
Texture: a Granular Synthesizer for Real-Time Sound Generation

GIORGIO NOTTOLI1, GIOVANNI COSTANTINI1,2, ANDREA ANGELINI1, MASSIMILIANO
TODISCO1, DANIELE CASALI1

1Department of Electronic Engineering
University of Rome “Tor Vergata”

Via del Politecnico, 1 - 00133 Rome
ITALY

2Institute of Acoustics and Sensors “Orso Mario Corbino”
Via del Fosso del Cavaliere, 100 - 00133 Rome

ITALY
massimiliano.todisco@uniroma2.it

Abstract: - Sound synthesis is a subject where last development of electronics had made a significant boost.
Since it’s beginning, it developed on two main branches: on one side it tried to imitate other instruments, trying
to re-create sounds that already exist. On the other side, it followed an aim that we can consider someway
opposite: producing new sounds, exploring new possibilities, and allowing composers to follow new paradigms
in musical composition. Imitating other instruments can be useful for various reasons: the electronic version of
an instrument has often very lower cost with respect to the original one, and also lower weight. Besides, it can
have some advantages, as the capability to be played by a computer or to use headphones. Producing new
sounds, on the other hand, means often better fitting than any acoustic instrument with the idea of a musician.
The issue, in this case, is to give the musician the opportunity to easily control all necessary parameters, in
order to obtain the desired result. So, while on the first branch we can easily say that the better instruments are
the ones that imitate more closely real instruments, on the second branch the variety of produced timbres is
important, but it is almost useless if it is not accompanied by a tool to control a huge set of parameters in an
efficient way. In this paper, we focused on the production of new sounds, and we present a system called
Texture, that generate sounds in real-time. The current version of Texture is available both on Windows and on
OSX operating systems, both as a Virtual Studio Technology (VST) and as Audio Units (AU). The system is
based on the Granular Synthesis, which is a method that produces complex sounds by mixing together simple
elements called “grains”, but it extend the classical method with some new features that bring more richness
and variety to the sound. The software comes with a graphical interface and applications that allow to control
the synthesis parameters in an effective way, and that give the musician the opportunity to add expression to the
sound. This goal is reached by means of neural networks.

Key-Words: - Real-time systems, sound synthesis, granular synthesis, audio plugins, VST, AU.

1 Introduction
Electronic music has traditionally made use of
analog and, later, digital sound synthesizers which
was based on DSPs, because the power required for
real time sound synthesis at a reasonable quality was
initially not available on a computer [1]. In fact, to
obtain a real-time stereo signal at a sampling rate of
44.100 Hz, which is the standard quality of a CD,
we must be able to calculate and output the value of
a sample in a maximum time of 11 microseconds.
This goal was difficult to reach on a general-purpose
processor, both for limitations related to the power,
and because ordinary operating systems which run
on PCs are not designed to work for real-time
operations, i.e. it is not guaranteed that a given
process receive the control of the machine within a

so short time interval (typical task switch times for a
late 1980’s processor are roughly 20 microseconds).
This forces real-time audio applications to use large
buffers, which produces a latency that is often
unacceptable in a live execution. Audio boards
added some latency as well. All these issues
oriented sound engineers to the use of DSPs for
audio synthesis and processing systems [2,3].
In years 90’s some notable hardware systems for
real-time sound synthesis and elaboration have been
developed.
One of these is MARS (Musical Audio Research
Station), produced by IRIS, the research institute
owned by the Italian Bontempi-Farfisa group [4,5].
The system included a pipelined architecture, fully
programmable, 40 MHz system clock, and a

WSEAS TRANSACTIONS on SIGNAL PROCESSING
Giorgio Nottoli, Giovanni Costantini, Andrea
Angelini, Massimiliano Todisco, Daniele Casali

