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Abstract: This study proposes a novel suboptimal embedding algorithm for binary messages based on a low-

weight search embedding (LWSE) strategy. The suboptimal LWSE strategy involves using algorithm to 

perform an embedding procedure by using a parity check matrix. The optimal embedding algorithm, which is 

based on the maximun likelihood (ML) algorithm, aims to locate the coset leader and minimize embedding 

distortion. The optimal embedding based on linear codes can achieve high embedding efficiency but incurs 

high computation. Conversely, the LWSE does not need to locate the coset leader, but instead requires 

suboptimal object. Because its corresponding weight remains close to that of the coset leader, the algorithm 

proceeds in an efficiently iterative manner. When using the optimal ML algorithm for a situation involving the 

highest operation complexity, the operation complexity of the suboptimal LWSE is linearly proportional to the 

number of code dimension. 

 

Key-Words: suboptimal embedding algorithm, data hiding, digital watermarking, informed coding, informed 

embedding, maximun likelihood algorithm.  

 

1 Introduction 
In steganography, a cover image is modified to 

obtain the stego image. High embedding efficiency 

is required for steganographic schemes. Embedding 

efficiency, which is defined as the average number 

of embedded bits per change, is a critical aspect of 

steganography. One effective steganographic 

technique involves matrix embedding (ME). 

Crandall [1] and Bierbrauer [2] used excellent 

linear block codes for an ME scheme derived from 

covering codes [2-4] that can approach a high 

embedding efficiency. Previous researchers had 

implemented ME by using the suboptimal 

embedding algorithm [5-10]. In 2006, Fridrich et al. 

[5] showed that the security of steganography for 

large payloads can be improved by using simplex 

codes and random codes. However, the 

computational complexity in [5] is high, and is 

therefore not suitable for real-time applications. In 

2007, Li et al. proposed a tree-based parity check 

(TBPC) algorithm [7], which is a suboptimal 

embedding algorithm characterized by a tree 

structure. Although the TBPC algorithm is simple, 

its embedding efficiency for steganographic 

schemes is poor. However, the MPC algorithm 

proposed by [8] further improves the embedding 

efficiency of the TBPC algorithm. The MPC method 

can be formulated as ME and to include a tree 

structure to optimize the ME method. Therefore, the 

MPC method can be used to produce efficient 

embedding algorithms. Although the MPC method 

is an efficient algorithm, its embedding efficiency is 

poor. [9] proposed an ME method to reduce the 

computational complexity of random linear code, 

and to increase the embedding efficiency of the 

steganographic scheme. [9] used a random linear 

code by extending the parity matrix via some by 

using referential columns to achieve high 

embedding efficiency; however, this process is 

computationally expensive. Therefore, reducing the 

computational complexity of the algorithm and 

steganographic scheme while maintaining high 

embedding efficiency is a critical problem. The ME 

method is efficient for reducing the embedding 

complexity and increasing the embedding efficiency. 

Alternatively, high-capacity steganographic scheme 

introduced in [11-12] can generate an efficient 

embedding method with arbitrary large relative 

payloads. 

This paper presents an analysis of the trade-off 

between embedding efficiency and computational 

complexity. The proposed algorithm is a fast and 

low-complexity algorithm by using the parity check 

matrix, called low weight search embedding (LWSE) 

strategy. LWSE algorithm has demonstrated the 

advantage of high embedding efficiency for small 

payloads. Another advantage of LWSE is that its 

implementation is suitable for various embedding 
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rates. This embedding algorithm can be 

implemented with linear computation complexity. 

Embedding algorithms based on ME can improve 

embedding efficiency. The steganographic scheme 

based on the parity check matrix can be extracted in 

the receiver by using a multiplication operation that 

occurs between the parity check matrix and received 

setgo. 

