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Abstract—The support vector machine (SVM) is a powerful tool for solving problems with high dimensional, 
nonlinearly, and is of excellent performance for channel equalization in communication systems. In this study, we 
propose PSO-SVM as channel equalization. To reconstruct the signal that has the inter symbol interference (ISI) and 
white Gaussian noise which in high speed communications environments. The SVM parameters will affect the 
identification of the result. Therefore, we use particle swarm optimization (PSO) to find the suit parameters in SVM. 
The PSO-SVM to realize the Bayesian equalization solution can be achieved efficiently. 
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1. INTRODUCTION 
With the network communication developed, wired 

transmission cannot be satisfied with the present day.  
Instead of wired transmission, wireless communication 
take advantage of not be limited to time and space. High-
speed digital data transmission always has the adverse 
effects of the dispersive channel causing inter symbol 
interference (ISI) [1] in modern wireless communication 
systems. This distortion causes considerable loss of 
information. Channel equalization is the process of 
compensating for the negative effect of the channel on 
the transmitted signal and removing the resulting ISI.  

Traditionally, channel equalization is equivalent to the 
process of inverse filtering. According to the view of 
signal detection, the techniques of channel equalization 
can be distinguished to sequence-estimation and symbol-
by-symbol-decision. The optimal sequence-estimation 
techniques that be called maximum likelihood sequence 
estimation (MLSE) are based on Viterbi detector (VD) 
theorem [2, 3]. Unfortunately, the complexity of this 
theorem grows exponentially with the dimension of the 
channel impulsive response. 

 Symbol-by-symbol-decision equalization based on 
linear filter design has simply computational requirement 
but cannot achieve the optimal solution. The optimal 
symbol-by-symbol-decision equalizer structure without 
decision feedback can be derived by adopting Bayesian 
theorem. That is known as maximum a posteriori (MAP) 
symbol-by-symbol-decision equalizer [4]. The Bayesian 

equalization can be realized by radial basis function 
networks (RBFNs) [1]. Symbol-by-symbol-decision 
equalization can be classified into two categories 
according to whether they estimate a channel model 
explicitly. The indirect-modeling equalizers usually using 
an adaptive linear filter that recovers observed symbols 
[1], without estimating the channel model explicitly. This 
approach is widely be used as the equalizer model 
structure. The structure can only design the decision 
function to recover the observed symbols. In fact, 
channel equalization can also be viewed as the 
classification problem when the equalizer as a decision-
making device to reconstruct the transmitted symbol 
sequence as accurately as possible. The support vector 
machine has shown that can realize the Bayesian 
equalization solution [5, 6]. So in this paper, we are 
applying the classifier support vector machine as the 
decision-making device. 

  Support vector machine (SVM) is a new machine 
learning algorithm developed past years. It’s based on 
statistical learning algorithms have a good generalization 
performance and widely be used in various applications 
just like financial, recognition as well as weather forecast 
[7]. For nonlinear SVM, the mercer kernel technique 
mapping the nonlinear data to a hyper-plane and classify 
in the feature space by using a nonlinear function. SVM 
simulations are implemented non-linear problems 
previously studied by other researchers using neural 
networks. The results show that SVM performs as well as 
neural networks on non-linear problems.  
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In the support vector machine, a small set of 
parameters, including trade off variable C and the radius 
basis kernel function parameters 2s typically govern the 
generalization properties of statistical models [8, 9]. 
Generally, we get the parameters by a lot of tests but this 
method may be not the best. In this paper, we are 
applying particle swarm optimal for selecting support 
vector machine parameters. The simulation result can 
assure the validity of it, not only time but also on model 
accuracy [10]. 

The rest of this paper are organized as follows. 
Section 2 present the concept of the technique optimal 
Bayesian equalizer and symbol-decision equalizer model 
in communication systems. The SVM decision equalizer 
is also introduced in this section. The procedure of the 
PSO based SVM algorithm is proposed in Section 3. 
Section 4 shows the comparison performance of the 
proposed method and Bayesian equalizer. Finally has 
some concluding remark in Section 5.  

2. SYMBOL-DECISION EQUALIZER 

2.1 Bayesian equalizer 
A discrete time model of a digital communications 

system is considered in this paper is shown in Fig. 1 [1], 
where the data sequence ( )s t  is an independent 
identically distributed sequence of random Binary phase-
shift keying (BPSK) and Quadrature phase-shift keying 
(QPSK), and can define as (1) (2), where 1j = − . 

