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Abstract: - Sound synthesis is a subject where last development of electronics had made a significant boost. 
Since it’s beginning, it developed on two main branches: on one side it tried to imitate other instruments, trying 
to re-create sounds that already exist. On the other side, it followed an aim that we can consider someway 
opposite: producing new sounds, exploring new possibilities, and allowing composers to follow new paradigms 
in musical composition. Imitating other instruments can be useful for various reasons: the electronic version of 
an instrument has often very lower cost with respect to the original one, and also lower weight. Besides, it can 
have some advantages, as the capability to be played by a computer or to use headphones. Producing new 
sounds, on the other hand, means often better fitting than any acoustic instrument with the idea of a musician. 
The issue, in this case, is to give the musician the opportunity to easily control all necessary parameters, in 
order to obtain the desired result. So, while on the first branch we can easily say that the better instruments are 
the ones that imitate more closely real instruments, on the second branch the variety of produced timbres is 
important, but it is almost useless if it is not accompanied by a tool to control a huge set of parameters in an 
efficient way. In this paper, we focused on the production of new sounds, and we present a system called 
Texture, that generate sounds in real-time. The current version of Texture is available both on Windows and on 
OSX operating systems, both as a Virtual Studio Technology (VST) and as Audio Units (AU). The system is 
based on the Granular Synthesis, which is a method that produces complex sounds by mixing together simple 
elements called “grains”, but it extend the classical method with some new features that bring more richness 
and variety to the sound. The software comes with a graphical interface and applications that allow to control 
the synthesis parameters in an effective way, and that give the musician the opportunity to add expression to the 
sound. This goal is reached by means of neural networks. 
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1 Introduction 
Electronic music has traditionally made use of 
analog and, later, digital sound synthesizers which 
was based on DSPs, because the power required for 
real time sound synthesis at a reasonable quality was 
initially not available on a computer [1]. In fact, to 
obtain a real-time stereo signal at a sampling rate of 
44.100 Hz, which is the standard quality of a CD, 
we must be able to calculate and output the value of 
a sample in a maximum time of 11 microseconds. 
This goal was difficult to reach on a general-purpose 
processor, both for limitations related to the power, 
and because ordinary operating systems which run 
on PCs are not designed to work for real-time 
operations, i.e. it is not guaranteed that a given 
process receive the control of the machine within a 

so short time interval (typical task switch times for a 
late 1980’s processor are roughly 20 microseconds). 
This forces real-time audio applications to use large 
buffers, which produces a latency that is often 
unacceptable in a live execution. Audio boards 
added some latency as well. All these issues 
oriented sound engineers to the use of DSPs for 
audio synthesis and processing systems [2,3]. 
In years 90’s some notable hardware systems for 
real-time sound synthesis and elaboration have been 
developed. 
One of these is MARS (Musical Audio Research 
Station), produced by IRIS, the research institute 
owned by the Italian Bontempi-Farfisa group [4,5]. 
The system included a pipelined architecture, fully 
programmable, 40 MHz system clock, and a 

WSEAS TRANSACTIONS on SIGNAL PROCESSING
Giorgio Nottoli, Giovanni Costantini, Andrea 
Angelini, Massimiliano Todisco, Daniele Casali

