
An Algorithm of Camera Sabotage Detection Using Contourlet

SHUANG LIANG
Peking University

School of Mathematical Science
No.5 Yiheyuan Road, Beijing

P.R.China
liangshuang12@pku.edu.cn

TING LI
Mechanical Engineering College

No.97 Heping west Road, Shijiazhuang
P.R.China

hbsdliting@sohu.com

WEI GUO
Hebei University of Technology

Science College
Xiping Road No.5340, Shijiazhuang

P.R.China
gwpku2008@aliyun.com

YU WANG
Peking University

School of Mathematical Science
No.5 Yiheyuan Road, Beijing

P.R.China
wangyu amo@pku.edu.cn

Abstract: Contourlet is one of the new topics in image processing and video processing. Besides a lot of theoretical
works about contourlet transform, its applications have roused enough interest as a critical means of multi-scale
geometric analysis. This article, focusing on camera sabotage detection, extends the application of contourlet trans-
form to video processing. A new algorithm to detect camera sabotage based on contourlet transform is proposed
and experiment results show that the proposed algorithm is powerful and more efficient. Moreover, a comparison
of results obtained by this algorithm and the one based on the 9-7 wavelet is made.
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1 Introduction

Nowadays the intense video surveillance systems ex-
it almost everywhere especially in public. Monitor-
ing these systems requests a huge amount of time and
effort from the security personnel. This prompts the
development of intelligent video surveillance system
which can trigger the alarm when specific events oc-
cur. One typical part of the specific events is camera
sabotage made by some suspects intending to prevent
the cameras from recording evidence. It is necessary
to detect the camera sabotages automatically and to
send the alarm in time.

Cases of camera sabotage include any deliber-
ate behaviors on a camera, which can be divided into
three categories: 1) obscured camera, the camera lens
are occluded with opaque objects; 2) reduced visibil-
ity, the visibility of the camera frames is reduced be-
cause the focus setting of the camera is changed or the
lens is sprayed paint; 3) camera lens displacement, the
lens is turned round away from the designated field.

The definition of camera sabotage is earliest pro-
posed by P.Gil-Jimenez [1]. The main idea in sabotage
detection is to identify abnormal cases by compar-
isons between the video frames and the background
frames or a group of previous frames. The algo-

rithms of camera sabotage detection are usually clas-
sified into two categories: the algorithms based on
non-background [2, 3, 4] and the algorithms based on
background frames [1, 5, 6].

Though options of the measurement of frame dis-
similarity are various, the measures based on two-
dimensional transforms, which can capture more de-
tails and structure in visual, are more sensitive to
the drastic changes. And these changes are more
likely to be the sabotage we concern about. In this
paper we choose a ”true” two-dimensional transfor-
m called contourlet [7], whose construction starts
in discrete-domain directly unlike others. And con-
tourlet allows subbands as many as need at each scale,
which indicates the real directionality and anisotropy
of the transform. Besides, the iterated filter banks in
construction and multirate identities make contourlet
computationally efficient and more useful in applica-
tions.

This paper, sufficiently taking advantage of con-
tourlet transform, gives a new algorithm to detec-
t camera sabotage. In the following sections, we first
briefly review the basic principles and implementation
steps of the contourlet transform, and then focus on
the algorithm of camera sabotage detection. A design
of contourlet filters is given through McClellan trans-
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form and a process of concrete multirate identities is
used to improve the computing efficiency. A compar-
ison of results obtained by our algorithm and the one
based on the 9-7 wavelet [5] is made. Experiment re-
sults show that the proposed algorithm is powerful and
more efficient.

1.1 the Contourlet Transform Framework
Since M.N.Do and M.Vetterli proposed the contourlet,
many scholars offer further developments and opti-
mization to the theory and framework, such as critical-
ly sampled contourlet transform[8], non-subsampled
contourlet transform[9], and so on.

The contourlet transform can provide multi-
resolution, localization and directionality in image
processing as the best image representation requires.
In addition, its anisotropy brings it distinctive superi-
ority in capturing geometry and directionality of im-
ages. The contourlet decomposition consists of two
steps: 1) multiscale step, decomposition by Lapla-
cian pyramid (LP) to capture the singular points in
images; 2) directional step, combination of quincunx
filter banks (QFB) and shearing operators, called iter-
ated directional filter banks (DFB), to get the singular
points with same direction.