The remainder of this paper is organized as 

follows: Section 2 reviews several elementary 

concepts from coding theory, as well as the optimal 

embedding algorithm; Section 3 provides a 

description of the major work for suboptimal 

embedding strategy; Section 4 describes the 

embedding complexity for several embedding 

algorithms; Section 5 provides experimental results 

and constructive discussions; and finally, Section 6 

offers the conclusion of this study. 

 

 

2 The bound on embedding efficiency 

and optimal embedding 
The following discussion is an introduction to the 

embedding algorithm of linear codes: for an 

embedding scheme using linear codes, consider an 

 linear code  at embedding rate 

. Under the assumption that 

a logo , embedded into a cover 

, is transmitted to the receiver, then the 

optimal stego , is provided by an 

embedder to the syndrome . These can be 

formulated as a rate-distortion problem. Assume 

that the linear codes  at embedding rate  

correspond to an embedding average distortion 

, where  

denote the Hamming distance. The theoretically 

achievable bound is , where 

 

denotes a binary entropy function. Thus, an 

embedding rate bound can be obtained as 

 and the minimal average distortion  

reaches  

                                             (1) 

 where  and  is the inverse 

binary entropy function. Without loss of generality, 

define the embedding efficiency as follows:  

                                                (2) 

 where  is the average embedding distortion 

per block. According to (1), the result of (2) is an 

asymptotic upper bound as follows:  

                                        (3) 

 The term  represents the bound of embedding 

efficiency. 

Two interval measure parameters are defined as 

 and  where  

is the interval measure between theoretical upper 

bound and embedding algorithm using optimal 

decoding. In a like manner, a small value of  

leads to an improved efficiency when performing 

the suboptimal decoding algorithm. 

 

 

2.1 Optimal embedding algorithm 
An algorithm is referred to as a matrix embedding 

due to the use of a parity check matrix. It is built 

with two main goals: 1) find a well defined coding 

structure or a well behaved parity check matrix, and 

2) perform decoding through maximum likelihood 

(ML) decoding. Given a cover sequence and a logo 

sequence intended for embedding, the syndrome of 

the cover sequence must be found first and then 

added to that of the logo sequence to acquire a 

toggle syndrome. Ultimately, the coset leader 

corresponding to the toggle syndrome can be found 

using the ML decoding method. The coset leader is 

then added to the cover sequence to yield the closest 

sequence into which a secret logo sequence is 

embedded. 

The following is a review of a few elementary 

concepts from coding theory that are necessary for 

the optimal embedding algorithm. A  linear 

WSEAS TRANSACTIONS on SIGNAL PROCESSING Chi-Yuan Lin, Jyun-Jie Wang

E-ISSN: 2224-3488 364 Volume 10, 2014



block code  can be characterized using a parity 

check matrix  of size  as follows:  

                                         (4) 

 where the sequence . According to this 

equation, the syndrome  of the sequence  , in the 

case of a nonzero  , is defined as . 

Furthermore, the set composed of all the sequences 

 , corresponding to the identical , is called the 

coset of the code , defined as 

            (5) 

 where  denotes the coset leader in the standard 

array. The term  can be derived from an arbitrary 

sequence  through , and  can be expressed, in 

terms of an ML decoding function, as  

                                     (6) 

 where  represents the linear code decoding 

function. The coset leader , determined through 

ML decoding, is added to  to recover the code  

that is closest to the sequence . 

Consider the embedding process illustrated in 

Fig. 1. In this figure, the cover sequence 

corresponds to an arbitrary sequence  of length  

bits within the coset  of the standard array. The 

syndrome  corresponding to  is called 

the cover sequence syndrome. A known binary 

sequence  of length  bits, called the logo 

sequence, is intended for embedding. The coset 

leader  must be located within a set  The 

syndrome  is then determined by the addition of 

logo sequence  to  . From a decoding viewpoint, 

the coset leader  can be discovered through 

maximuml likelihood (ML) decoding, expressed as  

               (7) 

 Suppose that a sequence  exists, and  

represents a coset of the code . It is intended to 

seek  with the minimal weight, that is,  , 

which is expressed as 

                                (8) 

 Once discovered, the coset leader  is added to 

the cover sequence  as . Essentially,  

is the sequence, closest to the sequence  within  

dimensional space, and contains the logo sequence 

. The following discussion presents a way to 

embed a binary linear code through ML decoding 

based on the standard array shown in Fig. 1.  