E-ISSN: 2224-3488 601 Volume 10, 2014



sampling rate of 39.0625 KHz up to 1 MHz. This 
DSP power allowed it to implement in real-time 128 
second order filters, 256 oscillators, 128 delay lines 
and 2 independent 2048 points FFT. 
Surely, a relevant system of years 90’s is the Kyma 
[6], realized by the Symbolic Sound Corporation. It 
is a graphical modular software sound design 
environment accelerated by the software-
reconfigurable Capybara multi-processor sound 
computation engine. The Capybara is a powerful 
sound computation engine designed to work in 
conjunction with the Kyma sound design 
environment its innovative hardware and software 
offerings. 
Finally we can mention SAIPH [7], a system 
developed in the University of Rome “Tor Vergata” 
and intended for research in the field of real-time 
sound synthesis and elaboration. It is made by two 
different subsystems: Betel Orionis for the sound 
synthesis [7], and Rigel for the sound processing 
and spatialization [8]. The first one is based on the 
dedicated DSP Orion, while the second one is based 
on two fixed point DSPs of the 56300 family by 
Motorola: the 56301 DSP and the 56302 DSP. Saiph 
is intended for live performances in concert halls 
and it is interfaced with a personal computer and 
MIDI controls that allow the composer or performer 
to interact with it. 
In years 2000s the required computer power started 
to be available on PCs, and software modules for 
real-time audio synthesis overcame DSP based 
systems. Advantages of a software system are not 
limited to economic reasons, but also include a 
higher versatility, programmability and easier 
design. 
In 1996 Steinberg developed Virtual Studio 
Technology (VST) [9], a software interface that 
integrates software audio synthesizer and effect 
plugins. VST plugins became the standard for audio 
software modules, and generally run within a digital 
audio workstation (DAW), to provide additional 
functionality. For Mac OS X, Audio Units (AU) 
plugins are also used. 
A software that we have to mention is Max/MSP 
[10], developed in the mid-1980s as the Patcher 
editor for the Macintosh. It was later ported to the 
IRCAM Signal Processing Workstation for the 
NeXT (and later SGI and Linux), and then licensed 
to the Opcode Systems. Currently it is distributed by 
Zicarelli's company Cycling '74. The software offers 
a visual environment to design real-time audio 
applications, called patches. 
The system presented in this paper is an evolution of 
the algorithms implemented in Betel Orionis, here 
developed on a software system. It integrates 

different kinds of graphical interfaces, and 
capabilities to interact with other software. The 
current version is available for Windows and OSX 
operating systems, both as VST and AU modules 
for Mac systems. An up to date version of Texture 
can be downloaded from [11]. 
This paper is organized in four sections: in the first 
one, we will discuss the synthesis method used by 
this software, which is the Granular Synthesis, with 
some historical considerations; in the second one, 
we present our system, which is called Texture; in 
the third section, we describe some real-time 
applications where we use the software Max/MSP 
and neural network based algorithms to control the 
complex set of parameters for the sound generation. 
Two kinds of applications are described: in the first 
one the user moves a point on the screen and the 
neural networks map the two-dimensional space 
given by the position of the mouse to the n-
dimensional space of parameters for sound 
synthesis; in the second application, a glove with 
bend sensors is used to get the position of the hand, 
and the neural network outputs a set of parameters 
for sound synthesis. Even in this case, the task is 
done by means of a mapping from m-dimensional 
space to n-dimensional space. Both applications are 
designed to give the musician the possibility to put 
expressivity in the sound. Finally, the last section is 
dedicated to the conclusion. 
 
2 Granular Synthesis 
"The grain is a particularly apt and flexible 
representation for musical sound because it 
combines time-domain information (starting time, 
duration, envelope shape, waveform shape) with 
frequency domain information (the frequency of the 
waveform within the grain)" (Curtis Roads) [1] 
Granular Synthesis [12] is a sound synthesis method 
that allows to generate complex tones from the 
combination and the mixing of simple micro 
elements called grains. 
Usually each grain has a time length range between 
10 and 50 ms, and can be reproduced with different 
speed, phase and volume; it is an acoustic event 
with its own envelope and a very small duration, 
near the limit of human auditory perception. 
Increasing the playback rate from low to higher 
speeds, the sound texture created will turn from a 
noisy cloud of micro sounds to a distinct and 
organic sharp tone; depending on the waveforms 
and the envelopes of the grains it will be possible to 
generate many different kind of timbres, employing 
fixed waveforms (as sine or saw), dynamic ones (as 
FM synthesis) or sampled waveforms. 
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The need to work with thousand of micro elements 
requires a higher computational cost than other 
synthesis methods historically more popular, like 
subtractive synthesis, being one of the reason why 
artists started to discover and explore granular 
synthesis only in the last times. 
 