E-ISSN: 2224-3488 601 Volume 10, 2014

sampling rate of 39.0625 KHz up to 1 MHz. This
DSP power allowed it to implement in real-time 128
second order filters, 256 oscillators, 128 delay lines
and 2 independent 2048 points FFT.
Surely, a relevant system of years 90’s is the Kyma
[6], realized by the Symbolic Sound Corporation. It
is a graphical modular software sound design
environment accelerated by the software-
reconfigurable Capybara multi-processor sound
computation engine. The Capybara is a powerful
sound computation engine designed to work in
conjunction with the Kyma sound design
environment its innovative hardware and software
offerings.
Finally we can mention SAIPH [7], a system
developed in the University of Rome “Tor Vergata”
and intended for research in the field of real-time
sound synthesis and elaboration. It is made by two
different subsystems: Betel Orionis for the sound
synthesis [7], and Rigel for the sound processing
and spatialization [8]. The first one is based on the
dedicated DSP Orion, while the second one is based
on two fixed point DSPs of the 56300 family by
Motorola: the 56301 DSP and the 56302 DSP. Saiph
is intended for live performances in concert halls
and it is interfaced with a personal computer and
MIDI controls that allow the composer or performer
to interact with it.
In years 2000s the required computer power started
to be available on PCs, and software modules for
real-time audio synthesis overcame DSP based
systems. Advantages of a software system are not
limited to economic reasons, but also include a
higher versatility, programmability and easier
design.
In 1996 Steinberg developed Virtual Studio
Technology (VST) [9], a software interface that
integrates software audio synthesizer and effect
plugins. VST plugins became the standard for audio
software modules, and generally run within a digital
audio workstation (DAW), to provide additional
functionality. For Mac OS X, Audio Units (AU)
plugins are also used.
A software that we have to mention is Max/MSP
[10], developed in the mid-1980s as the Patcher
editor for the Macintosh. It was later ported to the
IRCAM Signal Processing Workstation for the
NeXT (and later SGI and Linux), and then licensed
to the Opcode Systems. Currently it is distributed by
Zicarelli's company Cycling '74. The software offers
a visual environment to design real-time audio
applications, called patches.
The system presented in this paper is an evolution of
the algorithms implemented in Betel Orionis, here
developed on a software system. It integrates

different kinds of graphical interfaces, and
capabilities to interact with other software. The
current version is available for Windows and OSX
operating systems, both as VST and AU modules
for Mac systems. An up to date version of Texture
can be downloaded from [11].
This paper is organized in four sections: in the first
one, we will discuss the synthesis method used by
this software, which is the Granular Synthesis, with
some historical considerations; in the second one,
we present our system, which is called Texture; in
the third section, we describe some real-time
applications where we use the software Max/MSP
and neural network based algorithms to control the
complex set of parameters for the sound generation.
Two kinds of applications are described: in the first
one the user moves a point on the screen and the
neural networks map the two-dimensional space
given by the position of the mouse to the n-
dimensional space of parameters for sound
synthesis; in the second application, a glove with
bend sensors is used to get the position of the hand,
and the neural network outputs a set of parameters
for sound synthesis. Even in this case, the task is
done by means of a mapping from m-dimensional
space to n-dimensional space. Both applications are
designed to give the musician the possibility to put
expressivity in the sound. Finally, the last section is
dedicated to the conclusion.

2 Granular Synthesis
"The grain is a particularly apt and flexible
representation for musical sound because it
combines time-domain information (starting time,
duration, envelope shape, waveform shape) with
frequency domain information (the frequency of the
waveform within the grain)" (Curtis Roads) [1]
Granular Synthesis [12] is a sound synthesis method
that allows to generate complex tones from the
combination and the mixing of simple micro
elements called grains.
Usually each grain has a time length range between
10 and 50 ms, and can be reproduced with different
speed, phase and volume; it is an acoustic event
with its own envelope and a very small duration,
near the limit of human auditory perception.
Increasing the playback rate from low to higher
speeds, the sound texture created will turn from a
noisy cloud of micro sounds to a distinct and
organic sharp tone; depending on the waveforms
and the envelopes of the grains it will be possible to
generate many different kind of timbres, employing
fixed waveforms (as sine or saw), dynamic ones (as
FM synthesis) or sampled waveforms.

