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Abstract: This paper presents a design method of infinite impulse response (IIR) filters with prescribed flatness
and approximately linear phase characteristics using quadratic programming (QP). It is utilized in this paper for
the design of Chebyshev type, inverse Chebyshev type filters, and simultaneous Chebyshev type filters with the
prescribed flatness in passband and stopband. In the proposed method, the flatness condition in stopband is prein-
corporated into the transfer function. Then, the flatness condition in passband and the filter’s stability condition
are, respectively, added to the QP problem as the linear matrix equality and linear matrix inequality constraints. As
a result, the proposed method can easy design these three types of filter by only change of the design parameters.
The effectiveness of the proposed design method is illustrated with some examples.
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1 Introduction
Digital filters are classified into finite impulse re-
sponse (FIR) and infinite impulse response (IIR) fil-
ters. FIR filters are always stable, and able to real-
ize exactly linear phase characteristics. In contrast,
IIR filters are not always stable, and cannot realize
exactly linear phase characteristics. However, IIR fil-
ters are useful for high-speed processing, and IIR fil-
ters with lower order can be realized that are com-
parable to the amplitude characteristics of FIR filters.
Therefore, several design methods for stable IIR fil-
ters with an approximately linear phase characteristic
have been proposed [6]-[12].

Chebyshev type and inverse Chebyshev type fil-
ters [2]-[5] have an equiripple characteristic in either
the passband or stopband, and a flat characteristic in
the other band. These filters are effective for sup-
pressing the ringing, and are well used in the fields of
biosignal measurement and image processing. More-
over, magnitude flatness and multiple zeros are de-
sirable in designing sample rate converters in order
to suppress the alias components and the design of
wavelet basis [13]. However, there is no a unified de-
sign method which can treat these three types of fil-
ters.

In [2] and [3], the design methods based on the
Remez algorithm have been proposed for the Cheby-
shev type and inverse Chebyshev type IIR filters with
approximately linear phase characteristics. These
methods can design the filters with small computa-

tional complexity. However, the filters that can be
designed using these methods are restricted greatly
because of a condition imposed on setting the initial
value. Moreover, the filters designed by these meth-
ods are not always stable. By using the linear semi-
infinite programming and the extended positive real-
ness, the design method of stable inverse Chebyshev
type IIR filters with an approximately linear phase
characteristic have been proposed [4]. However, the
problem size depends on the number of the discrete
frequency points in this method.

In this paper, a simple design method based on
quadratic programming (QP) is proposed for the de-
sign of stable IIR filters with prescribed flatness and
approximately linear phase characteristics. In the pro-
posed method, the flat characteristics in stopband are
realized first by placing multiple zeros in the stop-
band. Then, the frequency characteristics are approx-
imated under the weighted least square criterion, by
using the transfer function with the stopband flatness.
The flatness condition in the magnitude and group de-
lay in passband and the stability condition based on
the extended positive realness [6] are added to the con-
straints of the QP problem by expressing as the lin-
ear matrix equality and linear matrix inequality con-
straints. The equiripple characteristics are met by
adjusting the weighting function using the modified
Lawson’s method [14] and then solving iteratively the
QP problem. The proposed method can easy design
not only the Chebyshev type and inverse Chebyshev
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type filters but also simultaneous Chebyshev type fil-
ters with the prescribed flatness in passband and stop-
band. The effectiveness of the proposed method is
verified through some design examples.

2 IIR digital filters and Flatness con-
ditions

The frequency response H(ejω) of an IIR digital filter
is defined as

H(ejω) =
A(ejω)

B(ejω)
=

N∑
n=0

ane
−jnω

M∑
m=0

bme−jmω

(1)

where N and M are the orders of the numerator and
denominator, respectively. The filter coefficients an
and bm are real, and b0 = 1 in general. The desired
frequency response Hd(e

jω) of a lowpass filter can be
expressed as

Hd(e
jω) =

{
e−jτdω (0 ≤ ω ≤ ωp)

0 (ωs ≤ ω ≤ π)
(2)

where τd is a desired group delay in the passband and
ωp and ωs are, respectively, passband and stopband
edge angular frequencies. Then, the flatness condi-
tions of the magnitude and group delay in the pass-
band are given as follows [3]:

∂i|H(ejω)|
∂ωi

∣∣∣∣∣
ω=0

=

{
1 (i = 0)

0 (i = 1, 2, . . . ,Kp − 1)

(3)

∂iτ(ω)

∂ωi

∣∣∣∣∣
ω=0

=

{
τd (i = 0)

0 (i = 1, 2, . . . ,Kp − 2)
(4)

where Kp is a parameter expressing the flatness in
the passband. The magnitude flatness condition in the
stopband is

∂i|H(ejω)|
∂ωi

∣∣∣∣∣
ω=π

= 0 (i = 0, 1, . . . ,Ks − 1)

(5)

where Ks is a parameter expressing the flatness in the
stopband.

3 Proposed Algorithm
3.1 Flatness condition in stopband

First, we consider the flatness condition in the stop-
band. Let Ĥ(ejω) be a noncausal shifted version of
H(ejω);

Ĥ(ejω) = H(ejω)ejτdω =

N∑
n=0

ane
−j(n−τd)ω

M∑
m=0

bme−jmω

(6)

Then, the flatness condition in eq. (5) becomes

∂i|Ĥ(ejω)|
∂ωi

∣∣∣∣∣
ω=π

= 0 (i = 0, 1, . . . ,Ks − 1).

(7)

In order to meet the flatness condition of eq. (7), it
is necessary to place Ks multiple zeros at ω = π.
Hence, the frequency response H̃(ejω) can be ex-
pressed as follows [2].

H̃(ejω)=
Ã(ejω)

B(ejω)
=

(1+e−jω)Ks

N−Ks∑
n=0

cne
−j(n−τd)ω

1 +
M∑

m=1

bme−jmω

.

(8)

3.2 Flatness condition in passband

With eq. (8), the flatness conditions in eqs. (3) and (4)
become

∂iH̃(ejω)

∂ωi

∣∣∣∣∣
ω=0

=

{
1 (i = 0)

0 (i = 1, 2, . . . ,Kp − 1)
.

(9)

Eq. (9) is the same as follows.

∂iÃ(ejω)

∂ωi

∣∣∣∣∣
ω=0

=
∂iB(ejω)

∂ωi

∣∣∣∣∣
ω=0

(i = 0, 1, · · · ,Kp − 1). (10)

Consequently, we can get the following linear equa-
tion in matrix form:

Uh = V (11)

where

h = [c0, . . . , cN−Ks , b1, . . . , bM ]T , (12)
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V = [1, 0, . . . , 0]T , (13)

U =
[
U1 U2

]
, (14)

U1=

⎡
⎢⎣

u(0, 0) . . . u(0, N −Ks)
...

. . .
...

u(Kp − 1, 0) . . . u(Kp, N −Ks)

⎤
⎥⎦ , (15)

U2 =

⎡
⎢⎣

−10 . . . −M0

...
. . .

...
−1Kp−1 . . . −MKp−1

⎤
⎥⎦ , (16)

u(p, q) =
p∑

k=0

Ks∑
r=0

pCkKsCrr
p−k(q − τd)

k, (17)

and (·)T denotes the transpose of (·).

3.3 Formulating the design as a QP problem

If the frequency response of eq. (8) is used, it is found
that the flatness characteristic at ω = π can easily be
realized.

Here, let H̃d(e
jω) be the desired magnitude re-

sponse of a lowpass filter, i.e.,

H̃d(e
jω) =

{
1 (0 ≤ ω ≤ ωp)

0 (ωs ≤ ω ≤ π)
. (18)

Using eqs. (8) and (18), the weighted least squares
design problem is

min
c,b

J =
L∑
l=1

W (ωl)|H̃(ejωl)− H̃d(e
jωl)|2 (19)

where L is the total number of grid points in the pass-
band and stopband, W (ωl) is the weighting function,
and ωl(l = 1, . . . , L) are the discrete frequency points
used in the calculation. However, it is difficult to solve
eq. (19) directly because H̃(ejωl) is a rational func-
tion. Thus, we use the following iterative design for-
mula:

min
c,b

J =
L∑
l=1

W (ωl)|Ã(ejωl)−H̃d(e
jωl)B(ejωl)|2

|Bk−1(ejωl)|2
(20)

where k is the number of the iterations.