2.1 Historical Notes 
Even if granular synthesis can be considered an 
innovative method whose evolution has hugely 
grown with the use of computers and modern 
recording techniques, its theoretical background can 
be found in the human perception of the sound. 
Dutch scientist Isaac Beeckman (1538-1637) 
theorized that sound propagates through expansion 
and contraction of air particles density, considering 
sound formed by several globules and thinking 
about a corpuscular theory of sound. 
Since 1900, with quantum Mechanics studies of 
Max Planck and a discontinuous theorization of the 
light, similar theories were applied to sound from 
Norbert Wiener, who noticed a relationship between 
pitch and time; he observed that a note of 20Hz 
played for less than 1/20th of a second would 
produce no sound. 
In 1946 Nobel-prize physicist Dennis Gabor 
presented the article ‘Theory of Communication’, 
which described a system to reproduce granular 
synthesis. He theorized the grain as a rectangular 
area in the domain of time and frequency, such that 
decreasing the sound duration will produce an 
increasing in the frequency domain. 
One year later he wrote ‘Acoustical Quanta and the 
Theory of Hearing’, discussing some issues with the 
Fourier theory applied to common sounds with 
variable frequency like the one of a siren; moreover 
the Fourier theory needs sine waves with infinite 
duration to generate   sounds.   He   suggested   to 
apply quantum physics methods to sound signal, 
reducing the Fourier method into cells in a 
mathematical context. 
He also built some machines with only mechanical 
parts to demonstrate what he called kinematical 
method of frequency conversion, in which a sound 
film ran into a film projector at constant speed and 
the light accessing to a photocell through slit was 
converted to sound signal. 
On the basis of another Gabor machine, that could 
record and erase tape in a loop, the German 
company Springer built and commercialized the 
Tempophon, used in 1963 by Herbert Eimert for the 
electronic music composition ‘Epitaph für Aikichi 
Kuboyama’. 
In 1960 Xenakis followed the Gabor study 
integrating it with stochastic methods [13]; he 

theorized that every sound is formed by a enormous 
number of particles or elementary grains, organized 
in what he called ‘Screens’ sequences. 
 
2.2 Grain - Sound Content and Envelope 
The grain sound content can be generated by every 
kind of sound wave, windowed in time domain. 
• Tapped Delay Line Granular Synthesis, is a 

method in which samples from a realtime 
stream are stored through delay lines.  Each 
grain will later be read by delay line with its 
own time and playback rate 

• Stored Sample Granular Synthesis, creates 
each grain reading values from a wavetable 

• Synthetic Grain Granular Synthesis, generates 
totally synthetic sound textures, using 
standard synthesis methods like oscillators or 
FM synthesis 

Each grain envelope can be controlled in duration   
and   amplitude   by   parameters   like attack, decay, 
sustain and release; moreover the grain should be 
windowed in time domain inserting a fade in and a 
fade out in order to avoid clicks when moving from 
a grain to another. 
Typical grain time duration is between 10 and 50ms; 
in fact shorter grain will interfere with the 
comprehensibility of the sound content creating a 
texture with a strong noise component, on the 
contrary longer grains will keep their timbral 
identity. 
Even if in the classical Granular Synthesis theory 
usually will be considered only symmetrical grain 
envelopes, a more flexible management of the 
parameters will result in a more musical content, 
where, for example, grains with slow attack and 
quick decay will generate a reverse-playback effect. 
In addition to the typical linear and curvilinear 
envelopes, mathematician Gordon Monro of Sydney 
University advanced the employment of a complex 
envelope, created overlapping a sinusoidal envelope 
with any linear or exponential wave. 
 
2.3 Granular Synthesis Algorithms 
We can find four typical historical approaches to 
Granular Synthesis: 

• Grids and Screens 
• Pitch-Synchronous   Granular    Synthesis 

(PSGS) 
• Quasi-Synchronous   Granular   Synthesis 

(QSGS) 
• Asynchronous Granular Synthesis (AGS) 

While the first three are synchronous algorithms, 
where grains follow others with the same time or 
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with linear functions, in the fourth one the grains 
order is programmed with probabilistic calculations. 
Grids and Screens method was developed by Iannis   
Xenakis, who organized the grains sequences with 
screens that described grains frequencies and 
amplitudes at a certain time and with a certain 
density. 
Pitch-Synchronous Granular Synthesis (PSGS) was 
theorized by De Poli and Piccialli to create pitched 
sounds with one or more formants in their spectrum, 
using FIR filters (finite impulse response) to 
synthesize grains on the basis of their spectrum 
analysis. 
Quasi-Synchronous Granular Synthesis (QSGS) 
generates a flow of grains with variable delay time. 
When delay time is the same for each grain, flow 
envelope can be approximated to a periodic function 
and QSGS can be analyzed as an AM Synthesis in 
which grain waveform is the carrier and grain 
envelope is the modulator. 
With QSGS is also possible to recreate sound 
textures similar to Formant-Wave Synthesis (FOF), 
simulating human voice resonances or acoustic 
instruments. Moreover Barry Truax has 
experimented that working with irregular delay time 
the formant structures will distribute themselves 
around the carrier frequency, thickening the 
resulting sound. 
With Asynchronous Granular Synthesis (AGS) the 
grains structure is managed in ‘sound clouds’, on 
the basis of probabilistic values for parameters like 
start time and duration of the cloud, duration of the 
grain, grain density, cloud frequencies width, cloud 
envelope and grains waveforms; the dynamic nature 
of the clouds allow to generate very complex and 
organic sounds. 
 
