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Abstract: The application of the wavelet transform in image denoising has shown remarkable success over the last
decade. In this paper, we present new Bayesian estimators for spherically-contoured generalized Gaussian (GG)
random vectors in additive white Gaussian noise (AWGN). The derivations are an extension of existing results for
Pearson type VII random vectors. In fact, Pearson type VII distribution have higher-order moment in statistical
parameter for fitted the data such as mean, variance, and kurtosis. Indeed, where high-order statistics were used,
better performance can be obtained but with much higher computational complexity. In Specific case, GG random
vectors is similar to Pearson Type VII random vectors. However, the specific case of GG random vectors have only
first few statistical moments such as variance. So, the proposed method can be calculated very fast, with out any
contours. In our experiments, our proposed method gives promising denoising results with moderate complexity.
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1 Introduction
The wavelet transform have been developed and suc-
cessfully used in several image processing applica-
tions such as compression and denoising [1]-[6]. In-
deed, wavelet-based image denoising methods are for-
mulated as a Bayesian estimation problem. So, the
prior knowledge about the probability distribution of
wavelet coefficients is required. Wavelet coefficients
of natural images usually possess peaked, symmet-
ric, zero-mean distributions, with heavier than Gaus-
sian tails [7, 8]. Moreover, it is well-known fact
that wavelet coefficients possess strong dependencies
among parents’ coefficients (adjacent scale locations)
[9]- [11]. So, multivariate modeling offers advantages
over univariate modeling.

Pearson type VII random vectors is one of the
distribution that successfully use for image denois-
ing [12]. However, it has higher-order moment in
statistical parameter for fitted wavelet coefficients, a
computationally complex parameter estimation step
was required. So, the goal of this paper is we propose
the simply distribution is similar to Pearson type VII
distribution. The proposed distribution should have
only first few moments such as mean and variance.

In fact, generalized Gaussian (GG) distribution
have been developed and successfully used in im-
age processing such as estimation, compression, and

denoising problems [13]-[17]. In [6, 18], the re-
searchers develop maximum a posterior (MAP) esti-
mation in combination with univariate GG distribu-
tion for wavelet coefficients. In [14], the researchers
proposed Bayesian estimator for GG random vec-
tors in additive white Gaussian noise (AWGN). How-
ever, there is no closed-form solution for the proposed
method, computationally complex iterative numerical
solution was required. In this paper, we derive MAP
estimators for GG random vectors in AWGN. We ob-
tain a closed-form expression for our proposed. So,
our method can be calculated very fast, without any
contours.

We recall that zero-mean of marginal GG distri-
bution has the density [18]

fx(x) =
βA(β)

2Γ(1/β)σ
exp

(
−
(
A(β) |x|

σ

)β
)
, x ∈ R

(1)

where Γ(z) =
∞∫
0
e−ttz−1dt is standard Gamma func-

tion, σ > 0 is standard deviation. β > 0 is shape
parameter, A(β) =

√
Γ(3/β)/Γ(1/β).

The GG model is chosen because of the two fol-
lowing assumptions: (1) The GG distribution has been
introduced due to its more peaky and heavy-tailed
shape compared to the Gaussian distribution [19]. (2)
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In our experience, if we fix the shape parameter β =
3/2, coarsely the range of values commonly encoun-
tered in image processing [18], then GG model is sim-
ilar to Pearson type VII distribution. Consequently,
only variance are used in the modeling process.

The paper is structured as follows. Section 2, af-
ter a brief review on the basic idea of Bayesian de-
noising, we obtain a closed-form expression for MAP
estimation of the GG random vectors in AWGN. Sec-
tion 3, the proposed method is applied for wavelet-
based denoising of several images corrupted with ad-
ditive Gaussian noise at various noise levels. Sim-
ulation results demonstrate the effectiveness of our
proposed algorithm compared with state-of-the-arts
methods. The experimental results show that our al-
gorithm achieves better performance visually and in
terms of peak signal to noise ratio (PSNR). Finally
conclusion and discussion are given in Section 4

2 Bayesian Denoising
In this Section, the idea of MAP estimator will be
explained. The denoising of an image corrupted by
AWGN with variance σ2

n will be considered. For a
wavelet coefficient X1, let X2, . . . , Xd represent its
parent, i.e., X2,X3, . . . , Xd is the wavelet coefficient
at the same position as the wavelet coefficient X1, but
at the next coarser scale. We suppose that the co-
efficients are contaminated by additive noise, that is
Y1 = X1 +N1, Y2 = X2 +N2, . . . , Yd = Xd +Nd

where Y1, Y2, . . . , Yd are noisy observations of
X1, X2, . . . , Xd, and N1, N2, . . . , Nd are noise sam-
ples respectively. To take into account the sta-
tistical dependencies between a coefficient and its
parent, we combine them into vector form as fol-
low: Y = X + N. Let us continue on develop-
ing the MAP estimator which is equivalent to x̂ =

argmax
x

[
fY|X (y|x) fX (x)

]
. After some manipula-

tions, this equation can be written as [11]

x̂ = argmax
x

[ln (fN (y − x)) + ln (fX (x))] . (2)

The proposed model for noise-free wavelet coeffi-
cients distribution, fX(x), is important in Eq. (2).
Generally, it is hard to find a model for this random
vectors.

