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Abstract: - This paper introduces XZ-shape histogram in recognizing human performing activities of daily 
living (ADLs) which focuses on human-object interaction activities based on Kinect-like depth image. The 
evaluation framework was formulated in order to compare   XZ-descriptor with previous shape histogram as 
well as X-shape histogram and Z-shape histogram. Each descriptor was segmented into several cases according 
to number of shells and symbols used in vector quantization process which was executed using our own dataset 
called RGBD-HOI. This study showed that XZ-shape histogram  managed to outperform the other 3D shape 
descriptors along with the excellent one that compares the performance inferred by the area under receiver 
operating characteristic curve (AUC-ROC).The results of this study not only demonstrate  the implementation 
of 3D shape descriptor in the dynamic of human activity recognition but also challenge the previous shape 
histograms in terms of providing low dimension descriptor that capable in improving the discrimination power 
of human-object interaction activity recognition.      
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1 Introduction 
Monitoring activities of daily living (ADLs) plays a 
major part in assessing the health status of a person 
suffering with either cognitive [1] or physical 
impairment[2, 3] which is commonly done  by 
human caregiver or healthcare practitioner. 
Recently, there are many investigations emerged on 
developing automated system for monitoring the 
activities of daily living (ADLs)  which can be 
divided into vision-based and non-vision based 
system[4]. However, a rapid growing of the  vision-
based ADLs monitoring system development in this 
few years has promised the practicality of this 
sensing modality [4] over the non-vision based 
ADLs monitoring system: 1) manage to track and 
sense gross and fine human movements that 
represent ADLs; 2) provide rich of information such 
as spatial information, patient characteristics and 
anomaly actions  obtained using a single vision-
based sensing agent; 3) easily  set up according to 
the conditions and environments; and 4) has high 
user or patient acceptance due to the non-invasive 
modality.  

Human ADLs recognition has been investigated 
widely within the computer vision community [5-7]. 

However, most of the previous studies emphasized 
more on the activities without the manipulation of 
objects such as walking, running and jumping; 
which are out of healthcare community’s interest. 
This is because the community of healthcare focuses 
on monitoring the home and indoor ADLs such as 
drinking, reading or answering a phone which are 
categorized into the activities that involve object 
manipulation. However, with the introduction of 
Microsoft Kinect,, there are several studies appeared  
proposing the human activity recognition [8-10] that 
includes  the activities of human performing ADLs 
with specific to object manipulation [11, 12]. 

This present study involves with  the ADLs 
recognition  that focuses on object manipulation 
activities or human-object interaction based on 
Kinect-like depth image; since  most of the previous 
studies used RGB based camera or video in 
recognizing human performing activities of daily 
living (ADLs) [5-7]. This study also introduces the 
XZ-shape histogram as motivated from shape 
histogram [13] as one of the common 3D shape 
descriptors which used for 3D object retrieval based 
on the object mesh surface. The implementation of  
XZ-shape histogram in recognizing human-object 
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interaction activity was done because  only little 
contributions were found in extracting 3D shape 
descriptor for the dynamic of human activity[14]; 
especially when the 3D surface is in a form of 3D 
point cloud which is obtained from Kinect-like 
depth image.   

Initially, shape histogram is a histogram with a 
total number of 3D points resides in each defined 
shell. The defined shell is in sphere form within the 
3D object surface with respect to the centroid. In 
this paper, we propose two forms of shell model; 1) 
shell in a form of plane with surface normal is in x-
axis direction; and 2) shell in a form of plane with 
surface normal is in z-axis direction. Shape 
histogram from both shell models is concatenated to 
generate XZ-shape histogram. The developed 
histogram outperformed the previous shape 
histograms in recognizing human-object interaction 
activities based on Kinect-like depth image.  

The paper is organized as follows. We review the 
existing approach in vision based human activity 
recognition and 3D shape descriptor in next section. 
After that, the shape histogram and our proposed 
XZ-shape histogram are presented in Section 3 
before the evaluation framework is discussed in 
Section 4. The evaluation result is explained in 
Section 5 before we discuss and conclude in Section 
6. 
 
 
2 Related works on Human Activity 
Recognition and 3D Shape Descriptor 
In this section, the existing vision-based human 
activity recognition is discussed as an overview of 
the current approach in extracting meaningful 
feature as well as general 3D shape descriptor that 
has been used for 3D object retrieval. 
 