WSEAS TRANSACTIONS on SIGNAL PROCESSING
Giorgio Nottoli, Giovanni Costantini, Andrea
Angelini, Massimiliano Todisco, Daniele Casali

E-ISSN: 2224-3488 602 Volume 10, 2014

The need to work with thousand of micro elements
requires a higher computational cost than other
synthesis methods historically more popular, like
subtractive synthesis, being one of the reason why
artists started to discover and explore granular
synthesis only in the last times.

2.1 Historical Notes
Even if granular synthesis can be considered an
innovative method whose evolution has hugely
grown with the use of computers and modern
recording techniques, its theoretical background can
be found in the human perception of the sound.
Dutch scientist Isaac Beeckman (1538-1637)
theorized that sound propagates through expansion
and contraction of air particles density, considering
sound formed by several globules and thinking
about a corpuscular theory of sound.
Since 1900, with quantum Mechanics studies of
Max Planck and a discontinuous theorization of the
light, similar theories were applied to sound from
Norbert Wiener, who noticed a relationship between
pitch and time; he observed that a note of 20Hz
played for less than 1/20th of a second would
produce no sound.
In 1946 Nobel-prize physicist Dennis Gabor
presented the article ‘Theory of Communication’,
which described a system to reproduce granular
synthesis. He theorized the grain as a rectangular
area in the domain of time and frequency, such that
decreasing the sound duration will produce an
increasing in the frequency domain.
One year later he wrote ‘Acoustical Quanta and the
Theory of Hearing’, discussing some issues with the
Fourier theory applied to common sounds with
variable frequency like the one of a siren; moreover
the Fourier theory needs sine waves with infinite
duration to generate sounds. He suggested to
apply quantum physics methods to sound signal,
reducing the Fourier method into cells in a
mathematical context.
He also built some machines with only mechanical
parts to demonstrate what he called kinematical
method of frequency conversion, in which a sound
film ran into a film projector at constant speed and
the light accessing to a photocell through slit was
converted to sound signal.
On the basis of another Gabor machine, that could
record and erase tape in a loop, the German
company Springer built and commercialized the
Tempophon, used in 1963 by Herbert Eimert for the
electronic music composition ‘Epitaph für Aikichi
Kuboyama’.
In 1960 Xenakis followed the Gabor study
integrating it with stochastic methods [13]; he

theorized that every sound is formed by a enormous
number of particles or elementary grains, organized
in what he called ‘Screens’ sequences.

2.2 Grain - Sound Content and Envelope
The grain sound content can be generated by every
kind of sound wave, windowed in time domain.
• Tapped Delay Line Granular Synthesis, is a

method in which samples from a realtime
stream are stored through delay lines. Each
grain will later be read by delay line with its
own time and playback rate

• Stored Sample Granular Synthesis, creates
each grain reading values from a wavetable

• Synthetic Grain Granular Synthesis, generates
totally synthetic sound textures, using
standard synthesis methods like oscillators or
FM synthesis

Each grain envelope can be controlled in duration
and amplitude by parameters like attack, decay,
sustain and release; moreover the grain should be
windowed in time domain inserting a fade in and a
fade out in order to avoid clicks when moving from
a grain to another.
Typical grain time duration is between 10 and 50ms;
in fact shorter grain will interfere with the
comprehensibility of the sound content creating a
texture with a strong noise component, on the
contrary longer grains will keep their timbral
identity.
Even if in the classical Granular Synthesis theory
usually will be considered only symmetrical grain
envelopes, a more flexible management of the
parameters will result in a more musical content,
where, for example, grains with slow attack and
quick decay will generate a reverse-playback effect.
In addition to the typical linear and curvilinear
envelopes, mathematician Gordon Monro of Sydney
University advanced the employment of a complex
envelope, created overlapping a sinusoidal envelope
with any linear or exponential wave.