Indeed, there does not appear to exist a generally
agreed upon multivariate extension of the univariate
GG distribution. However, we proposed the following
zero-mean d-dimensions spherically-contoured GG
random vectors for wavelet coefficients and its par-
ent, the proposed model is related GG random vectors

form in [20],

fx(x) =
K(d, β)

σd/2
exp

(
−
(
A(β) ∥x∥

σ

)β
)
, (3)

where K(d, β) is normalized function. β, σ > 0 de-
note the shape parameter and standard deviation re-
spectively, A(β) =

√
Γ(3/β)/Γ(1/β). We assume

that the noise is i.i.d white Gaussian [21], the noise
PDF is given by

fN (n) =
1

(2πσ2
n)

d
2

exp

(
−∥n∥2

2σ2
n

)
. (4)

Solving Eq. (2) using Eq. (3) and Eq. (4) gives

ln(fN(y − x)) + ln(fx(x)) = ln

(
1

(2πσ2
n)

d/2

)

−∥y − x∥2

2σ2
n

+ ln

(
K(d, β)

σd/2

)
−
(
A(β) ∥x∥

σ

)β

,

∂ [ln(fN(y − x)) + ln(fx(x))]

∂xi
= 0.

Then,

yi − xi
σ2
n

− β

(
A(β)

σ

)β

∥x∥β−2 xi = 0.

Let r = ∥x∥ we have

xi

[
1 + βσ2

n

(
A(β)

σ

)β

rβ−2

]
= yi. (5)

Taking the square root of the sum of the square over
1 ≤ i ≤ d gives

1 + βσ2
n

(
A(β)

σ

)β

rβ−2 =
∥y∥
r

, (6)

r + βσ2
n

(
A(β)

σ

)β

rβ−1 − ∥y∥ = 0. (7)

Let the shape parameter β = 3/2, GG random vectors
is similar to Pearson type VII random vectors, we have

r +
3

2
σ2
n

(
A(3/2)

σ

)3/2

r1/2 − ∥y∥ = 0.

So, r =−3
2σ

2
n

(
A(3/2)

σ

)3/2
+

√
9
4 (σ

2
n)

2
(
A(3/2)

σ

)3
+ 4 ∥y∥

2


2

(8)
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Figure 1: Star line: proposed shrinkage function, uni-
variate case, with σ2 = 20, σ2

n = 19. Solid line: MAP
estimation of Laplacian distribution in AWGN.

,where A(3/2) = 1/Γ(2/3). Substituting Eq. (6) in
Eq. (5) gives

x̂i =
(r)+
∥y∥

yi, (9)

where (g)+ = max(0, g). In univariate case (d = 1),
the proposed method in Eq. (9) given the shrink-
age function in following form x̂i = (r)+sign(y1).
Fig. 1 show the proposed shrinkage function produced
from Eq. (9), univariate case, and MAP estimation of
Laplacian distribution in AWGN [21]. As we can see
in Fig. 1, the proposed shrinkage function is nonlinear.

In fact, in order for the processor in Eq. (9) to
be of any practical use, one should be able estimate
the standard deviation σ for the noise-free signal and
noise variance σ2

n from observed data. As proposed
in [22], a robust estimate of noise variance is obtained
using the median absolute deviation of coefficients at
the first level of an wavelet decomposition. For stan-
dard deviation estimation from noisy observation have
been previously proposed in [23].

3 Experimental Results
This section presents image denoising examples us-
ing our proposed method, bivariate case (d = 2), and
compare it with MAP estimators for radial exponen-
tial [24], Laplace [21], Pearson type VII [12], and
two-sided Gamma random vectors [25] in AWGN,
every distributions are more peaked and the tails are
heavier. Three 512 × 512 grayscale images, namely
Lena, Barbara, and Boat are used to assess the algo-
rithm’s performance. Those test images can be ob-
tained from the same sources as mentioned in [3]. In
discrete wavelet transform, the Daubechies length-10

filter and 7 × 7 window size for estimation of local
variances are used. Here, we have not considered dif-
ferent window’s size. These algorithms are evaluated
with different additive Gaussian noise levels, σn = 5,
10, 20, and 30. We use PSNR as an objective crite-
rion for image performance evaluation. Results can
be seen in Table 1, highest PSNR value is star. Each
PSNR value in Table 1 is averaged over five runs.
We compare the visual qualities of different denois-
ing results of Barbara image, σn = 20, in Fig. 2 show
cropped part with the face. The experimental results
show that the proposed method yield good denoising
results.

4 Conclusion and Discussion
We derive MAP estimators for GG random vectors in
AWGN. Here, we obtain a closed-form expression for
our proposed method. The specific case of GG ran-
dom vectors have only first few statistical moments
such as variance. Indeed, where high-order statistics
were used, better performance can be obtained but
with much higher computational complexity. So, the
proposed method can be calculated very fast, with out
any contours. The experimental results show that the
proposed method yields good denoising results.
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Figure 2: Comparison of denoising results of Barbara image (cropped) with σn = 20: (a) Noise-free. (b) Noisy
image. (c) MAP estimation, Laplace random vector [21] (PSNR = 28.04). (d) MAP estimation, Pearson type
VII random vectors [12] (PSNR = 28.64). (e) MAP estimation, two-sided Gamma random vectors [25] (PSNR =
28.27). (f) Proposed method (PSNR = 28.66).
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