 
2.1 Human Activity Recognition 
Human activity recognition has been widely 
investigated by the computer vision community. In 
general, the proposed approaches can be categorized 
into three level; 1) low-level; 2) middle-level; and 3) 
high-level [4]  in parallel with the three levels of 
taxonomy activity. Since the previous studies were 
based on the RGB camera or video, there were 
several approaches developed according to the color 
or RGB image in extracting meaningful information 
to infer the human activity. The  approaches has 
been reviewed in our previous study [4]. 

However, with the introduction of Kinect  to the 
research community [15],  many studies found 
exploring different perspectives like  the depth 

information or combination between color (RGB) 
and depth information for object classification [16-
18], human detection [19], automated sign language 
interpretation [20, 21]  and human activity 
recognition [16, 17, 22]. A study done by X, [8] was 
the pioneer study in accessing depth information 
from Kinect in order to interpret the human activity. 
It was done by establishing a-bag-of-3D point from 
the depth image before inferring the human activity 
from action graph. However, there were also a few 
studies done  by combining the RGB and depth 
information in recognizing human activities [9-12, 
23].  Since, spatio-temporal based descriptor 
generated based on the recent research interest in 
recognizing human activity by using the RGB 
camera or video, there were  many studies found [9, 
10, 23] that implement  such descriptor in RGBD 
image for the similar interest. Study in [23] 
formulated hyper cuboid 4D from gradient which is 
taken from the interest point of RGB and depth 
image.  Interest point was selected based on 2D 
Gaussian filter in spatial domain and 1D Gabor filter 
in temporal domain for both RGB and depth image. 
However, investigation in [9] recommended that, it 
is important to select  the interest point solely on the 
RGB image before the bag-of-words was generated 
as descriptive histogram; while correspondence 
interest point of depth image was used to obtain 
depth information that separates the descriptive 
histogram into several depth channels. In line with 
this study, Zhao [10] performed the Histogram of 
Gradient (HOG) and Histogram of Flow (HOF) 
from the interest point of RGB image. However, 
local depth pattern which is adapted from local 
binary pattern (LBP) was generated from the 
correspondence depth interest point before 
classifying the human activity. Another approach 
was proposed by  [11] which is modeling the 
probabilistic graphical model for human activities 
based on the joint of 3D point skeleton provided in 
Kinect. However, to our knowledge the only work 
which was focused on the human-object interaction 
activity was proposed by Koppula [12].  The study 
later was extended  as in [11] introduced  features of 
object manipulation as the contextual features to be 
used in improving the human activity recognition.  

Thus, this study put a highlight on the human-
object interaction activity recognition. However, 
this study proposes a new 3D shape descriptor as 
well as implementing the existing 3D shape 
descriptor which is initially used in the 3D object 
retrieval. 
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2.2 3D shape descriptor  
3D shape descriptor can be categorized into four 
types: (1) Global based descriptor, (2) Local based 
descriptor, (3) View based descriptor, and (4) 
Graph-based descriptor. Originally, the 3D shape 
descriptor was designed for 3D object retrieval 
which is useful for the field of archeology, biology, 
anthropology and industrial part designing 
community. 3D object in a form of 3D mesh surface 
is commonly used for 3D object retrieval since such 
form has the capability to illustrate complex shape 
in a small memory capacity as compared to the 3D 
point cloud or 3D primitive form [24]. 

Global based descriptor describes the 3D object 
in terms of global shape or overall shape. The initial 
attempt of  the descriptor was to generate the 3D 
object volume, moment and Fourier transform 
coefficients[25]. Other than that, a study in [26] 
suggested the convex-hull from the 3D object to be 
the 3D shape descriptor while several other studies, 
concentrated on extracting the shape [13] and shape 
distribution [27, 28]. However, there were also 
several investigations that demonstrate local based 
descriptor, which it describes the shape based on the 
geometric relation between local points in 3D object 
surface with neighbor points. The examples of local 
based descriptors are spin image [29] and curvature 
based descriptor [30, 31]. Graph-based descriptor 
interprets the 3D object shape in a form of simple 
informative skeleton such as Medial Scaffold [32] 
and Reeb Graph[33]. Meanwhile for view-based 
descriptor, the 3D object is illustrated into 2D view 
images first before determining the descriptor from 
the 2D view image. The example of approaches  
used in this category are Light-Field Descriptor 
[34], Characteristic view descriptor [35] and 
elevation descriptor [36]. 
 