The Laplacian pyramid is one way to obtain a
multi-scale decomposition of images. Actually, the
construction of the Laplacian pyramid and Gaussian
pyramid are indivisible. The LP decomposition at
each level is the approximate difference of the two
adjacent levels of Gaussian pyramid, which is also
the bandpass image of the Gaussian pyramid. Do and
Vetterli[7, 10] showed that the LP with orthogonal fil-
ters provided a tight frame with frame bounds one.
Furthermore, they proposed the dual frame operator
to achieve the optimal linear reconstruction.

The DFB used in the contourlet transform was
proposed in the M.N.Do’s doctoral theses[11]. In or-
der to avoid modulating input images, conjugate mir-
ror filter bank (QFB) of fan shape is employed. DFB
consists of two parts: 1) a two-channel quincunx filter
bank with fan filters to divide two-dimensional spec-
trum into horizontal and vertical directions; 2) the s-
hearing operator to reorder the image samples with-
out changing the number of them. In contourlet trans-
form, DFB possesses binary tree structure comprised
of shearing operators and quincunx filter banks and is
used to obtain the desired spectrum decomposition of
images[11, 12]. Therefore, filter banks are the main
part of contourlet transform and the design of the fan
filters is primary in image processing using contourlet
transform.

The fan filter is one kind of two-dimensional
filters which are usually constructed by McClellan

transform[13, 14] or multiple phase representation.
Here we adopt the former, which is well known and
classical. Let h(n) = {hN , · · · , h1, h0, h1, · · · , hN}
be a zero phase symmetric filter of length 2N +1 and
whose Fourier transform be

H(w) =

N∑
n=−N

h(n)e−inw =

N∑
n=0

a(n) cosnw,

where

a(n) =

{
h(0) , n = 0
2h(n) , elsewhere.

Replace cos(nw) by a n-order Chebyshev polynomial
of cos(nw), Tn(cosnw), and use the iterative formula
cos(n+ 1)w = 2cos(w)cos(nw)− cos(n− 1)w, we
rewrite H(w) as

H(w) =

N∑
n=0

ãn cos
nw.

The key point of McClellan transformation is to re-
place cosw by a zero phase two-dimensional fil-
ter M(w1, w2), the typical choice of which is
M(w1, w2) = 0.5cos(w1) + 0.5cos(w2). Then
through a series of complicated but elementary com-
putation, the Fourier transform H(w1, w2) of the two-
dimensional filter can be written as

H(w1, w2) = H0(w1)[h(n1, n2)]H
T
0 (w2),

H0(w) = (e−iNw, · · · , e−iw, 1, eiw, · · · , eiNw)

where [h(n1, n2)] is a (2N+1)×(2N+1) symmetric
matrix. Since the matrix gotten in above is of diamond
shape, a π phase shift in w1 or w2 direction is needed
to make the two-dimensional filter be of fan shape.
Taking N = 4 as an example, a filter [h(n1, n2)] of
diamond shape is

Taking a 31 × 31 filter of fan shape (N = 15)
as example, which is shown in Figure 1. Its ac-
cording one-dimensional filter is constructed based on
the Hamming window with bandpass cutoff frequency
wp = 0.4, stopband cutoff frequency ws = 0.6.
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Figure 1: The Two-dimensional Filter of Fan Shape
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The multirate identities can turn a tree-structured
DFB into a equivalent parallel channel filter bank. The
DFB consists of filtering, downsampling and upsam-
pling. In the analysis side it has the former two kind
of building blocks. To obtain the equivalent parallel
channel filter bank, the operations both of cascading
and exchanging are needed.

The way to cascade two operations of the same
type, filtering or downsampling, is to combine them
into one operation. Taking downsampling for exam-
ple, downsampling with Q0 and Q1 is equivalent to
downsampling with D which is the product of Q0 and
Q1 (D = Q0Q1) . It should be noted that when it
comes to upsampling, the product order is switched
D = Q1Q0.

Exchanging the order of downsampling and fil-
tering is to replace a downsampling Q0 operation
followed by the filter H(ξ) by a downsamped filter
H(QT

0 ξ) and downsamplingQ0. Each branch of DFB
can be sorted into two building blocks of filtering and
downsampling by exchanging the order. Then cascade
the same type of operations to get the equivalent par-
allel channel filter bank. Figure 2 shows multirate i-
dentity of a branch of DFB with three level.

2 Camera Sabotage Detection Algo-
rithm

When camera sabotage happens, the contexts of
frames change dramatically. We can use the differ-
ence between the current frame and the background
frame to identify the camera sabotages. According to
the definition of sabotage, our detection aims at three
categories: camera occlusion, visibility reduction and
lens displacement.