2.4 The Betel Orionis system 
Betel Orionis [7] is the module of SAIPH system 
dedicated to sound synthesis. It was developed by 
Giorgio Nottoli and Giovanni Costantini in 1998, 
and was born from the collaboration between 
University of Rome ‘Tor Vergata’ and Frosinone 
Conservatory. 
Betel Orionis is based on the ORION DSP, designed 
by Giorgio Nottoli in 1991 to implement the main 
sound synthesis algorithms used in computer music. 
ORION is composed by four arithmetic-logic units, 
three RAM and three I/O units and it is provided 
with micro instructions to generate audio primitives. 
Executing music oriented digital signal processing 
algorithms, the computing work is distributed 
among the four ALUs to maximize parallelism 
while the data transfer work takes advantage of the 
three data rams structure. 

The project of Betel Orionis is based on a 
multiprocessor architecture and implements all the 
most important algorithms for real-time sound 
synthesis with a capacity of eight stereo output 
audio channels. In particular, each channel is 
controlled by an Orion DSP driven in real-time by a 
host personal computer. Each Orion DSP can work 
alone or it can communicate with other Orions 
exchanging samples via a serial link. This feature 
allows the user to choose the best configuration for 
his own needs. 
The whole system can be totally controlled through 
a three level architecture. At user interface level we 
can control multiple sound events together setting 
few and simple parameters in a gestural way (with 
computer keyboard, mouse, knobs and MIDI 
controllers). At control level we can take advantage 
of deterministic and stochastic methods 
implemented by a host computer, and at sound 
generation level we can use sound synthesis 
algorithms inside Orion DSP micro programs. 
 
3 Texture 
Texture is an instrument to perform Asynchronous 
Granular Synthesis based upon an algorithm 
developed by Giorgio Nottoli, and is fully 
implemented with programming language C++. 
It generates a grains’ flow in which the way each 
grain follows the other depends on probabilistic 
parameters such as grain density (attack/sec), 
overlapping, synchronism and fade of each grain. 
The spectrum generated by the synthesis could be 
harmonic, expanded or contracted according to the 
value of frequency exponent parameter; the result 
will be a sound texture that can change from noisy 
fragmented sounds, to metallic and tuneless sounds 
such as bells, finally to harmonic sounds similar to 
strings or choirs. 
Texture is available both as VST or Audio Unit 
instrument, and each interface’s parameter is 
automated and can be controlled by the host; some 
factory presets are implemented in a combo box on 
theupper-left side of the interface, but user can save 
his own sound inside the host if needed. 
An advanced and a basic interface are provided for 
expert users or casual ones; we’re going to see the 
details in the following chapters. 
The main panel, see Fig. 1, is on the upper-middle 
side of the interface and it contains a master volume, 
a sustain button to hold the root note, a graph button 
to hide/show the spectrum that we’re going to 
generate, and a polyphony button to switch between 
monophonic and polyphonic mode. 
In the polyphonic mode, we have a queue of 64 keys 
on which the partial harmonics of the spectrum will 
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be distributed; the queue will be cleaned when user 
stop pressing any midi note. 
Frequency deviation knob affects the harmonic 
distribution of the spectrum around the frequency 
root (midi note pressed on the piano keyboard); it 
can change between 0 and 2500 cents of frequency. 
The first partial and the number of partials knobs 
affect respectively the first partial and the number of 
partials in the generated spectrum and their values 
can change between 1 and 128. 
Finally frequency exponent [or Steve McAdams 
exponent] knob can vary between 0 and 2, and it 
generates a harmonic spectrum when its value is 1, a 
contracted spectrum if the value < 1, or an expanded 
spectrum when the value > 1. 
Waveform Panel defines the sound content of the 
grains. 
User can set the number of oscillators used to 
generate the sound texture, choosing between 32, 
63, 128 or 256 active oscillators. 
Waveform knob will set the harmonic number of the 
precomputed waves; it can change between 1 
(simple sine wave) and 32 harmonics. The 
amplitudes of each harmonic decrease on 1/n order, 
similar to the behavior of a saw wave. 
The parameters in the Micropoly panel will affect 
the way each grain follow in time the other. 