 
3 Shape Histogram and XZ-Shape 
Histogram for Human Object 
Interaction Activity Recognition 
 
 
3.1 Shape Histogram and XZ-Shape 
Histogram 
The aim of this study is to introduce the XZ-shape 
histogram and demonstrate a shape histogram from 
Kinect-like depth image in recognizing the human-
object interaction activities. Therefore, both 
descriptors were implemented by using our very 

own dataset called RGBD-HOI dataset (see Fig. 1); 
consists of a pair of RGB and depth sequence 
performing eight possible activities including: 1) 
answering  a phone call (An); 2) brushing teeth (Br); 
3) drinking from a mug (Dr); 4) lighting a flashlight 
(Li); 5) making a phone call (Ma); 6) pouring from a 
mug (Po); 7) spraying from a spray bottle (Sp); and 
8) typing using a keyboard (Ty); each activity was 
performed by 12 subjects. However, this study only 
highlights on the extraction of depth image. The 
proposed 3D shape descriptor was recommended to 
be implemented from the depth image in a form of 
3D point cloud. Thus, several approaches were 
executed during preprocessing in order to obtain 3D 
point cloud. During preprocessing, fixed bounding 
box per sample sequence was determined to 
highlight the region of interest as illustrated in Fig.2. 
After that, multilevel thresholding (fixed minimum 
and maximum threshold value to 680 and 830)  was 
formulated from resultant image in order to remove 
background pixels within the bounding box before 
converting the retained pixels into 3D points cloud 
(see Fig.2) by using the approach that has been 
proposed in [17]. 

Shape histogram represents the number of 3D 
point resides in each designed bin. Defined bin can 
be modeled according to (1) shells model, (2) 
sectors model; or (3) combination between shells 
and sectors model. However, shape histogram was 
implemented with bin designed based on the shells 
model as such shape histogram is invariant to 
rotation. Fig.3 portrays the implementation of shape 
histogram to 3D point cloud; shells were built with 
respect to the centroid of the 3D point cloud, shO . 

shO  was localized with coordinate ox , oy  and oz    
for each 3D point cloud and formulated  as, 
 

( ) ( )o o o x y zx , y ,z min x r ,min y r ,  min z r= + + +

 

(1) 

( )
x

max x min x
r     

2

−
=  (2) 

( )
y

max y min y
r     

2

−
=  (3) 

( )
z

max z min z
r    

2

−
=  (4) 

where x, y and z are the coordinates of the whole 
point exist in 3D point cloud. In this study, shape 
histogram with number of shells of P=500 and 
P=1000 were generated for comparison purpose.  
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XZ-shape histogram was generated by merging 
the X-shape histogram and Z-shape histogram. X-
shape histogram was formulated based on shell 
model which is in a form of plane with surface 
normal in x-axis direction (see Fig.4). The drawback 
of X-shape histogram is that the descriptor 
incapable in differentiating the left-handed or right-
handed subject (see Fig. 5(a)-(d)). Fig. 5 (b) and (d) 
display the X-shape histogram generated from left-
handed subject (see Fig. 5(a)) and right-handed 
subject (see Fig. 5(b)) which are dissimilar in 
shapes. In order to overcome this problem, each 
generated X-shape histogram was flipped on 
condition that the frequency of the first bin is more 
than the last bin. The output for flipping the 
histogram can be identified in Fig. 5(e) that was 
formulated from X-shape histogram in Fig. 
5(d).This mechanism managed to correct the X-
shape histogram for depth image in Fig.5 (b) which 
was similar to X-shape histogram generated from 
depth image in Fig. 5(a). However, Z-shape 
histogram was prepared based on modeling the shell 
for several planes with surface normal in z-axis 
direction (see Fig. 6). Therefore, with the use of this 
approach, there was no issue of left-handed or right-
handed subject. 

This study evaluated the performance of X-shape 
histogram with xP =5, 10, 20, 30 and 40; and Z-
shape histogram with zP =3, 5 and 10. The 
performance of each case was presented later in 
Section 4 before XZ-histogram was carried out 
based on the concatenation of the best X-shape 
histogram and Z-shape histogram. 
 