2.3 Granular Synthesis Algorithms
We can find four typical historical approaches to
Granular Synthesis:

• Grids and Screens
• Pitch-Synchronous Granular Synthesis

(PSGS)
• Quasi-Synchronous Granular Synthesis

(QSGS)
• Asynchronous Granular Synthesis (AGS)

While the first three are synchronous algorithms,
where grains follow others with the same time or

WSEAS TRANSACTIONS on SIGNAL PROCESSING
Giorgio Nottoli, Giovanni Costantini, Andrea
Angelini, Massimiliano Todisco, Daniele Casali

E-ISSN: 2224-3488 603 Volume 10, 2014

with linear functions, in the fourth one the grains
order is programmed with probabilistic calculations.
Grids and Screens method was developed by Iannis
Xenakis, who organized the grains sequences with
screens that described grains frequencies and
amplitudes at a certain time and with a certain
density.
Pitch-Synchronous Granular Synthesis (PSGS) was
theorized by De Poli and Piccialli to create pitched
sounds with one or more formants in their spectrum,
using FIR filters (finite impulse response) to
synthesize grains on the basis of their spectrum
analysis.
Quasi-Synchronous Granular Synthesis (QSGS)
generates a flow of grains with variable delay time.
When delay time is the same for each grain, flow
envelope can be approximated to a periodic function
and QSGS can be analyzed as an AM Synthesis in
which grain waveform is the carrier and grain
envelope is the modulator.
With QSGS is also possible to recreate sound
textures similar to Formant-Wave Synthesis (FOF),
simulating human voice resonances or acoustic
instruments. Moreover Barry Truax has
experimented that working with irregular delay time
the formant structures will distribute themselves
around the carrier frequency, thickening the
resulting sound.
With Asynchronous Granular Synthesis (AGS) the
grains structure is managed in ‘sound clouds’, on
the basis of probabilistic values for parameters like
start time and duration of the cloud, duration of the
grain, grain density, cloud frequencies width, cloud
envelope and grains waveforms; the dynamic nature
of the clouds allow to generate very complex and
organic sounds.

2.4 The Betel Orionis system
Betel Orionis [7] is the module of SAIPH system
dedicated to sound synthesis. It was developed by
Giorgio Nottoli and Giovanni Costantini in 1998,
and was born from the collaboration between
University of Rome ‘Tor Vergata’ and Frosinone
Conservatory.
Betel Orionis is based on the ORION DSP, designed
by Giorgio Nottoli in 1991 to implement the main
sound synthesis algorithms used in computer music.
ORION is composed by four arithmetic-logic units,
three RAM and three I/O units and it is provided
with micro instructions to generate audio primitives.
Executing music oriented digital signal processing
algorithms, the computing work is distributed
among the four ALUs to maximize parallelism
while the data transfer work takes advantage of the
three data rams structure.

The project of Betel Orionis is based on a
multiprocessor architecture and implements all the
most important algorithms for real-time sound
synthesis with a capacity of eight stereo output
audio channels. In particular, each channel is
controlled by an Orion DSP driven in real-time by a
host personal computer. Each Orion DSP can work
alone or it can communicate with other Orions
exchanging samples via a serial link. This feature
allows the user to choose the best configuration for
his own needs.
The whole system can be totally controlled through
a three level architecture. At user interface level we
can control multiple sound events together setting
few and simple parameters in a gestural way (with
computer keyboard, mouse, knobs and MIDI
controllers). At control level we can take advantage
of deterministic and stochastic methods
implemented by a host computer, and at sound
generation level we can use sound synthesis
algorithms inside Orion DSP micro programs.

3 Texture
Texture is an instrument to perform Asynchronous
Granular Synthesis based upon an algorithm
developed by Giorgio Nottoli, and is fully
implemented with programming language C++.
It generates a grains’ flow in which the way each
grain follows the other depends on probabilistic
parameters such as grain density (attack/sec),
overlapping, synchronism and fade of each grain.
The spectrum generated by the synthesis could be
harmonic, expanded or contracted according to the
value of frequency exponent parameter; the result
will be a sound texture that can change from noisy
fragmented sounds, to metallic and tuneless sounds
such as bells, finally to harmonic sounds similar to
strings or choirs.
Texture is available both as VST or Audio Unit
instrument, and each interface’s parameter is
automated and can be controlled by the host; some
factory presets are implemented in a combo box on
theupper-left side of the interface, but user can save
his own sound inside the host if needed.
An advanced and a basic interface are provided for
expert users or casual ones; we’re going to see the
details in the following chapters.
The main panel, see Fig. 1, is on the upper-middle
side of the interface and it contains a master volume,
a sustain button to hold the root note, a graph button
to hide/show the spectrum that we’re going to
generate, and a polyphony button to switch between
monophonic and polyphonic mode.
In the polyphonic mode, we have a queue of 64 keys
on which the partial harmonics of the spectrum will