After some manipulation, eq. (20) can be formu-
lated as the following QP problem:

min
hk

hT
k

(
Re(P T )WRe(P )+Im(P T )W Im(P )

)
hk

−2
(
Re(QT )WRe(P )+Im(QT )W Im(P )

)
hk

(21)

where

P = diag(G)

⎡
⎢⎢⎣

e−j0ω1 · · · e−j(N−Ks−τd)ω1

...
. . .

...
e−j0ωL . . . e−j(N−Ks−τd)ωL

⎤
⎥⎥⎦ ,

(22)

Q= diag(d)

⎡
⎢⎣

e−jω1 · · · e−jMω1

...
. . .

...
e−jωL . . . e−jMωL

⎤
⎥⎦ , (23)

G = [(1+e−j(ω1))Ks , . . . , (1+e−j(ωL))Ks ], (24)

d = [Hd(e
jω1), . . . , Hd(e

jωL)], (25)

W = diag

([
W (ω1)

|Bk−1(ω1)|2 , . . . ,
W (ωL)

|Bk−1(ωL)|2
])

.

(26)

3.4 Update of the weighting function W (ω)

It has been well known that the filters obtained under
weighted least square criterion have a large magnitude
ripple near the band edges. So in order to realize the
equiripple characteristics in the passband or stopband
or both, the weighting function used at every itera-
tion is adjusted using the modified Lawson’s method
[14] and the QP problem is solved to obtain the coef-
ficients. In this paper, the weighting function W (ω)
in kth iteration step is updated as follows:

Wk+1(ω) =
Wk(ω)βk(ω)

1

L

L∑
l=1

Wk(ωl)βk(ωl)

(27)

where the envelope function βk(ω) is given as the
function of straight line formed by joining together
all the extremal points of the same frequency band of
interest on the error function which is expressed as

Ek(ω) =
∣∣∣H̃(ejω)− H̃d(e

jω)
∣∣∣ . (28)
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Figure 1: Example of envelope function

Using the extremal points ω̂i of Ek(ω), βk(ω) can be
calculated by

βk(ω) =
ω − ω̂i

ω̂i+1 − ω̂i
Ek(ω̂i+1) +

ω̂i+1 − ω

ω̂i+1 − ω̂i
Ek(ω̂i)

for ω̂i < ω < ω̂i+1

(29)

where ω̂i denotes the ith extremal frequency of the
the error function Ek(ω). An example of βk(ω) is
depicted in Fig. 1.

3.5 Stability Constraint

A stability condition based on a positive realness in
[1] is given by

Re
{
B(ejω)

}
≥ εp ∀ω[0 : π], (30)

where εp is a positive small value. This stability con-
dition has been applied to many design methods as in
[7]-[11]. However, the use of eq. (30) may exclude
the candidate for the transfer function with excellent
performance because this condition is a sufficient con-
dition to assure the stability and is often too restrictive.
Moreover, there is a disadvantage that it is difficult to
prespecify the stability margin which is the distance
between the maximum pole radius and the unit circle.
In [6], an iterative method for the stability guarantee
based on the positive realness was proposed in order
to get a better transfer function. In this method, a sta-
bility condition is given by

Re
{
B(ejω)

}
≥ δ ∀ω[0 : π], (31)

where δ < 1. If the maximum pole radius Pm of
the filter obtained using a given δ is greater than pre-
scribed maximum allowable pole radius PR, δ is up-
dated and redesign is carried out using the updated δ.
The update of δ and the redesign are repeated until

satisfy |Pm − PR| ≤ εR, where εR is a positive small
value. The update procedure of δ is described in next
subsection ”Design Procedure”.

Using the discrete angular frequency ωi(i =
1, ..., R), eq. (31) can be expressed as the linear ma-
trix inequality

Γh ≥ λ (32)

where

Γ =

⎡
⎢⎣

0 . . . 0 cos(ω1) . . . cos(Mω1)
...

. . .
...

...
. . .