  

Figure 1. Discrete-time model of data transmission 
system 

• Binary phase-shift keying (BPSK) 
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• Quadrature phase-shift keying (QPSK) 
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In BPSK and QPSK digital data is represented by 2 
points and 4 points around a circle which correspond to 2, 
4 phases of the carrier signal. These points are called 
symbols. Fig. 2 shows this mapping. 

 

      (a)  binary                            (b) quadrature 
Figure 2. (a) bpsk constellation diagram (b) qpsk 

constellation diagram 

The digital data sequence ( )s t is transmitted to a 
dispersive channel of finite impulse response (FIR). The 
observed sequence ( )y t , is including additive white 
Gaussian noise ( )e t  with variance 2

ns . The relationship 
between input sequence ( )s t  and observed 
sequence ( )y t can be written as (3) 

        y( ) ( ) ( ) ( )t s t h t e t= ∗ + .             (3) 

The channel impulse response  is ： 
1

0
( ) ( ) ( )

hn

i s
i

h t a t t iTδ
−

=

= −∑
.                 (4) 

The length of the impulse response is hn , ia is the gain on 
channel. 

The optimal Bayesian symbol-decision equalizer 
depicted in Fig. 3 is characterized by the equalizer order 
m and delay t [1]. 
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Figure 3. Architecture of symbol-decision equalizer 

The complexity of equalizer is determined by the 
equalizer order m . The Bayesian simply form of the 
optimal decision function [1] is ： 
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With associated boundary 

             
( ( )) 0Bf y t =

              (6) 

The set of noise free observed symbol is partitioned 
into two sets conditioned on the transmitted symbol： 

          
{ }ˆ( ) ( ) 1sn y t s t t+ = − =

         (7) 

And 

          { }ˆ( ) ( ) 1sn y t s t t− = − = −         (8) 

An noise free example is given to illustrate in Fig. 4, 
the channel transfer function 

1 2( ) 1.0 0.8 0.5H z z z− −= + + and for the reason to 
graphical display, setting the channel order 2m = and 
decision delay 0t = .  

 
Figure 4. bayesian decision boundaries  

2.2 SVM symbol-decision equalizer 
optimization problem 
The simulation results have shown that SVM provides 

a robust method for channel equalization in wireless 
communication systems for past researches [11]. 

For the support vector classification problem, the 
training set samples consists of vector from pattern space 

( 1, 2, , )d
i i N∈ℜ = …x and to each vector a 

classification { }1, 1iy ∈ + − . According to Fig. 5, the 
architecture of SVM symbol-decision equalizer is given 
an input vector sequence x . The SVM equalizer classifies 
to (9) [12] 

{ }
1, ( ( )) 0

ˆ( ) ( ( ))
1, ( ( )) 0

svm
svm

svm

f x t
s t d sign f x t

f x t
    ≥

− = = −  <
. (9) 
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Figure 5. Architecture of  SVM symbol-decision 

equalizer 

Where ( ( ))svmf x t  is the discriminant function 
associated with the hyper plane [13, 14] and defined as 
(10) 

                              ( ( ))svmf x t b= ⋅ +w x .                  (10) 

The normal vector on the hyper-plane is w , b∈ℜ is 
a bias that can separate the two classes without errors. 
To find the hyper-plane, one should estimate w and b so 
that 

( ) 0,i iy b⋅ + >w x      with 1,2, ,i N= … .   (11) 

The classification methodology of SVMs attempts to 
separate samples belonging to different classes by 
tracing maximum margin hyper-plane. To trace 
maximum the distance is equivalent to minimizing the 
norm of w . Under constraints (11), finding minimizing 
the norm of w can use Lagrange optimization problem 
to maximize [15] 

1 , 1

1 ( )
2

m m

D i i j i j
i i j

L y yα α α
= =

= − ⋅∑ ∑ i jx x .         

(12) 

Subject to: 

 
                                        

∑
=

=
m

i
ii y

1
0α

.                      (13) 

                           0>iα  , 1,2, ,i m= … .                   (14) 

This is a quadratic programming (QP) problem that 
may be solved with traditional optimization techniques 
[16].  

