
Monogenic Signal Theory Based Feature Similarity Index  
For Image Quality Assessment 

 
1XUE-GANG LUO, 2HUA-JUN WANG 

12School of Mathematics and Computer Science 
Panzhihua University  

Sichuan Panzhihua 617000 
CHINA 

2Key Lab of Earth Exploration & Information Techniques of Ministry of Education 
Chengdu University of Technology  

Sichuan Chengdu 610059 
CHINA 

 
1lxg_123@foxmail.com  221658388@qq.com  

 
Abstract: -Image quality assessment (IQA) aims to establish generic metrics consistently with subjective 
evaluations using computational models. Recent phase congruency, which is a dimensionless, normalized 
feature of a local structure, is used as the structure similarity feature. This paper proposes a novel feature 
similarity (RMFSIM) index for full reference IQA based on monogenic signal theory. A monogenic phase 
congruency map, which is equipped to be relatively insensitive to noise variations, is constructed using phase, 
orientation and energy information of the 2D monogenic signal. The corresponding 1st-order and 2nd-order 
coefficients of the MPC map are obtained by Riesz transform. The local feature coefficients similarity is 
computed by the similarity measure and a single similarity score are combined together finally. Experimental 
results demonstrate that the proposed similarity index is highly consistent with human subjective evaluations 
and achieves good performance in terms of prediction monotonicity and accuracy. 
 
 
Key-Words: - image quality assessment(IQA); monogenic phase congruency(MPC); human visual system; 
Feature Similarity Index 
 
1 Introduction 
Digital image suffers inevitably from a variety of 
distortions in the process of collection, processing, 
compression, storage, transmission. Due to the 
different levels of image quality decline, it is hard to 
obtain the real image. Numerous applications, such 
as image acquisition, image transmission, image 
compression, image restoration, and image 
enhancement, are being seriously affected. 
Therefore, image quality assessment (IQA) plays an 
important role in numerous computer vision and 
image process applications. 

In general, there are two categorizations of IQA 
methods: subjective and objective ones. According 
to human visual system (HVS), subjective IQA 
metric, which is the most reasonable IQA metrics, 
estimates image quality by many observers to 
participate with image manually interpretation. 
However, it is not suitable for many important 
scenarios such as real-time and automated systems. 
Objective IQA method uses a mathematical model 
to calculate the similarity index by quantizing the 
distortion image and the reference image to obtain 

the evaluation results, which a simple, easy IQA 
metric. There are some distinct advantages, for 
instance, embedding real time image processing 
system. According to the degree of dependence on 
the reference image, there are three categorizations 
of objective IQA methods: full reference (FR), 
reduce reference (RR) and non-reference type (NR).  
The traditional algorithms for full reference image 
quality assessment are Mean Squared Error (MSE) 
and Peak Signal-Noise Ratio (PSNR). Since these 
algorithms do not consider with the interdependence 
of pixels, the structure correlation between pixels 
and the characteristics of human visual perception, 
evaluation results of which are not consistent with 
subjective evaluation results,  theirs results are 
unreliable for objective image quality assessment.  

In order to achieve methods conform to human 
visual evaluation, a lot of evaluation methods based 
on visual characteristics were proposed, depending 
on sensitivity of the visual signals  (such as 
brightness, contrast, spectrum) of the human visual 
system. The representative metrics are Visual Signal 
to Noise Ratio [1] and Visual Information 
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Fidelity[2]. Although these methods accord to the 
result of subjective evaluation, but it is still very 
limited to human understanding of HVS. The most 
popular method for FR-IQA is Structural Similarity 
index [3] (SSIM) by the luminance, contrast and 
structure comparison images obtained from the 
reference and distortion images. Experimental 
results demonstrate that it is more consistent with 
HVS than PSNR and MSE but less effective for 
badly blurred images. Recently, numerous 
extensions of SSIM have been developed, like 
Multi-Scale SSIM (MS-SSIM) index[4] , complex 
wavelet structural similarity(CW-SSIM) index[5] 
and four-component SSIM[5], which to some extent 
improve the performance of measure. Feature-
similarity (FSIM) index is proposed by Zhang et al. 
[6], which utilized the phase congruency (PC) as the 
primary feature and the gradient magnitude (GM) as 
the secondary feature to obtain the local quality map 
and weighted by PC to derive a single quality score. 
The performance of FSIM is superior to the 
performance of SSIM and the other variants by 
experimental results using six databases. However, 
phase congruency is highly sensitive to noise, the 
drawback of which has a strong impact on 
performance of FSIM.  

In this paper, a novel feature similarity (MST-
FSIM) index for full reference IQA is proposed 
based on monogenic signal theory by FSIM inspired. 
Firstly, a monogenic phase congruency map which 
is relatively insensitive to noise is presented, 
monogenic phase congruency instead of PC is 
considered as the primary feature. Then the 
corresponding 1st-order and 2nd-order feature 
coefficients of the MPC map are obtained by Riesz 
transform. The local feature coefficients similarity is 
computed by the similarity measure and a single 
similarity score are combined together finally. 
Experimental results demonstrate that the proposed 
similarity index is highly consistent with human 
subjective evaluations and achieves good 
performance in terms of prediction monotonicity 
and accuracy. 
 