Now that our detection is based on the difference
between the current frame and the background frame,
background estimation is had to be done first. There
are several ways to establish the background frame.
Here we choose the one proposed by Anil Aksay in
their camera sabotage detection algorithm [5]. Let
In(x, y) be the intensity (brightness) value at position
(x, y) in the nth frame and Bn(x, y) the intensity val-
ue of the nth background frame at (x, y). Then the
background frame of the nth frame can be updated by
the following formula:

Bn(x, y) =


aBn(x, y) + (1− a)In(x, y)
, if DI(x, y) ≤ Tn(x, y)
Bn(x, y), if DI(x, y) > Tn(x, y)

where DI(x, y) stands for |In(x, y)− In−1(x, y)| and
B0(x, y) = I0(x, y). The parameter a controls the up-
date rate with a value between 0 and 1. The threshold

value Tn(x, y) is updated as follows:

Tn+1(x, y) =


aTn(x, y) + (1− a)cDI,B(x, y)
, if DI(x, y) ≤ Tn(x, y))
Tn(x, y), if DI(x, y) > Tn(x, y)

where DI,B(x, y) stands for |In(x, y) − Bn(x, y)|,
c > 1 is a parameter to be determined and T0(x, y)
is chosen depending on experience. It is obvious that
the bigger the parameter c is, the higher the threshold
is and the lower the detection sensitivity is.

After having established the background frames,
we are ready to set up the algorithm of sabotage
detection. First, when a camera is obscured, most
parts of the current frames are darkened and the d-
ifference between the current frame and the accord-
ing background frame becomes bigger. Though there
are many ways to measure such difference changing,
here the histogram of |In − Bn| is employed. Let
H(X) = {H1(X), · · · ,H32(X)} denote the 32−bin
histogram of an image (matrix) X . Since the com-
ing in images In are darker, more gray values of the
pixels in In become smaller and so maxH(In) in-
creases while maxH(Bn) keeps unchanged. On the
other hand, as most values of |In −Bn| are amplified,
Hi(|In − Bn|) decreases in left bins (small i′s) and
increases in right bins (big i′s). When the first several
Hi(|In−Bn|)’s are reduced by a certain amount, cam-
era occlusion is considered happened. Therefore, The
camera is occluded if the following two inequalities
hold.

maxH(In) > Th1 ∗maxH(Bn),∑32
i=1Hi(|In −Bn|) > Th2 ∗

∑3
i=1Hi(|In −Bn|),

(1)
where Th1 and Th2 are two thresholds.

Second, when the visibility of a camera lens is
significantly reduced, a lot of details of the images
will lose, which means many lines and curves of the
images missing. The so called high frequency ener-
gy based on contourlet coefficients is a really suit-
able tool to measure such line missing. Let us con-
sider an 8-subband contourlet transform, and denote
the ith subband output of an image X as Ci(X) =
[Ci(x, y;X)], i = 1, 2, · · · , 8, where (x, y) is the po-
sition of a pixel. The high frequency energy of image
X is defined as

E(X) =

8∑
i=1

∑
x,y

|Ci(x, y;X)|.

At normal condition, the frequency energies of curren-
t frames E(In) and background frames E(Bn) have
some kind of balance. When the visibility of the cam-
era lens is significantly reduced, E(In) will suddenly
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decline. Hence, if the following inequality is satis-
fied, it can be determined that the reduced visibility
happens.

E(In) < Th3 ∗ E(Bn), (2)

where Th3 ∈ (0, 1) is another threshold.
Finally, when the camera lens is moved away, the

numbers of singular points (edge points) of the video
sequence probably do not change much, but the ori-
entations of the edges must change a lot. Again, con-
tourlet transform can play the role of detecting such
changes. Let us define a matrix of orientational factors
according to every subband of contourlet transform of
an image X with 3 levels(8-subband) .

FCi(X) = [FCi(x, y;X)], i = 1, 2, · · · , 8.

FCi(x, y;X) =

{
1 , Ci(x, y;X) > Th4 ∗M
0 , else

(3)
where M represents maxCi(x, y;X) and Th4 is a
threshold and usually picks value of 0.5. The orien-
tational matching factor of the current frame In and
the background frame Bn is defined as

Fmatching =
8∑

i=1

∑
x,y

FCi(x, y; In)FCi(x, y;Bn).