In addition, Cortes added slack variables iξ , 
1, 2,i l= …  [13]. The goal of finding minimizing the 

norm of  w become : 

                  
2

1

1min ( )
2

l

i
i

C ξ
=

+ ∑w .                     (15) 

In this paper, we choose parameter C using particle 
swarm optimization. 

In the equation (12), ( )⋅i jx x influence the 
performance, and if mapping the data to higher 
dimension feature space and the problem 
becomes ( ) ( )Φ ⋅Φi jx x . So that he inner product can 
replaced by kernel function: 

                   ( , ) ( ( ) ( ))i jk x x = Φ ⋅Φi jx x .                   (16) 

So the optimization nonlinear support vector machine 
problem can be expressed as 

         
1 , 1

1 ( )
2

m m

D i i j i j
i i j

L y y kα α α
= =

= − ⋅∑ ∑ i jx x .      (17) 

Subject to： 

                                  
∑

=

=
m

i
ii y

1
0α

 .                           (18) 

                           Ci ≤≤ α0  , 1,2, ,i m= … .             (19) 

Then SVM equalizer is described as  

         
1

( ) sgn( ( ) )
m

svm i i i j
i

f x y k bα
=

= ⋅ +∑ x x .         (20) 

2.3 Kernel options 
Applying support vector machine for channel 

equalization is needed to get the features from training 
sequence and the kernel function mapping the data to 
higher dimension feature space. The precise effect of the 
kernel is still an issue for research [17]. 
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The kernel function needs to satisfy the Mercer’s 
condition [18], the four commonly used families of 
kernels are: 

•  Linear kernel 

jiji xxxxk ‧‧ =)( .                                         (21) 

• Polynomial kernel with degree d  

 d
j

T
iji xxxxk )1()( +=‧ .                              (22) 

Radial basis function (RBF) kernel (σ is a positive 
parameters for controlling the radius) 

)exp()( 2

2

s
ji

ji

xx
xxk

−
−=‧

.                      (23) 

• Sigmoid kernel ( g is a positive parameter) 

))(tanh()( cxxgxxk jiji += ‧‧ .                  (24) 
In this paper, using radial basis function (RBF) as 

kernel function [19]. The RBF kernel function can 
classify nonlinear and high dimension data well, in 
addition the parameter 2s we are using particle swarm 
optimization to search too. 

3. PARTICLE SWARM OPTIMIZER 

3.1 Review of the PSO 
Particle swarm optimization (PSO) is one kind of 

population-based optimization evolutionary algorithms 
(EA) firstly proposed by Kennedy and Eberhart in 1995 
[20]. The technique is motivated by the behaviors of 
flocking birds. PSO is initialized with a group of random 
particles and searched for optima by updating generations. 
The particles fly over the solution space, remembering 
the best solution encountered. The positions and velocity 
of each particle are updated according to their best 
encountered position and the best position encountered 
by any particle according to the following equation [21]: 

1

2

* * () * ( )

* () * ( )
id id id id

gd id

v w v c rand p x

c rand p x

= + −

+ −  .         (25) 

                            id id idx x v= + .                              (26) 

         

max min
max

max

w ww w k
k

−
= − ×

.        

(27) 

     Where idv is the velocity of every particle in d-
dimension, w is inertia weight. 1c and 2c are learning 
parameters, rand() is a random function in the range 
[0,1]. The flow chart of the PSO is depicted in Fig. 6 

 

Figure 6. Flow chart of the PSO method 

In this paper the fitness value is defined as the k-fold 
cross-validation accuracy in SVM. 

3.2 K-fold cross-validation 
In k-fold cross-validation [22], the original sample is 

randomly partitioned into k subsamples. Of the k 
subsamples, every single subsample is rotated as the test 
data and the remaining k-1 subsamples are used as 
training data. The cross-validation process is then 
repeated k times, with each of the k subsamples used 
exactly once as the validation data. The k results from the 
folds then can be averaged (or otherwise combined) to 
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produce a single estimation. The advantage of this 
method over repeated random sub-sampling is that all 
observations are used for both training and validation, 
and each observation is used for validation exactly once. 
10-fold cross-validation is commonly used. So in this 
paper, we are applying 10-fold cross-validation average 
accuracy as the PSO fitness value. Every particle in the 
flow chart of 10-fold cross-validation is depicted in Fig. 7. 