 

 
 

Fig. 1: Standard array for embedding procedures. 
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The optimal embedding algorithm to embed a 

binary message sequence is illustrated as follows: 

===================================== 

Algorithm  Optimal embedding algorithm: Given a 

symbol  and a cover sequence  , a sequence , 

closet to the sequence , corresponding to the 

syndrome  is located as follows.  

 

Step 1: Derived from  , the sequence  in , is 

added to  so as to obtain .  

Step 2: The sequence  is then decoded through ML 

algorithm into a codeword  as follows        

 

. 

 

Step 3: The addition of  to  yields . 

Step 4:  is obtained by adding  to . 

Step 5: he data embedded is then extracted by 

performing 

 

. 

===================================== 

Once  is known, the optimal embedding 

sequence  can be discovered. However, finding 

 remains difficult in the case of the  linear 

codes  with a large value of  because the 

complexity of the ML decoding increases when . 

The following section of this paper presents a 

suboptimal embedding algorithm to replace the 

optimal embedding algorithm and to help resolve 

the disadvantage mentioned above. 

 

 

3 Suboptimal embedding algorithm 
This section presents an efficient algorithm perform 

the secret hiding. As illustrated in the preceding 

section, it is unrealistic to perform ML decoding for 

an arbitrary large linear block code. Here, the coset 

leader is found in an alternative way to the 

conventional ML decoding. Instead, a simple 

method is used to locate a toggle sequence with a 

lower weight during the search of coset leaders . 

The proposed algorithm is intended to locate a 

sequence , and  , in lieu 

of the optimal coset leader . However, 

 must stay as close to  as possible. 

Note that  is a sequence defined in . The 

stego sequence , which is obtained by the addition 

of  to the cover sequence , cannot be assured 

as the optimal sequence. As Fig. 2 shows, this case 

is referred to as the suboptimal embedding 

algorithm. 

 

 
 

Fig. 2: Geometric interpretation of sub-optimal 

information embedding 

 

3.1 Embedding using code with systematic 

form 

This subsection presents a matrix embedding 

scheme based on systematic linear block codes. To 

reduce the computational complexity of the 

embedding procedure, use the systematic parity 

check matrix to obtain a toggle sequence. Consider 

a systematic parity check matrix . 

Suppose that there exists a logo sequence  of length 

 bits within the coset  of the code . Regard  as 

the logo sequence of length  bits intended for 

embedding. With  number of 0's added to its right, 

a sequence  of length  bits is formed as 

 and . The sequence  , 

which corresponds to the sequence of length  bits, 

can thus be found. For systematic reasons, a 
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sequence  , corresponding to the syndrome  , 

can be discovered with ease. As Fig. 1 shows, the 

addition of  to the cover sequence  yields 

, which is decoded as an approach to 

acquiring  within . 

 

3.2 Weight Approach Strategy 

Although the ME is a simple and low-complexity 

method, this paper further proposes an embedding 

algorithm based on the parity check matrix. The 

proposed algorithm not only has low complexity but 

also performs the algorithm calculations quickly. 

This section also presents several feasible binary 

data embedding algorithms and states the 

suboptimal algorithm, that is, the LWSE algorithm. 

Unlike the ML embedding algorithm, this iterative 

technique is used to search a minimum weighted 

toggle sequence. Specifically, in the ML algorithm, 

the minimum weight is obtained through a full 

search of codewords within the linear embedding 

code. However, the LWSE algorithm seeks the 

lower-weighted toggle sequence in several iterations. 