(4)
Obviously, the bigger the orientational matching fac-
tor Fmatching is, the more similar In and Bn are. So
the the ratio Fmatching/Ftotal is an estimation of cam-
era lens displacement, where

Ftotal =

8∑
i=1

∑
x,y

FCi(x, y; In)+

8∑
i=1

∑
x,y

FCi(x, y;Bn).

That is to say, the camera is viewing toward to a dif-
ferent scene if

Fmatching/Ftotal < Th5, (5)

where Th5 ∈ (0, 0.5) is also a threshold.
In summary, our algorithm includes three judge-

ments, (1),(2) and (5) , to discriminate three kind-
s of camera sabotage,camera occlusion, visibility re-
duction and lens displacement. This algorithm suffi-
ciently takes the advantage in edges and orientations
of contourlet transform.

3 Experimental Results
Since there is no public video library of camera sabo-
tage detection on Internet, our experiments are con-
ducted on the videos recorded in the lab. Total 50

videos have been tested, including 15 normal ones and
35 ones with various sabotages. Some videos may
contain more than one kind of sabotages.

According to judgements, (1),(2) and (5), the fol-
lowing four ratios are calculated as time evolves.

r1(n) =
maxH(In)

maxH(Bn)
,

r2(n) =

∑32
i=1Hi(|In −Bn|)∑3
i=1Hi(|In −Bn|)

,

r3(n) =
E(In)

E(Bn)
,

r4(n) =
Fmatching

Ftotal
,

where n represents ordinal number of frames.
Some detected sabotages of camera occlusion,

visibility reduction and lens displacement are illus-
trated in Figure 3, Figure 4 and Figure 5. Figure 3
displays the test results of 3 videos with camera oc-
clusion. The upper row shows the r1(n) curves and
the lower row shows the r2(n) curves. It can be seen
that both curves climb sharply when the camera is ob-
scured. Figure 4 displays the test results of 3 videos
with visibility reduction. The upper row shows the
E(In) curves and E(Bn) curves respectively, the low-
er row shows the r3(n) curves. The subgraphs show
that r3(n) curves have immediately responses when
the camera’s visibility is significantly lessened. Fig-
ure 5 displays the test results of 3 videos with lens
displacement. The upper row shows the Fmatching

curves and Ftotal curves respectively, the lower row
shows the r4(n) curves. The subgraphs show that
r4(n) curves drop to a much low level when the cam-
era lens is moved away.

It should be pointed out that persistency check
must be paid more attention to. Persistency check
can reduce the false alarm since the camera sabo-
tage caused by deliberate action usually lasts for some
time. Hence, in application, the judgements men-
tioned above should be satisfied for some continual
frames before an alarm is sent out.

To compare our algorithm with that in Ref 5, a s-
tatistic on the correctness and errors of detections on
these 50 videos is shown in table 1, where PAT means
percent alarm true and PED means percent event de-
tected. We make the comparison when the PED is
100% for we focus more on the PED than PAT in prac-
tice. The data in table 1 demonstrate that our algo-
rithm based on contourlet has better performance than
the one based on the wavelet in different scenarios.
Especially when the scenarios has abundant detail-
s(scenarios 2 and 3), the algorithm based on wavelet
has a slight less performance than the one based on
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contourlet. We attribute it to the superiority on image
representation of contourlet.

4 Conclusions
In this paper, we propose an algorithm based on con-
tourlet transform to detect camera sabotage. Besides,
we design a fan filter needed in the transform and
make the computation much more efficient by con-
crete multirate identities. The figures and data result-
ing from experiments show that the contourlet trans-
form is a powerful tool in camera sabotage detection.
We believe that the flexible multiscale and direction-
al decomposition of the contourlet transform have the
potential to be used more and more in image and video
processing. And we expect a combination of camera
sabotage detection and machine learning in the future
to develop more intelligent surveillance system.
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Figure 2: Multirate Identity

PAT PED

scenarios 1
9/7 wavelet 88.89% 100%
contourlet 94.12% 100%

scenarios 2
9/7 wavelet 83.33% 100%
contourlet 91% 100%

scenarios 3
9/7 wavelet 83.82% 100%
contourlet 90.91% 100%

Table 1: Comparison of camera sabotage detection
base on 9/7 wavelet and contourlet.
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Figure 3: Obscured Detection
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Figure 4: Reduced Visibility Detection
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Figure 5: Edge Correspondence Detection
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