 

Figure 7. Flow chart of the 10-fold cross-validatio 

3.3 Parameter selection 
At the beginning of the algorithm we have 20 particles 

in a group and the initial value of position and velocity 
are randomly. To select parameters of SVM, every 
particle has two attributes ： the cost C and kernel 
parameters 2s  [12]. In this paper we adopt the advised 
20 particles in a group, the maximum evolution amount is 
100, the learning parameters 1 1.5c = , 2 1.7c = . The 

searching range of 2,C s is [0,100]. According to the 
PSO concept, more iterative times will have more chance 
to get the global best value. When w  is medium 
(0.8< w <1.2).  The PSO will have the best chance to find 
the global optimum but also take a moderate number of 
iterations [23, 24], so we set the inertia weight 
(0.8< w <1.2). From equation (27), with the iterative 
times addition the inertia weight will decrease. This 
method can let the PSO convergence speed up.  The flow 
chart of  PSO-SVM structure is depicted in Fig. 8. 

 

 
Figure 8. The proposed flow chart of  PSO-SVM 

structure 

4. SIMULATION RESULTS 
In this section we are simulating a practical 

application for PSO-SVM. We are considering BPSK 
symbol over linear, non-linear channel and QPSK over 
complex channel. According to the simulation 
performance, we can show that the method of this paper 
proposed PSO-SVM channel equalizer can realize the 
optimal Bayesian equalizer performance and the 
performance even can degrade nearly 1dB at SNR is 
increased. Due to the advantage of PSO such as simple 
algorithm structure and good convergence, so PSO 
provides an effective route for SVM to select parameters. 

The observed symbol sequence ( )y t is a stochastic 
process having a Gaussian density function with a mean 
equal to the given state and a variance equal to that of the 
noise. For the signal to noise ratio (SNR) is 10 dB, the 
channel output 1000 samples plotted in Fig. 9, Fig. 11 
and Fig. 13. The right hand of decision boundaries is 
class ‘+1’ and is marked by cross ‘x’ . The left hand of 
decision boundaries is class ‘-1’ and is marked by solid 
dots ‘・’. The circles are the desired state of the channel 
output without noise. 

• Example 1 BPSK symbol and linear channel 
The channel transfer function is defined by 

1( ) 0.5 1.0 , 2, 1H z z m τ−= + = =  
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Which is adopted in [1]. In Fig. 9 (a), the optimal 
Bayesian equalizer has the error number 19 in 1000 
samples and in Fig. 9 (b) PSO-SVM equalizer only has 
the error number 13 in 1000 samples. The PSO select 
parameters 2.2429C =  and 2 0.9497s = . 

 
(a) 

 
(b) 

Figure 9. Comparison of equalizer decision 
boundaries. Channel transfer function is 1

( ) 0.5 1.0H z z
−

= +  
, 2, 1m t= = . Constellation of 1000 channel output samples 
for SNR=10dB (a) Decision boundaries of  Bayesian 
equalizer (b) Decision boundaries of  PSO-SVM 

 
Figure 10. The comparison of performance in channel 

transfer function 
1

( ) 0.5 1.0H z z
−

= + , 2, 1m t= =  
The comparison of performance in channel transfer 

function 1( ) 0.5 1.0 , 2, 1H z z m τ−= + = =  is depicted in 
Fig. 10.  

 

• Example 2 BPSK symbol and linear channel 
The channel transfer function is defined by 

1 2( ) 1.0 0.8 0.5 , 2, 0H z z z m τ− −= + + = =  
Which is adopted in [1]. In Fig. 9 (a), the optimal 

Bayesian equalizer has the error number 54 in 1000 
samples and in Fig. 9 (b) PSO-SVM equalizer only has 
the error number 45 in 1000 samples. The PSO select 
parameters 0.8847C = and 2 0.7483s = . 

 
(a) 
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(b) 

Figure 11. Comparison of equalizer decision 
boundaries. Channel transfer function is 

1 2
( ) 1.0 0.8 0.5H z z z

− −
= + +  , 2, 0m t= = . Constellation of 1000 

channel output samples for SNR=10dB (a) Decision 
boundaries of  Bayesian equalizer (b) Decision 
boundaries of  PSO-SVM 

The comparison of performance in channel transfer 
function 1 2( ) 1.0 0.8 0.5 , 0H z z z t− −= + + = is depicted 
in Fig. 12.  

