers and 32 adders.
Hence, the ACS complexityCs for each section
is given as

Cs = Ca×Ce+Ca×adders +Ca×comparers
(24)

As presented in Subsection 3.2, the proposed al-
gorithm is a section-based informed embedding
algorithm (i.e., a memoryless informed embed-
ding approach performed independently in each
section) that does not require any adder or com-
parer to perform accumulation operations. How-
ever, there areCa number of comparers required
in a search of all arcs for an object message code-
word. The resultant complexity is expressed as

Ca × Ce + Ca × comparers (25)

For operational complexity, the proposed algo-
rithm in 3.2 must determine the minimal distance
d(αck, xk), regardless of whether the arc opera-
tion is closer to the selected codewordαwk in
the trellis sectionk. The computation required
16 comparer-operations. Finally, we compared
with [13] and tabulated as Table 2.

The experimental results in Table 2 confirm that
our proposed scheme not only provides high em-
bedding capacity with the adaptive parameter
m1, but also obtains low operational complexity
compared to Miller’s algorithm.

Table 2: Numbers of operation for proposed algorithm
and [13] algorithms

Algorithm Cs

32× Ce+16
ProposedSBIEalgorithm comparers

[13] 32× Ce+ 32 adders+16
comparers

Algorithm Ct

ProposedSBIEalgorithm Cs × 2.9643× 1585
[13] Cs × 72.651× 1585

5 Conclusion
Weproposed a modified informed embedding scheme
for watermarked images and used a trellis code with
a modified trellis structure and nested simplex code
to embed messages. These proposed algorithms used
nested linear block codewords to label the trellis arcs,
and subsequently adjusted the embedding rate and ro-
bustness of the watermarked images by using numer-
ous controllable parameters. Although Miller’s work
offers good bit error rate performance, our experimen-
tal results confirm that the proposed algorithm pos-
sesses a higher embedding rate and lower complexity
than that of Miller’s work. Our proposed algorithm
provides the two advantages of (i) an adaptive design
of watermarked images (i.e., the tradeoff between the
BER and the embedding complexity), and (ii) an em-
bedding rate that can be easily altered to meet various
application requirements.
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