...
0 . . . 0 cos(ωR) . . . cos(MωR)

⎤
⎥⎦ ,

λ = [δ − 1, · · · , δ − 1]T . (33)

Thus, the design problem in which the flatness condi-
tion and stability constraint were considered becomes
a standard QP problem below:

min
hk

hT
k

(
Re(P T )W kRe(P )+Im(P T )W kIm(P )

)
hk

−2
(
Re(QT )W kRe(P )+Im(QT )W kIm(P )

)
hk

sub. to Γhk ≥ λ

Uhk = V . (34)

This problem can be solved using a powerful QP tool,
such as quadprog in MATLAB.

3.6 Design Procedure

The design procedure of the proposed method is sum-
marized as follows.

Step 0: Set the desired magnitude response H̃d(ω),
group delay response τd filter order N and M ,
flatness Kp and Ks, passband edge ωp，stopband
edge ωs, weighing function W (ω), initial value
of δ, number of grid points L and R.

Step 1: Solve the QP problem in eq. (34) to obtain
the filter coefficient hk.

Step 2: If
sum(|hk − hk−1|)

sum(|hk|) ≤ ε and Pm < PR,

stop, if
sum(|hk − hk−1|)

sum(|hk|) ≤ ε and Pm > PR,

go to step 4; otherwise, go to step 3．

Step 3: Update the weighting function W (ω) using
eqs. (27) - (29) and go back to Step 1.
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Step 4: Calculate δ
′
= min

all ω
Re{B(ω)} from the ob-

tained filter, and then set to δl = δ
′

and δu = 1.

Step 5: Calculate δ = (δl + δu)/2.

Step 6: Solve the QP problem in eq. (34) using the
updated δ.

Step 7: If
sum(|hk − hk−1|)

sum(|hk|) ≤ ε and |Pm−PR| ≤

εR, stop, if
sum(|hk − hk−1|)

sum(|hk|) ≤ ε and |Pm −
PR| > εR, go to Step 9; otherwise then go to
Step 8.

Step 8: Update the weighting function W (ω) using
eqs. (27) - (29) and go back to Step 6.

Step 9: If Pm < PR, set to δu = δ, if Pm > PR, set
to δl = δ, and then go back to Step 5.

4 Design examples
In this section, the some design examples are given
to illustrate the effectiveness of the proposed design
method. In all the following examples, R = 1000,
ε = 10−7, εR = 10−5, and the initial value of δ is
−102. Moreover, ”quadprog” function in MATLAB
was used to solve the QP problem in eq. (34).

4.1 example 1

We first show the design examples of the inverse
Chebyshev type IIR filters which have a flat char-
acteristic in passband and an equiripple character-
istic in stopband. The design specifications are as
follows: N = 12,M = 5, ωs = 0.50π, τd =
{10.2, 12.0, 13.8},Kp = 10,Ks = 0, Pm = 1.0. The
total grid point L is 500 which is the sum of 0 point
in the passband and 500 points in the stopband. The
magnitude response and group delay response of the
obtained filter are shown in Fig. 2. The numerical
performance are shown in Table 1 with them obtained
by the conventional method [3] based on Remez algo-
rithm. From Fig. 2, it is confirmed that the magnitude
and group delay responses both have a flat character-
istic at ω = 0 and the magnitude response in stopband
is equiripple. From Table I, it is confirmed that the re-
sulting filters by the proposed method have almost the
same or better characteristics compared with them by
the conventional method.

Next, we consider the following specifications:
N = 14,M = 9, ωs = 0.40π, τd = 11.0,Kp = 9. In
[3], the condition that Kp ≥ M+1 must be met in or-
der to set the initial value. Therefore, the conventional
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(b) Group delay response

Figure 2: Inverse Chebyshev type IIR filters with N =
12 and M = 5 in example 1.

method [3] cannot design this filter. The magnitude
response and the group delay response of the filter ob-
tained by the proposed method are shown in Fig. 3. It
is confirmed from Fig. 3 that both of the magnitude
and group delay responses of the obtained filter have
a flat characteristic at ω = 0 and the magnitude re-
sponse in stopband is equiripple. The minimum stop-
band attenuation of the obtained filter is 51.45dB and
the maximum pole radius is 0.827. Hence, the ob-
tained filter is stable.