They are all probabilistic values, which mean each 
parameter sets the probability that the time event 
happens. 
Density knob affects the number of attacks per 
second, and its value can change between 1 and 
1000. 
Overlapping knob sets on each instant the 
probability that the grain should continue to play, or 
it should start the release state of his envelope. 
Finally the change knob affects the probability that 
the following grain should change his root 
frequency, so that in polyphonic mode it sets the 
rate each voice starts playing his sound. 
Envelope panel affects the grain’s envelope. Inside 
the panel user can see two joystick controller, the 
first one controls the attack and decay time of each 
grain (they can change between 1 and 1000 ms), and 
the second one sets the sync and fade parameters. 
The sync parameter changes the probability that the 
grain starts playing together with the previous one, 
and the fade parameter affects the probability that a 
crossfade occurs between grains. 
Then we have four sliders to control the ADSR of 
the note played; attack, decay and release are rates, 
and can change between 1/40 of second and 40 
seconds, on the other hand sustain is an amplitude, 
and it can change between 0 and 1. 
 

 
 

 
 

Figure 1: Main panel 
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Then user can control the amplitude exponent, 
which can change between 0 and 2, to modify the 
amplitude of the spectrum’s partials; when the value 
is 0 the results is a plan spectrum (with the same 
amplitude for each partial), when the value = 1 the 
amplitudes will be decreasing with the order of 1/n, 
and when the value >1 the higher partials will fade. 
Finally amplitude deviation randomizes the 
amplitude of each partial. 
Assign panel contains four buttons in order to assign 
the current sound we’re playing to the basic 
interface. 
Each of the four preset corresponds to one of the 
four vertex of the pad in the basic interface. 
The basic interface, see Fig. 2, gives casual and not 
expert users a tool to play sound textures generated 
by granular synthesis. 
On the four vertex of the preset pad (the red 
rectangle) we have pre loaded four factory sounds, 
and user can move the joystick in every position 
inside the rectangle to mix the preset and create a 
unique combination of the four sounds. 
User can also assign to each vertex a sound 
specifically created in the advanced interface, by 
pressing the four buttons in the assign panel. On the 

contrary user can create a sound texture by moving 
the joystick of the preset pad, then he can switch to 
the advanced interface to change the detailed 
parameters of the sound he has just chosen. 
 
3.1 Technologies and development 
environment 
Audio Units are audio plugins developed using 
Apple Core Audio technology, integrated into Mac 
OSX operating system. Audio Unit SDK is written 
in Objective-C language and its native development 
environment is XCode. 
To develop Texture we have taken advantage of   
JUCE audio [14] libraries, that is a cross-platform 
toolkit written in C++ useful to create stand alone 
applications and audio plugins. It offers classes to 
manage MIDI, read and write audio files, draw 
waveforms, a Synthesizer class to create polyphonic 
synths and, mainly, wrappers to build VST 
(Windows, Mac OSX, Linux), AU (Mac OSX) and 
RTAS (Windows and Mac OSX) using the same 
source code. With JUCE is also possible to develop, 
with little modifications to the source code, mobile 
apps for iOS (iPhone & iPad). 

 
 

 
 

Figure 2: Basic interface 
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Finally, to build VST audio plugins we have to 
include into our project the Steinberg SDK, that will 
provide all the classes to manage the audio buffers 
and the plugin interface. 
 