Answering a phone call

Drinking from a mug

Spraying from a spray bottle

 
Fig.1: Example samples from RGBD-HOI dataset. 
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Fig.2: Preprocessing from depth image 
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Fig.3: Shape histogram generated from 3D point cloud 
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Fig.4: X-shape histogram extracted 3D point cloud 
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(a) Left-handed subject performing ‘brushing teeth’

(c)Right-handed subject performing ‘brushing 
teeth’ (for simulating purpose, depth image in (a) 

was flipped and assuming the same subject 
performs such activity using right hand)

(b) Extracted X-shape histogram from depth 
image (a)

(d) Extracted X-shape histogram from 
depth image (c)

(e) X-shape histogram of (d) after flipping 
histogram process which is similar to histogram in 

(b)  
Fig. 5: The flipping histogram process in order to avoid right-
handed and left-handed subject occur in generating X-shape 

histogram 
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Fig. 6: Z-shape histogram extracted 3D point cloud2. Evaluation 

Framework 
 
 
3.2 Evaluation Framework 
For each sequence of depth frame per sample in 
dataset, a set of 3D shape descriptors 

{ } { }i fX x  |   f 1,2,3 F= = …  d
fx ∈  was 

formulated from each correspondence depth frame; 
where f  is the frame index in each sample, i  is the 
index for sample in the dataset and d is the 3D 
descriptor dimension. The main target is to obtain 
the receiver operating characteristic (ROC) for each 
3D shape descriptor as the 3D shape descriptor 
performance is inferred by the ROC curve and area 
under ROC curve (AUC-ROC). Then, iX was 
quantized into K number of possible symbols to 

produce { } { }i f fY y  |  y 1,2,3 K= ∈ … . In this 
process, each 3D shape descriptor per frame in 
dataset was utilized in order to define K number of 
symbols which is based on K-mean approach before 
assigning each 3D descriptor into a symbol, fy . 
Afterward, iY  was used to establish the self-
matching matrix M  defined as, 

( ) ( ) { }i jM i, j m Y ,Y  s.t    i j 1,2,...S C= = = ×  (5) 

where S  was defined as number of sample per 
activities class which in this case is 12 and C  is the 
total number of activity classes that were evaluated. 
All eight activity classes in the dataset were used in 
the evaluation process. ( )i jm Y ,Y  is the matching 
measurement function that was used to obtain 
matching value between sample iY  and jY that 
represents the row and column  for each element in 
matrix M . Thus, the arrangement for both row and 
column of matrix M  were designed as follows: 

{ }c n Y Y  |  s {1,2,3 .S}= = …  (6) 

{ }c Y Y  |  c {1,2,3 .C}= = …  (7) 

Fig.7(a) demonstrates the arrangement for both row, 
(6) and column, (7) of matrix M .In this study, edit 
distance [37] was done  by matching the 
measurement function  ( )i jm Y ,Y   as both iY and 

jY  are in one dimensional sequence.  
In order to plot ROC curve for each 3D shape 

descriptor, each self-matching matrix M  was 
operated with correspond to ground-truth matrix 

tM  (see Fig.7(b)) in order to produce the true match 

mt , true non-match nt , false match mf  and false 
non-match nf  that were defined as, 

SC SC
'

m t
i j

t {M (i, j) M (i, j)}= ×∑∑  (8) 

( )
SC SC

'
n t

i j

t {(1 M i, j ) (1 M (i, j))}= − × −∑∑  (9) 

( )
SC SC

'
m t

i j

f {(1 M i, j ) M (i, j)}= − ×∑∑  (10) 

SC SC
'

n t
i j

f {M (i, j) (1 M (i, j)}= × −∑∑  (11) 
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(b)  
Fig. 7: (a) Self-matching matrix M (partially shown); both row and 

column were formulated using (2) and (3). (b) Ground-truth 
matching matrix, tM which was built for self-matching matrix in 

(a). 
 

tM  was formed from binary element which the  
size is similar to the size of M , ( ) ( )S C S C× × ×  
pixels but consists of white blocks with  ( )S C×  
pixels that is replicated within M  in a diagonal 
direction. 'M  is the binary version of M , produced 
by thresholding M  with threshold value of ε . 
Thus, the ROC can be plotted on the condition that 
ε  was varied from 0 to 1 and produced true-positive 
rate (TPR) and false-positive rate (FPR) by using 
the following equations, 

m

m n

tTPR
t f

=
+

 
 
(12) 

m

m n

fFPR
f t

=
+

 
(13) 

For each 3D shape descriptor case, three ROC 
curves were generated since the quantization in 
producing a sequence of symbol iY was based on 
K-means that suffers with initial seed error. Thus, 
the mechanism was repeated for three times before 
inferring the 3D shape descriptor performance based 
on the ROC average that represents such 3D shape 
descriptor.   
 