 
Figure 12. The comparison of performance in channel 

transfer function 1 2
( ) 1.0 0.8 0.5 , 0H z z z τ

− −
= + + =  

• Example 3 BPSK symbol and non-linear channel 

The channel transfer function is defined by 

2 3

ˆ( ) ( ) / ( ) ( ) 0.5 ( 1)
ˆ( ) ( ) 0.1 ( ) 0.2 ( ) , 2, 0
x t y z s z g t g t
y t x t x t x t m t

= = + −

= + −         = =  
Which is adopted in [1]. In Fig. 13 (a), the optimal 

Bayesian equalizer has the error number 30 in 1000 
samples and in Fig. 13 (b) PSO-SVM equalizer only has 
the error number 28 in 1000 samples. The PSO select 
parameters 0.7015C =  and 2 5s = . 

(a)
 

 
(b) 

Figure 13. Comparison of equalizer decision 
boundaries. Channel transfer function is 

ˆ( ) ( ) / ( ) ( ) 0.5 ( 1)

2 3
ˆ ( ) ( ) 0.1 ( ) 0.2 ( ) , 2, 0

x t y z s z g t g t

y t x t x t x t m t

= = + −

= + −         = =
. Constellation of 

1000 channel output samples for SNR=10dB (a) 
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Decision boundaries of  Bayesian equalizer (b) Decision 
boundaries of  PSO-SVM 

The comparison of performance in channel transfer 
functions 

2 3

ˆ( ) ( ) / ( ) ( ) 0.5 ( 1)
ˆ( ) ( ) 0.1 ( ) 0.2 ( ) , 2, 0
x t y z s z g t g t
y t x t x t x t m t

= = + −

= + −         = = is 
depicted in Fig. 14.  

 
Figure 14. The comparison of performance in channel 

transfer function
ˆ( ) ( ) / ( ) ( ) 0.5 ( 1)

2 3
ˆ ( ) ( ) 0.1 ( ) 0.2 ( ) , 0

x t y z s z g t g t

y t x t x t x t t

= = + −

= + −         =  
 

• Example 4 QPSK symbol and complex channel 
The channel transfer function is defined by 

1( ) (0.7409 0.7406 ) (1 (0.2 0.1 ) )H z i i z−= − × − −  
1(1 (0.6 0.3 ) )i z−× − − 1, 1m τ= =  

In the complex channel the decision boundaries is 
partitioned into real part and imaginary part. For the 
signal to noise ratio (SNR) is 15 dB, the same 1000 
samples is plotted in Fig. 15 In Fig. 15 (a), the optimal 
Bayesian equalizer has the error number 11 in 1000 
samples and in Fig. 15 (b). PSO-SVM equalizer only has 
the error number 6 in 1000 samples. The PSO select 
parameters in real boundaries 1 1.0844C = and 

2
1 1.0008s = , and in imaginary boundaries 

2 2.6815C =  and 2
2 1.2747s = . 

 
(a) 

 
(b) 

 
Figure 11. Comparison of equalizer decision 

boundaries. Channel transfer function 
is 1

( ) (0.7409 0.7406 ) (1 (0.2 0.1 ) )H z i i z
−

= − × − −
1

(1 (0.6 0.3 ) )i z
−

− −  
1, 1m t= = . Constellation of 1000 channel output samples 

for SNR=15dB (a) Decision boundaries of  Bayesian 
equalizer (b) Decision boundaries of  PSO-SVM 

1( ) (0.7409 0.7406 ) (1 (0.2 0.1 ) )H z i i z−= − × − − 1(1 (0.6 0.3 ) )i z−× − − 1, 1m τ= =  
The comparison of performance in channel transfer 

functions 
1( ) (0.7409 0.7406 ) (1 (0.2 0.1 ) )H z i i z−= − × − −

1(1 (0.6 0.3 ) )i z−× − − 1, 1m τ= = is depicted in Fig. 12. 
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Figure 12. The comparison of performance in channel 

transfer 
function 1( ) (0.7409 0.7406 ) (1 (0.2 0.1 ) )H z i i z−= − × − − 1(1 (0.6 0.3 ) )i z−× − −

1, 1m τ= =  
 

5. CONCLUSIONS 
This paper constructs the PSO-SVM equalizer on 

the linear, non-linear channel and complex channel 
successfully. The PSO-SVM equalizer simulations 
results have shown better than Bayesian equalizer.  Due 
to the advantage of PSO such as simple algorithm 
structure and good convergence, so PSO provides an 
effective route for SVM to select parameters. 
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