4 Real-time musical application 
We tested our Texture Granular Synth by writing a 
real-time musical performance [15-19]. The musical 
instrument that we propose has been developed by 
using the Max/MSP [11] environment. It is 
constituted by three components: the control unit, 
the mapping unit and the Texture Granular Synth. 
The control unit allows the performer to control two 
parameters. Fig. 3 shows the Max/MSP patch that 
constitutes the control unit. Particularly, performer 
draws lines and curves in a bi-dimensional box, by 
clicking and moving mouse inside the patch itself. 
The control unit patch is constituted by the lcd 
Max/MSP object that returns x, y mouse space 
coordinates.  

The evident points in the Fig. 3 represent the 
input/output patterns of the training set. 
In detail, the two x, y control parameters don’t 
influence directly the parameters that rule the 
behavior of the sound generators, but they are pre-
processed by the mapping algorithm. 
The implementation of musical expressivity is 
accomplished once we define the correspondence 
between the two x, y control parameters and the four 
synthesis parameters related to frequency panel 
(Fig. 1), that is to say, once we define the right 
mapping. 
The chosen mapping strategies, by means of which 
the synthesis parameters are controlled, all influence 
the way the musician approaches the composition 
process [21-25]. 
In Fig. 4, the scheme of the virtual musical 
instrument is shown. 
 

 
 

 
 

Figure 3: The control unit 
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Figur 4: The virtual musical instrument scheme 
 
 
4.1 Musical expressivity implementation 
To investigate the influence that mapping has on 
musical expression, let us consider some aspects of 
Information Theory and Perception Theory  [25]:  
• the quality of a message, in terms of the 

information it conveys, increases with its 
originality, that is with its unpredictability;  

• information is not the same as the meaning it 
conveys: a maximum information message 
doesn’t make sense, if any listener that’s able 
to decode it doesn’t exist.  

A perceptual paradox [26] illustrating how an 
analytic model fails in predicting what we perceive 
from what our senses transduce is the following: 
both maximum predictability and maximum 

unpredictability imply minimum information or 
even no information at all.  
A neural network approach [27] is chosen to exceed 
the perceptual limits above mentioned. 
Let’s assume the following concepts: 

1. a predictable musical message be associated 
to an a priori known functional relation 
between the surface R2 and the hyperspaces 
R4, that is to say, between the set of all the 2 
inputs and the set of all the 4 synthesis 
parameters; 

2. an unpredictable musical message be 
associated to a non linear and a priori 
unknown correspondence between R2 and R4. 

 
 
 

 
 

Figure 5: A synthesis parameter as a function of the input x and y. 
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A composer can easily follow the above 
assumptions by making use of a FFBPNN trained as 
follows: 

1. he fixes a point in the 2-dimensional x, y 
space and he links it to a desired 
configuration of the m synthesis parameters; 

2. he repeats D times step 1., so as to have D 2-
to-4 examples at his disposal; they constitute 
the training set for the mapping unit; 

3. he chooses the neural network structure [27], 
that is to say the number of hidden neurons to 
use; then, he trains the neural network.  

4. he explores the 2-dimensional x, y input 
space by moving through known and 
unknown points, with the aim of composing 
his piece of music. 

In Fig. 5 the slope of a synthesis parameter returned 
by the output of the neural network, as a function of 
the input x, y coordinates, is shown.  The evident 
points in the graph represent the input/output 
patterns of our training set. 
 
5 Conclusion 

In this paper we presented a software module 
that performs real-time sound synthesis by means of 
the Granular Synthesis method. The software allows 
to control the frequency deviation, the number of 
partials, the Steve McAdams exponent, as well as 
the probabilistic distribution of the grains, and their 
values of attack, delay, sustain and release, allowing 
a huge variety of possible sound textures.  

 The system is designed to be considered as a 
virtual musical instrument for composing and 
performing expressive musical sound. We direct 
attention to common musical aesthetics as a 
determinant factor in musical expressivity.  

The system is available as a VST or AU module, 
so it can be integrated with almost every audio 
software both for Window and for Mac. We also 
proposed some applications which run on 
Max/MSP: on the first one, the interface is formed 
by a control unit that supplies x and y coordinates of 
points in a bi-dimensional box, and by a mapping 
unit, based on a FFBPNN, that processes those 
points, in order to provide suitable relationships 
between input mouse movements and sound 
synthesis parameters. The second interface is a 
glove with bend sensors, which allows to control the 
system by means of hand movements.  

The experiences made by working with our 
interfaces have shown that the mapping strategy is a 
key element in providing musical sounds with 
expressivity. 
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