WSEAS TRANSACTIONS on SIGNAL PROCESSING
Giorgio Nottoli, Giovanni Costantini, Andrea
Angelini, Massimiliano Todisco, Daniele Casali

E-ISSN: 2224-3488 604 Volume 10, 2014

be distributed; the queue will be cleaned when user
stop pressing any midi note.
Frequency deviation knob affects the harmonic
distribution of the spectrum around the frequency
root (midi note pressed on the piano keyboard); it
can change between 0 and 2500 cents of frequency.
The first partial and the number of partials knobs
affect respectively the first partial and the number of
partials in the generated spectrum and their values
can change between 1 and 128.
Finally frequency exponent [or Steve McAdams
exponent] knob can vary between 0 and 2, and it
generates a harmonic spectrum when its value is 1, a
contracted spectrum if the value < 1, or an expanded
spectrum when the value > 1.
Waveform Panel defines the sound content of the
grains.
User can set the number of oscillators used to
generate the sound texture, choosing between 32,
63, 128 or 256 active oscillators.
Waveform knob will set the harmonic number of the
precomputed waves; it can change between 1
(simple sine wave) and 32 harmonics. The
amplitudes of each harmonic decrease on 1/n order,
similar to the behavior of a saw wave.
The parameters in the Micropoly panel will affect
the way each grain follow in time the other.

They are all probabilistic values, which mean each
parameter sets the probability that the time event
happens.
Density knob affects the number of attacks per
second, and its value can change between 1 and
1000.
Overlapping knob sets on each instant the
probability that the grain should continue to play, or
it should start the release state of his envelope.
Finally the change knob affects the probability that
the following grain should change his root
frequency, so that in polyphonic mode it sets the
rate each voice starts playing his sound.
Envelope panel affects the grain’s envelope. Inside
the panel user can see two joystick controller, the
first one controls the attack and decay time of each
grain (they can change between 1 and 1000 ms), and
the second one sets the sync and fade parameters.
The sync parameter changes the probability that the
grain starts playing together with the previous one,
and the fade parameter affects the probability that a
crossfade occurs between grains.
Then we have four sliders to control the ADSR of
the note played; attack, decay and release are rates,
and can change between 1/40 of second and 40
seconds, on the other hand sustain is an amplitude,
and it can change between 0 and 1.

Figure 1: Main panel

WSEAS TRANSACTIONS on SIGNAL PROCESSING
Giorgio Nottoli, Giovanni Costantini, Andrea
Angelini, Massimiliano Todisco, Daniele Casali

E-ISSN: 2224-3488 605 Volume 10, 2014

Then user can control the amplitude exponent,
which can change between 0 and 2, to modify the
amplitude of the spectrum’s partials; when the value
is 0 the results is a plan spectrum (with the same
amplitude for each partial), when the value = 1 the
amplitudes will be decreasing with the order of 1/n,
and when the value >1 the higher partials will fade.
Finally amplitude deviation randomizes the
amplitude of each partial.
Assign panel contains four buttons in order to assign
the current sound we’re playing to the basic
interface.
Each of the four preset corresponds to one of the
four vertex of the pad in the basic interface.
The basic interface, see Fig. 2, gives casual and not
expert users a tool to play sound textures generated
by granular synthesis.
On the four vertex of the preset pad (the red
rectangle) we have pre loaded four factory sounds,
and user can move the joystick in every position
inside the rectangle to mix the preset and create a
unique combination of the four sounds.
User can also assign to each vertex a sound
specifically created in the advanced interface, by
pressing the four buttons in the assign panel. On the

contrary user can create a sound texture by moving
the joystick of the preset pad, then he can switch to
the advanced interface to change the detailed
parameters of the sound he has just chosen.