By performing hardware operations in each iteration, 

LWSE proceeds in an iterative manner until it 

reaches convergence. The LWSE algorithm 

provides a lower operation complexity than the ML 

algorithm, but this comes at the cost of lower 

distortion efficiency. 

The cover sequence is used to carry the logo 

sequence in ME, which is based on the parity check 

matrix. Assume that generating a binary matrix  of 

size  consists of two parts as follows:  

.                                              (9) 

The toggle sequence  is divided into two parts as 

, where  and 

. To locate the low 

weight of toggle sequence , toogle sequence  

must meet the condition  

                         (10) 

The weight  is a suboptimal candidate and 

can be expressed as 

 

                                                                               (11) 

To minimize the weight of , (11) must 

simultaneously minimize the weight of sequence  

and . This study presents the LWSE algorithm to 

obtain a toggle sequence  with a low weight. The 

LWSE algorithm uses two steps to minimize (11). 

The first is to minimize . A systematic encoder is 

applied to the toggle sequence , which is formed as 

the sequence , where 

. According to (10), the 

 is all zeros that meet the requirement, and  is 

equal to . The second step is to minimize  

based on the part of the parity check matrix 

. By using (10), let  

sequence of  bits is as following:  

 

 

 

 

                               (12) 
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To satisfy (10), column , which corresponds to 

 out of matrix , is added to toggle sequence 

 as ; that is, . 

Consequently, the weight of  is altered through 

the columns of , and  still falls within coset 

. Therefore, the solutions of (10) can be 

constructed as follows:  

 

 

 

                                                         (13) 

where the newly modified toggle sequence is 

. 

Although the optimal solution is based on the 

combination of arbitrary columns of , it is 

unrealistic to choose all of the columns. For the 

LWSE algorithm, only  number of columns is 

selected from among the  column sets. By adding 

 to , the toggle sequence  

can reduce more changes than the original toggle 

sequence . The changes can eventually 

be improved by a small weight variation. The 

modified toggle sequence  is 

gained through an appropriate weight variation of 

toggle sequence , with the primary goal of 

obtaining the weight of  of that closest to the 

coset leader. This toggle sequence can be expressed 

as  

 

           (14) 

where the modified toggle sequence  based on 

the sequence  has the minimum 

changes after  tests. In addition, if 

, where  is a constant, 

then the changes of modified toggle sequence  

remain closer to the optimal solution . This 

LWSE algorithm is capable of minimizing the 

changes of toggle sequence in an iterative manner. 

This algorithm can described as follows: 

=====================================

LWSE algorithm:  Given a  systematic linear 

code  with , 

a symbol  of  bits and a cover sequence  of  

bits, a sequence  of  bits, closest to the sequence 

, corresponding to the syndrome  is located as 

follows. 

--------------------------------------------------------------- 

Step 1: First, evaluate the sequence  

corresponding to the syndrome . 

 
Step 2: Let  and Evaluate an initial 

toggle sequence  

. 

Step 3: Evaluate the modified sequence  using 

tests of  times with (13)  

 and . 

and evaluate the modified toggle sequence with (14) 
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. 

Step 4: If , then let , 

 and skip to Step 3. Otherwise, proceed to 

the next step. 

Step 5: Estimate , and output . 

Step 6:  is executed when extracting at 

the receiver. 

===================================== 

Consider an example with random codes to 

show test the LWSE algorithm. Take an  

random code, cover sequence , 

logo sequence . The parity check 

matrix is  

 

After conducting Steps 1 and 2 of the LWSE 

algorithm, the toggle sequence is 

, where 

. For Step 3 in the LWSE 

algorithm, the modified toggle sequence in the first 

iteration is evaluated as follows:  

 

 

 

 

These calculations produce four weights , 

in which the minimal weight 1 is calculated from 

. The minimal weight 

of modified  is  and the new toggle 

sequence is . For the 

condition , the second iteration can 

be evaluated as follows:  

 

 

 

 
In the second iteration, the Step 4 of the LWSE 

algorithm is not satisfied. Finally, we obtain the 

modified toggle sequence  and the 

result in the LWSE algorithm is 

In the receiver, the log message can be extracted by 

. 