 
 

 
4 Results and Discussion 
The purpose of this study is to demonstrate the 
proposed XZ-histogram as motivated from shape 
histogram to be implemented in recognizing the 
activity of daily living (ADLs) which is specific to 
the human-object interaction activity based on the 
Kinect-like depth image. Therefore, before the 
performance of XZ-shape histogram can be 
concluded, several investigations were carried out 
which started with the implementation and 
evaluation of shape distribution in the  RGBD-HOI 
dataset. Then, the same mechanism was executed to 
X-histogram and Z-histogram before finding the 
best performance of X-histogram and Z-
performance which to be merged later in order to 
form XZ-histogram. Since, a lot of cases for each 
type of 3D shape descriptor were simulated (by 
varying K, P , xP  and zP . ), it is very difficult to 
observe ROC curve that represents each case in a 
graph. Thus, the performance of each 3D descriptor 
case was inferred based on the AUC-ROC curve 
that was displayed in a form of table (see Table 1-
5).     

The first investigation started with the 
implementation of shape histogram by using our 
own RGBD-HOI dataset. Table 1 illustrates the 
AUC-ROC for each case in shape histogram. The 
performance of shape histogram depends on the P 
and K which are used to establish the evaluation 
mechanism. When P=500, a remarkable 
performance was seen when K was set to 100 before 
minimally declining when K was more than 100. 
However, there was significant increment 
performance for shape histogram with P=1000 when 
the number of K symbols were around 20 to 300. 
The results indicate that when P was set too small 
(P=500), the produced shape histogram was 
insufficient to describe the shape of 3D surface. 
This insufficient shape histogram lost more spatial 
information when the descriptor was quantized to a 
big number of K possible symbols since it quantized 
the insufficient meaningful information. However, 
when the P used to generate shape histogram is 
adequate to describe the shape of 3D surface 
(P=1000), the 20 to 300 number of K symbols was 
reported to increase the shape histogram 
performance because the quantization process had 
assessed a sufficient 3D shape information from 
shape histogram. 

The second investigation involved with the 
experimentation of the mentioned X-shape 
histogram: (1) X-shape histogram without flipping 
histogram; 2) X-shape histogram with flipping 
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histogram. The results for both 3D shape descriptors 
were illustrated in Table 2 and Table 3. Even there 
were insignificant cases in Table 3 which showed 
that the performance of X-shape histogram with 
flipping histogram process did not improve, the 
overall average of AUC-ROC,0.6395 in Table 3 was 
still outperformed the average AUC-ROC, 0.6384 in 
Table 2 . Besides that, the maximum AUC-ROC in 
Table 3 (0.6454) which was more than maximum 
AUC-ROC in Table 2 (0.6443).  This shows that the 
implementation of flipping histogram improved the 
X-shape histogram performance. Moreover, in line 
with previous shape histogram, a variety of AUC-
ROC value determined as in Table 2 and Table 3 
was due to the amount of xP  which was to be 
considered as sufficient shells to generate X-
histogram and the amount of K possible symbol 
used also depended on xP . 

The last investigation which was Z-shape 
histogram implementation in RGBD-HOI dataset 
was demonstrated in Table 4. As there were variety 
of K symbols and zP , it seemed that the maximum 
performance of Z-shape histogram which was AUC-
ROC-0.6476 occurred when the  number of shell zP  
used is 5 with number of K symbols used is 200 in 
vector quantization process  

 From the investigations, it was found that X-
shape histogram with xP =5 and K=300 (can be 
referred in Table 3) and Z-shape histogram with 

zP =5 and K=200 (can be referred in Table 4) were 
selected as the best shape histograms to be 
combined as the new XZ-shape histogram. The new 
XZ-shape histogram was formulated again with the 
same evaluation framework in order to extract the 
performance in terms of AUC-ROC. Table 5 shows 
the XZ-shape performance as simulated by using 
K=20 to K=300 number of symbols in vector 
quantization process. The maximum performance of 
XZ-shape histogram based on the AUC-ROC is 
0.6484 that occurred at K=300. The overall 
comparison was summarized in Table 6 that indicate 
the AUC-ROC for each 3D shape descriptor case 
(the best case) for shape histogram, X-shape 
histogram, Z-shape histogram and XZ-shape 
histogram. The proposed XZ-shape histogram 
achieved a remarkable performance as compared to 
rest of shape descriptor used in recognizing the 
human-object interaction activities via Kinect-like 
depth image. 