3.1 Technologies and development
environment
Audio Units are audio plugins developed using
Apple Core Audio technology, integrated into Mac
OSX operating system. Audio Unit SDK is written
in Objective-C language and its native development
environment is XCode.
To develop Texture we have taken advantage of
JUCE audio [14] libraries, that is a cross-platform
toolkit written in C++ useful to create stand alone
applications and audio plugins. It offers classes to
manage MIDI, read and write audio files, draw
waveforms, a Synthesizer class to create polyphonic
synths and, mainly, wrappers to build VST
(Windows, Mac OSX, Linux), AU (Mac OSX) and
RTAS (Windows and Mac OSX) using the same
source code. With JUCE is also possible to develop,
with little modifications to the source code, mobile
apps for iOS (iPhone & iPad).

Figure 2: Basic interface

WSEAS TRANSACTIONS on SIGNAL PROCESSING
Giorgio Nottoli, Giovanni Costantini, Andrea
Angelini, Massimiliano Todisco, Daniele Casali

E-ISSN: 2224-3488 606 Volume 10, 2014

Finally, to build VST audio plugins we have to
include into our project the Steinberg SDK, that will
provide all the classes to manage the audio buffers
and the plugin interface.

4 Real-time musical application
We tested our Texture Granular Synth by writing a
real-time musical performance [15-19]. The musical
instrument that we propose has been developed by
using the Max/MSP [11] environment. It is
constituted by three components: the control unit,
the mapping unit and the Texture Granular Synth.
The control unit allows the performer to control two
parameters. Fig. 3 shows the Max/MSP patch that
constitutes the control unit. Particularly, performer
draws lines and curves in a bi-dimensional box, by
clicking and moving mouse inside the patch itself.
The control unit patch is constituted by the lcd
Max/MSP object that returns x, y mouse space
coordinates.

The evident points in the Fig. 3 represent the
input/output patterns of the training set.
In detail, the two x, y control parameters don’t
influence directly the parameters that rule the
behavior of the sound generators, but they are pre-
processed by the mapping algorithm.
The implementation of musical expressivity is
accomplished once we define the correspondence
between the two x, y control parameters and the four
synthesis parameters related to frequency panel
(Fig. 1), that is to say, once we define the right
mapping.
The chosen mapping strategies, by means of which
the synthesis parameters are controlled, all influence
the way the musician approaches the composition
process [21-25].
In Fig. 4, the scheme of the virtual musical
instrument is shown.

Figure 3: The control unit

WSEAS TRANSACTIONS on SIGNAL PROCESSING
Giorgio Nottoli, Giovanni Costantini, Andrea
Angelini, Massimiliano Todisco, Daniele Casali

E-ISSN: 2224-3488 607 Volume 10, 2014

Figur 4: The virtual musical instrument scheme

4.1 Musical expressivity implementation
To investigate the influence that mapping has on
musical expression, let us consider some aspects of
Information Theory and Perception Theory [25]:
• the quality of a message, in terms of the

information it conveys, increases with its
originality, that is with its unpredictability;

• information is not the same as the meaning it
conveys: a maximum information message
doesn’t make sense, if any listener that’s able
to decode it doesn’t exist.

A perceptual paradox [26] illustrating how an
analytic model fails in predicting what we perceive
from what our senses transduce is the following:
both maximum predictability and maximum

unpredictability imply minimum information or
even no information at all.
A neural network approach [27] is chosen to exceed
the perceptual limits above mentioned.
Let’s assume the following concepts:

1. a predictable musical message be associated
to an a priori known functional relation
between the surface R2 and the hyperspaces
R4, that is to say, between the set of all the 2
inputs and the set of all the 4 synthesis
parameters;

2. an unpredictable musical message be
associated to a non linear and a priori
unknown correspondence between R2 and R4.