 

4 Complexity for suboptimal 

embedding algorithm 

An  random linear code suffers the greatest 

disadvantage in embedding complexity in a high  

dimensional space. [5] proposed a way to improve 

embedding efficiency based on ME for large 

payloads using simplex codes and random codes. If 

the embedding rate of linear codes is large, the 

dimension of linear codes is small enough to enable 

fast decoding. The coset leader can also be found in 

ML decoding. If the code dimension is large, ML 

decoding, that is, the optimal embedding algorithm, 

is unrealistic. Researchers have presented several 

suboptimal embedding algorithms, including [7] and 

[8] , [9]. These suboptimal algorithms can reduce 

the embedding complexity much more than the ML 

embedding algorithm, at the expense of embedding 

efficiency. Specifically, the complexity of [7] can 

reach up to  or , and [8] is 

required to locate the majority vote value, which 

results increases the time complexity. However, the 

LWSE suboptimal embedding algorithm requires 
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that complexity of  be associated with the 

iteration times . As stated in [5], an  random 

linear code can be used to gain an improved 

embedding efficiency for a large length, and it is 

enabled to perform the LWSE algorithm in a large 

code dimension. 
Table 3 lists the embedding times and 

embedding efficiency for various suboptimal 

embedding algorithms under the same relative 

payload. [5] proposed two embedding methods 

based on random linear codes and simplex codes. In 

this case, the time complexity of embedding 

algorithms for matrix embedding is bounded by the 

complexity of the decoding algorithms for the linear 

codes; that is, the complexity of finding the coset 

leader. The decoding algorithms for  simplex 

codes in [5] have a time complexity of . 

Although the embedding efficiency of [5] is near the 

upper bound for large relative payloads, the time 

complexity is still prohibitive. [7] and [8] have 

proposed suboptimal embedding algorithms to 

improve the embedding complexity. [7] proposed a 

scheme to reduce embedding changes based on a 

tree structure. This method is also represented as the 

ME method, which was improved by [8] using the 

majority-vote parity check (MPC). Although [7] and 

[8] can be used to achieve low embedding 

complexity, their embedding efficiency is poor. [9] 

proposed a fast embedding by appending columns to 

the parity check matrix. This method can 

significantly reduce the computational complexity 

compared with existing ME, which involve using 

random codes [5]. The extended matrix in [9] can be 

used to increase the embedding efficiency by using 

ML decoding, and the computational complexity of 

[9] can exponentially increase from  to 

. By using the proposed algorithm in [9], 

it must only search for a small solution space with a 

small size of the extended matrix and then the 

computational complexity is equal to , 

which linearly increases with ; thus this method 

has a faster embedding speed compared with the 

original ME [5]. Based on the method presented in 

[9], the embedding complexity is further improved 

using a low-weight search method for determining 

the toggle sequence. This study proposes the LWSE 

method to achieve an embedding algorithm with 

low complexity. Random codes and Hamming 

codes are used to embed at fixed relative payloads. 

Because the proposed algorithm uses  linear 

codes with parity check matrix of size , 

the memory requires  in storage. Thus, 

the order of computations is . However, to 

keep the complexity and memory requirement slow, 

the number of toggle sequences in the LWSE is low. 

Because the LWSE searches only a few search 

column vectors of the parity check matrix, the 

computational complexity requires that , 

where  is a constant. 

 

 

5 Simulation results 
The algorithms presented in this study were 

simulated on the operational time and embedding 

efficiency. The programs were developed in 

MATLAB-R2007, and executed on a CPU-Intel 

E8300 2.83G computer with 2G DRAM. In this 

experiment, the cover and logo sequence were 

selected randomly. The cover was divided into non-

overlapping blocks, and each block was embedded 

with the logo sequence of  bits. 