 
 
 
 

 
Table 1. AUC-ROC for Several Shape Histogram 

based on Different K symbols and P number of Shell 
 
  Number of cells used to 

establish shape 
histogram, P 

  500 1000 

Number of 
K symbols 

used in 
vector 

quantization 
process 

20 0.6402 0.6339 

100 0.6457 0.6393 

200 0.6431 0.6452 

300 0.6436 0.6455 

 
 

Table 2. AUC-ROC for Several X-Shape Histogram 
(without flipping histogram process) Based on 
Different K Symbols and xP  Number of Shell 

  Number of cells used to establish 
shape histogram, xP  

  5 10 20 30 40 

Number of 
K symbols 

used in 
vector 

quantizatio
n process 

20 0.6343 0.63
01 

0.63
23 

0.63
03 

0.62
99 

100 0.6417 0.63
92 

0.63
86 

0.63
93 

0.63
86 

200 0.6422 0.64
22 

0.64
01 

0.63
95 

0.64
08 

300 0.6443 0.64
13 

0.63
87 

0.64
17 

0.64
19 

 
Table 3. AUC-ROC for Several X-Shape Histogram 
(with flipping histogram process) Based on Different 

K Symbols and xP  Number Of Shell 
  Number of cells used to establish 

shape histogram, xP  
  5 10 20 30 40 

Number of 
K symbols 

used in 
vector 

quantization 
process 

20 0.6305 0.6298 0.6383 0.6288 0.6292 

100 0.6414 0.6417 0.6397 0.6409 0.6415 

200 0.6440 0.6433 0.6434 0.6413 0.6396 

300 0.6454 0.6442 0.6425 0.6411 0.6432 
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Table 4. AUC-ROC for Several Z-Shape Histogram 
Based on Different K Symbols and xP  Number Of 

Shell 
  Number of cells used to 

establish shape histogram, 
zP  

  3 5 10 

Number of 
K symbols 

used in 
vector 

quantization 
process 

20 0.6374 0.6336 0.6414 

100 0.6445 0.6428 0.6475 

200 0.6470 0.6476 0.6468 

300 0.6469 0.6439 0.6472 

 
 
Table 5. AUC-ROC for Several XZ-Shape Histogram 

Based on Different K Symbols 
Number of K 

symbols used in 
vector 

quantization 
process 

AUC-ROC 

20 0.6360 

100 0.6418 

200 0.6426 

300 0.6484 

 
Table 6. AUC-ROC for different types of 3D shape 

descriptors 

3D Shape Descriptors AUC-ROC 

Shape Histogram. P=500, K=100 0.6457 

X-shape histogram. P=5, K=300 0.6454 

Z-shape histogram. P=5, K=200 0.6476 

XZ-shape histogram. K=300 0.6484 

 
 
4 Conclusion 
In summary, this study presents a new 3D shape 
descriptor, XZ-shape histogram in recognizing the 
human-object interaction activity based on the 
Kinect-like depth image. This study performs an 
intensive comparison of such descriptor with 
previous shape histograms; presents several cases 
for each descriptor by varying the number of shells 
used so as to  generate the descriptor and number of 
symbols used during quantization process before 
finding the best descriptor for each case based on 

the AUC-ROC value. The result showed that the 
proposed XZ-shape histogram managed to show an 
outstanding performance as compared to the other 
best 3D shape descriptor cases. Moreover, XZ-shape 
histogram which consists of only 10 shells managed 
to outperform the previous shape histogram which 
consists of 500 shells. The results of this study 
therefore challenge the previous shape histogram in 
terms of providing a lower dimension descriptor but 
manage to improve the discriminating power of 
recognizing the human-object interaction activity. 
Therefore, it is suggested that the descriptor should 
be integrated with classifier module as to establish 
the whole human-object interaction activities 
recognition system.  The descriptor as well need to 
be compiled with other modules in order to develop 
an automated activities of daily living (ADLs) 
monitoring system.      
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