4.2 example 2

We show the design examples of the Chebyshev
type IIR filters which have an equiripple character-
istic in passband and a flat characteristic in stop-
band. The design specifications are as follows: N =
15,M = 6, ωp = 0.30π, τd = 12.0,Kp = 0,Ks =
{9, 10, 11}, Pm = 1.0. The total grid pont L is 500
which is the sum of 500 points in the passband and
0 point in the stopband. The magnitude response and
group delay response of the obtained filter are shown
in Fig. 4(a)-(c). The performance of each filter is
shown in Table II with them obtained by the conven-
tional method [2] based on Remez algorithm. In Ta-
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Figure 3: Inverse Chebyshev type IIR filter with N =
14 and M = 9 in example 1.

ble II, Rp is the maximum magnitude error in pass-
band, Gerr is the maximum group delay error in pass-
band, and Pmax is the maximum pole radius. From
these figures, it is confirmed that the obtained filters
have the equiripple characteristics in passband and the
flat characteristics in stopband. From Table II, it is
confirmed that the resulting filters by the proposed
method have almost the same or better characteristics
compared with them by the conventional method.

4.3 example 3

We show the design examples of the equiripple IIR
filters with the flat characteristics at ω = 0 and
ω = π. The design specifications are as follows:
N = 12,M = 6, ωp = 0.50π, ωs = 0.60π, τd =
10.0,Kp = {2, 6, 10}, Ks = 2, Pm = 1.0. The total
grid pont L is 1000 which is the sum of 500 points
in the passband and 500 points in the stopband. The
magnitude response and group delay response of the
obtained filter are shown in Fig. 5(a) - (c) and the
complex magnitude error and pole-zero plot of the fil-
ter with kp = 6 are depicted in Fig. 5(d) and (e).
Moreover, the performance of each filter is shown in
Table III. In Table III, Rp is the maximum magnitude

Table 1: Comparison with Ref.[3]

Minimum Stopband Maximum
τd Attenuation [dB] Pole Radius

Proposed 10.2 47.58 0.774
12.0 54.45 0.732
13.8 59.15 0.740

Ref. [3] 10.2 46.70 0.774
12.0 53.62 0.732
13.8 58.34 0.740

Table 2: Comparison with Ref.[2]

Ks Rp Gerr Pmax

Proposed 9 2.00×10−6 1.07×10−4 0.757
10 2.65×10−5 3.29×10−3 0.805
11 1.10×10−4 3.23×10−2 0.858

Ref. [2] 9 2.01×10−6 1.11×10−4 0.758
10 2.65×10−5 3.31×10−3 0.806
11 1.17×10−4 3.24×10−2 0.858

Table 3: Resulting filters in example 3

Kp Rp Rs [dB] Gerr Pmax

2 0.0261 31.28 1.494 0.8882
6 0.0297 30.14 1.382 0.8841
10 0.0169 25.56 1.654 0.8690

error in passband,Rs is the minimum stopband attenu-
ation, Gerr is the maximum group delay error in pass-
band, and Pmax is the maximum pole radius. From
these figures, it is confirmed that both the magnitude
and group delay responses have a flat characteristic at
ω = 0 and ω = π and the equiripple characteristics
are obtained in other interest region.

5 Conclusion
In this paper, a design method based on Quadratic pro-
gramming has been proposed for approximately linear
phase IIR filters with prescribed flatness in passband
or stopband, or both. The flat stopband characteris-
tics can be realized by placing multiple zeros in the
stopband. Therefore, the flat condition in stopband
is preincorporated into the transfer function. With
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Figure 4: Chebyshev type IIR filters in example 2.

the transfer function, we formulated the approxima-
tion problem of the frequency characteristics as a QP
problem with the linear matrix equality and linear ma-
trix inequality constraints that are the flat condition in
passband and the stability condition for the obtained
filters. In the proposed method, the stable IIR filters,
which have an equiripple response and prescribed flat-
ness, are obtained by solving iteratively the QP prob-
lem. In the design examples, we showed that the pro-
posed method can design the filters better than the
conventional method and that the filters which cannot
be designed by the conventional method could also be
designed.
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Figure 5: Simultaneous Chebyshev type IIR filters with flatness in example 3.
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