Table 1 shows the results for the  

random linear code. The complexity of the LWSE 

algorithm with respect to average iterative times  

running the algorithm was . Table 1 illustrates 

the results of performing the LWSE algorithm, 

indicating the number of iterations  at various 

iterative times by comparing the complexity 

regarding the number of iterations. These results 

show that the majority of iterations of the LWSE 

suboptimal algorithm was approximately 8 times. 

These experimental results show that the average 

number of iterations for each block was 

approximately to 7.142 when applying the LWSE 

algorithm. 

The following discussion presents is a CPU time 

comparison between the performance of the LWSE 

and optimal embedding algorithms on a (40, 20) 

random linear code, a constant embedding capacity 

, and a dimension  ranging from 14 to 20. 

In Table 2, the complexity required in the optimal 
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embedding algorithm varies exponentially with the 

dimension  of the code, whereas this value varies 

linearly with  in the LWSE algorithm. Although 

performing the optimal embedding algorithm for a 

large value of  in unlikely reality, it is feasible, 

when performing the LWSE algorithm, to discover 

the toggle sequence. In Table 2, performing the 

optimal embedding algorithm on a (40, 20) random 

linear code requires 68.89 sec, while in dimension 

, it takes only 0.0021 sec, far below 68.89 

sec, to perform LWSE algorithm. 
The LWSE algorithm has a faster computational 

time compared with other embedding algorithms. 

The mentioned algorithms are simulated to 

determine their embedding efficiency. The 

simulation results show that the LWSE algorithm 

requires a lower operational complexity than does 

the ML algorithm at the cost of degraded efficiency. 

The embedding efficiency corresponding to various 

systematic linear block codes is comparable with 

both the LWSE and numerous suboptimal 

algorithms. The proposed method can be used to 

embed messages for linear codes with large 

dimensions; that is, embedding for a small payload. 

The LWSE algorithm can also be used to embed 

messages at various embedding rates. Considering 

the low rate in Fig. 3, the LWSE algorithm still 

follows the upper bound for embedding efficiency. 

 

 

6 Conclusion 

Performing ML decoding in an optimal embedding 

algorithm is unrealistic because the decoding 

complexity increases exponentially with code 

dimension  as . This paper 

proposes a suboptimal embedding algorithm, called 

the LWSE algorithm, to reduce embedding 

complexity. Although the proposed scheme 

demonstrates decreased embedding efficiency 

compared with using ME with ML decoding, it is 

also suitable for various embedding rates and 

reduces the computational complexity. Moreover, 

the proposed algorithm demonstrates high 

embedding efficiency for embedding in small 

payloads compared with other embedding 

algorithms, as shown in Table 3. In the experiment, 

random codes and Hamming codes were used to 

implement the LWSE algorithm. Although LWSE 

can cause a loss of some embedding efficiency 

because ME involves using a suboptimal algorithm, 

the experimental results of this study confirm that 

the LWSE algorithm demonstrates lower 

computational complexity compared with other 

embedding schemes. 

 

 

Acknowledgment 
This study is supported in part by the National 

Science Council of the Republic of China under 

contract numbers NSC-101-2221-E-167-026 and 

NSC-102-2221-E-167-001. 

 

 

References 
[1] R. Crandall. Some notes on steganography.  

Steganography Mailing List, 1998.  
[2] J. Bierbrauer, On Crandall's Problem [Online]. 

Available: 

http://www.ws.binghamton.edu/fridrich/covcode

s.pdf 1998. 
[3] F. Galand and G. Kabatiansky. "Information 

hiding by coverings," In Proceedings ITW2003, 

Paris, France, 2003, pp. 151-154. 
[4] J. Bierbrauer and J. Fridrich, "Constructing good 

covering codes for applications in 

steganography," LNCS Transactions on Data 

Hiding and Multimedia Security, vol. 4920, pp. 

1-22, 2008. 
[5] J. Fridrich and D. Soukal, "Matrix embedding 

for large payloads," IEEE Trans. Inf. Theory, vol. 