Figure 5: A synthesis parameter as a function of the input x and y.

WSEAS TRANSACTIONS on SIGNAL PROCESSING
Giorgio Nottoli, Giovanni Costantini, Andrea
Angelini, Massimiliano Todisco, Daniele Casali

E-ISSN: 2224-3488 608 Volume 10, 2014

A composer can easily follow the above
assumptions by making use of a FFBPNN trained as
follows:

1. he fixes a point in the 2-dimensional x, y
space and he links it to a desired
configuration of the m synthesis parameters;

2. he repeats D times step 1., so as to have D 2-
to-4 examples at his disposal; they constitute
the training set for the mapping unit;

3. he chooses the neural network structure [27],
that is to say the number of hidden neurons to
use; then, he trains the neural network.

4. he explores the 2-dimensional x, y input
space by moving through known and
unknown points, with the aim of composing
his piece of music.

In Fig. 5 the slope of a synthesis parameter returned
by the output of the neural network, as a function of
the input x, y coordinates, is shown. The evident
points in the graph represent the input/output
patterns of our training set.

5 Conclusion

In this paper we presented a software module
that performs real-time sound synthesis by means of
the Granular Synthesis method. The software allows
to control the frequency deviation, the number of
partials, the Steve McAdams exponent, as well as
the probabilistic distribution of the grains, and their
values of attack, delay, sustain and release, allowing
a huge variety of possible sound textures.

 The system is designed to be considered as a
virtual musical instrument for composing and
performing expressive musical sound. We direct
attention to common musical aesthetics as a
determinant factor in musical expressivity.

The system is available as a VST or AU module,
so it can be integrated with almost every audio
software both for Window and for Mac. We also
proposed some applications which run on
Max/MSP: on the first one, the interface is formed
by a control unit that supplies x and y coordinates of
points in a bi-dimensional box, and by a mapping
unit, based on a FFBPNN, that processes those
points, in order to provide suitable relationships
between input mouse movements and sound
synthesis parameters. The second interface is a
glove with bend sensors, which allows to control the
system by means of hand movements.

The experiences made by working with our
interfaces have shown that the mapping strategy is a
key element in providing musical sounds with
expressivity.

References:
[1] Roads C., The computer music tutorial, The

MIT Press, 1996.
[2] Bosi M., Goldberg R. E., Introduction to

Digital Audio Coding and Standards (The
Springer International Series in Engineering
and Computer Science), Springer, 2003.

[3] Fletcher N., H., Rossing T., D., The Physics of
Musical Instruments, Springer, 2005.

[4] S. Cavaliere, G. Di Giugno, E. Guarino,
"MARS: The X20 device and SM1000",
Proceedings of the ICMC, pp. 348-351, S. Jose,
1992.

[5] P. Andrenacci, E. Favreau, N. Larosa, A.
Prestigiacomo, S. Sapir, "MARS:
RT20M/EDIT20 - Development tools and
graphical user interface for sound generation
board", Proceedings of the ICMC, pp. 340-343,
S. Jose, 1992.

[6] Kyma workstation, documentation available at
http://www.symbolicsound.com/cgi-
bin/bin/view/Products/WebHome

[7] Nottoli G., Salerno M., Costantini G., A new
interactive performance system for real-time
sound synthesis. In: Proc. of International
Computer Music Conference '98. Ann Abor,
Michigan, USA, October 1-6, 1998, p. 33-36.

[8] Nottoli G., Salerno M., Costantini G., Sabatini
A., A multiprocessing system for real-time
sound processing and spatialization. In: Proc.
of EURASIP Conference for Multimedia
Communications and Services '99. June 24-26,
1999, Kraków, Poland.

[9] Steinberg VST Audio Plug-Ins SDK, 3rd party
developer support site, available at
http://www.steinberg.net/324_1.html

[10] Cycling74 Max/MSP documentation, available
at http://www.cycling74.com/products/maxmsp

[11] Texture Granular Synth 3.1 download, at
http://www.mastersonicarts.uniroma2.it/t_resea
rch/texture.html

[12] Roads C., Travis Pope S., Piccialli A., De Poli
G., Musical Signal Processing (Studies on New
Music Research, 2), Routledge, 1997.