1, no. 3, pp. 390-395, Sep. 2006. 
[6]  R. Y. M. Li, O. C. Au, C. K. M. Yuk, S. K. Yip, 

and S. Y. Lam, "Halftone Image Data Hiding 

with Block-Overlapping Parity Check,"  Proc. 

IEEE, vol. 2, pp. 193–196, Apr. 2007.  
[7]  R. Y. M. Li, O. C. Au, K. K. Lai, C. K. M. Yuk, 

and S. Y. Lam, "Data Hiding with Tree Based 

Parity Check," IEEE International Conference, 

pp. 635-638, Jul, 2007. 
[8]  C. Hou, C. Lu, S. Tsai, and W. Tzeng, "An 

optimal data hiding scheme with tree-based 

parity check," IEEE Trans. Image Pro., vol. 20, 

no.3, pp. 880-886, Mar. 2011. 
[9]  C. Wang, W. Zhang, J. Liu, and N. Yu,"Fast 

Matrix Embedding by Matrix Extending," IEEE 

Trans. Inf. Theory, vo7. 1, no. 1, pp. 346-350, 

Feb. 2012. 
[10]  S.M. Walke, V.G. Puranik, J.G. Rana, and R.S. 

Deshpande, "A Novel Technique of 

Steganography And Watermarking," National 

Conference on Signal and Image Processing 

Applications, pp. 22-29, Jan. 2009. 

WSEAS TRANSACTIONS on SIGNAL PROCESSING Chi-Yuan Lin, Jyun-Jie Wang

E-ISSN: 2224-3488 371 Volume 10, 2014

http://www.ws.binghamton.edu/fridrich/covcodes.pdf%201998
http://www.ws.binghamton.edu/fridrich/covcodes.pdf%201998


[11]  G. Brisbane, R. Safavi-Naini, and P. 

Ogunbona,"High-capacity Steganography Using 

A Shared Colour Palette," IEE Proceedings. 

Image and Signal Processing, vol. 152, no. 6, pp. 

787-792, Dec. 2005. 

[12]  Y.K. Lee and L.H. Chen,"High capacity image 

steganographic model," IEE Proceedings. Image 

and Signal Processing, vol. 147, no. 3, pp. 288-

294, June 2000. 

 

 

Table 1: The number of iteration times versus iteration times for peforming (32,16) Random code using LWSE 

algorithm. 

 

Iteration times 3 4 5 6 7 8 9 10 

Number of 

iteration times 
3 13 50 187 341 334 74 8 

 

Table 2: The optimal embedding algorithm and LWSE algorithm consume in time. 

Information bits k=14 k=15 k=16 k=17 k=18 k=19 k=20 

(40, k) random code 

using ML algorithm (in 

second) 

1.03 3.02 6.33 8.74 16.54 34.37 68.89 

(40, k) random code 

using LWSE algorithm 

(in second) 

0.01 0.015 0.0094 0.016 0.014 0.032 0.0021 

 

Table 3: Performance comparisons of various embedding algorithms   

 

Code 1/Re εsub sec 

Hamming(31, 5) 6.36 1.51 1.93 

[6](Lx=32, n=4225) 4.48 2.51 2.05 

[6](Lx=64, n=16641) 4.38 2.49 1.81 

[6](Lx=128, n=66049) 4.34 2.33 1.55 

Random(16, 4) 4 2.75 0.48 
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Random_ex(160, 40) 4 2.68 4.41 

Hamming(15, 4) 3.64 1.66 1.39 

[7](n=7, 4) 1.88 1.43 0.77 

[7](n=15, 8) 1.75 1.67 0.4 

[7](n=31, 16) 1.96 1.68 0.21 

BCH(15, 8) 1.88 1.39 0.69 

Golay(24, 12) 2 1.48 0.81 

 

 

Fig. 3: Embedding effciency of various algorithms. 
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