[13] Xenakis I., Formalized Music, thought and
mathematics in composition, Harmonologia
series no. 6, Pendragon press Stuyvesant NY,
1965.

[14] JUSE, documentation available on the web at
http://www.juce.com/about-juce

WSEAS TRANSACTIONS on SIGNAL PROCESSING
Giorgio Nottoli, Giovanni Costantini, Andrea
Angelini, Massimiliano Todisco, Daniele Casali

E-ISSN: 2224-3488 609 Volume 10, 2014

[15] Bongers, B. 2000, Physical Interfaces in the
Electronic Arts. Interaction Theory and
Interfacing Techniques for Real-time
Performance, In M. Wanderley and M. Battier,
eds. Trends in Gestural Control of Music.
Ircam - Centre Pompidou.

[16] Costantini G., Todisco M., Carota M.,
Maccioni G., Giansanti D., A New Adaptive
Sensor Interface for Composing and
Performing Music in Real Time. In: Proc. of
IWASI '07 (IEEE International Workshop on
Advances in Sensors and Interfaces). Bari,
Italy, June 26-27, 2007, p. 106-110

[17] Costantini G., Todisco M., Carota M., Casali
D., A new physical sensor based on neural
network for musical expressivity. In: Proc. of
13th Italian Conference Sensors and
Microsystems. Rome, Italy, February 19-21,
2008, p. 281-288

[18] Orio, N. 1999, A Model for Human-Computer
Interaction Based on the Recognition of
Musical Gestures, Proceedings of the 1999
IEEE International Conference on Systems,
Man and Cybernetics, pp. 333-338.

[19] Costantini G., Todisco M., Saggio G., A
Cybernetic Glove to Control a Real Time
Granular Sound Synthesis Process. In: Proc. of
IMCIC International Multi-Conference on
Complexity, Informatics and Cybernetics.
Orlando, Florida, USA, April 6-9, 2010

[20] Odowichuk G., Trail S., Driessen P., Nie W.,
Page W., Sensor fusion: Towards a fully
expressive 3D music control interface. IEEE
Pacific Rim Conference on Communications,
Computers and Signal Processing (PacRim),
2011.

[21] Costantini G., Todisco M., Saggio G., A
Wireless Glove to Perform Music in Real
Time. In: Proc. of WSEAS International
Conference on Applied Electromagnetics,
Wireless and Optical Communications. Penang,
Malaysia, March 23-25, 2010, p. 49-54

[22] Aramaki M., Kronland-Martinet R., Ystad S.,
Perceptual Control of Environmental Sound
Synthesis Speech, Sound and Music
Processing: Embracing Research in India
Lecture Notes in Computer Science Volume
7172, 2012.

[23] Costantini G., Saggio G., Todisco M., A Glove
Based Adaptive Sensor Interface for Live
Musical Performances. In: SENSORDEVICES
International Conference on Sensor Device
Technologies and Applications

[24] Saggio G., Giannini F., Todisco M., Costantini
G., A Data Glove Based Sensor Interface to
Expressively Control Musical Processes. In:
4th IWASI IEEE International Workshop on
Advances in Sensors and Interfaces.

[25] Abraham Moles, Information Theory and
Aesthetic Perception, University Of Illinois
Press (1969).

[26] Rudolf Arnheim, Entropy and Art: An Essay
on Disorder and Order, University of California
Press (January 29, 1974).

[27] Hertz J., A. Krogh & R.G. Palmer, Introduction
to the theory of neural computation, Addison-
Wesley Publishing Company, Reading
Massachusetts, 1991.

WSEAS TRANSACTIONS on SIGNAL PROCESSING
Giorgio Nottoli, Giovanni Costantini, Andrea
Angelini, Massimiliano Todisco, Daniele Casali

E-ISSN: 2224-3488 610 Volume 10, 2014