2 Monogenic Signal Theory 
In this section, We  now  describe briefly the  main  
theory  on  which  the  algorithms  proposed  in  the  
paper  are  based. 
 
2.1 Riesz transform 
The  Hilbert  transform  of  a  1-D  function  has  
been  widely  used  in signal  processing  since  
Gabor  proposed  the  analytic  signal. The Hilbert 
transform H[g(t)] of a signal g(t) is defined by the 
following convolution integral [7]: 

1[ ( )] ( )* sgn( ) ( )
FT

H g t g t j G
t

ω ω
π

= →−        (1)                                    

Where *  stands for the convolution, FT means 
Fourier transform, ( )G ω  is the Fourier transform of 
g(t) and sgn( )ω  is the sign function. However, 
problems occur in image processing applications are 
based on 2-D signal processing. The Riesz 
transform is the natural multidimensional signal 
representation of the 1-D Hilbert transform [8]. It is 
the scalar-to-vector signal transformation whose 
frequency response is /jω ω− . In 2-D space, 
given the input signal ( )f x with x={x1, x2}, by using 
the well-known property that 
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In order to analyze i2D image structures, higher 
order Riesz transforms [9] are utilized to get 
important features of monogenic phase congruency. 
Therefore, in our metric, the coefficients of the 1st-
order and the 2nd-order Riesz transform are 
extracted. The 1st-order Riesz transform 

1
( )xR f ,

2
( )xR f  can be  obtained with Eq.(2), the 

2nd-order Riesz transform 
1 1

( )x xR f ,
1 2

( )x xR f , 

2 2
( )x xR f   can be  obtained with Eq. (3). 

 
2.2 Monogenic signal  
The monogenic signal which is the third 
generalization of the analytic signal was introduced 
by Felsberg in 2001[10]. It is considered to be a 
multi-dimensional extension of the analytic signal. 
For an image f(x), the monogenic signal mf  is 
defined as the combination of f and its Riesz 
transform. 
                                

1 2
( ) { ( ), * ( ), * ( )}m x xx f x R f x R f x=f        (4)                                                             
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The local amplitude (energy) and local phase of 
f(x) over scale s are given by 
 ( ) ( )s mx x=A f        

1 2

2 2 2( ) ( * ( )) ( * ( ))s x s x sf x R f x R f x+= +
(5)                               
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Where 
1 2

2 2( * ( )) ( * ( ))x s x sR x R fR f x= +  . 
The local orientation over scale s can be 

calculated as 

( ) 2

1

* ( )
* ( )

tan 2 x s
s

x s

R f x
x

R f x
aθ

 
=   

 
      (7) 

The monogenic signal has a representation that is 
invariant and equivariant with respect to energetic 
and structural information, which is the orthogonal 
decomposition of the 2-D image by Quadrature 
(mirror) filters. Since energy and structure are 
independent information, the local phase only 
changes if the local structure varies, structural 
information is invariant with respect to the local 
energy of the signal. In contrast, the local amplitude 
is invariant with respect to the energetic information 
but represents the local energy [10].  

 
2.3 Monogenic phase congruency 
 
Phase congruency is a method for feature detection 
that is different from the method based on gradient 
in spatial domain, which can only detect step 
features, phase congruency correctly detects features 
at all kind of phase angle, and not just step features 
having a phase angle of 0 or 180 degrees. Features 
of signals correspond to those points where phase 
congruency or similarity is maximum using the 
phase information of signals. It is immune to 
illumination and contrast for feature detector.  

Denote by e
sM and 0

sM the even- and odd-
symmetric filters on scale s, and they form a 
quadrature pair. Responses of each quadrature pair 
to the signal will form a response vector at position 
x on scale s: ( ) ( ),s se x o x   =  

( ) ( )* , *e o
s sf x M f x M   , so the local amplitude 

is ( )sA x  and is expressed as ( ) ( )( )2 2
s se x o x+ , 

and the term ( )E x  is the local energy function and 

is expressed as ( )( ) ( )( )2 2

s ss s
e x o x+∑ ∑ . In 

this paper, the log-Gabor filters is adopted to ( )se x  

and ( )so x  for the expansion of two-dimensional 
image. Eq.(7) is the definition of the phase 
congruency over orientation θ  and scale s. 
                                           

( )
(

(
)
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T

A x
x

E x
θ

θ

θ
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              (8)                                                           

Where ε  is a small positive constant, θ  
indicates the direction and     denotes that the 

enclosed quantity is not permitted to be negative. Tθ  
compensates for the influence of noise and is 
estimated empirically. Fig.1 shows the phase 
congruency maps calculated from a reference and 
distorted image (distorted with additive white 
Gaussian noise) from LIVE database. The noise 
present in the image (Fig. 1(e)) is creating a visual 
disturbance. The main reason is some amount of 
noise causing the high energy is removed in the 
definition of phase congruency given in Eq.(7). 
However, such noise is also responsible for the 
changes in the denominator 
incorporating ( )sA x

θ∑ . But the denominator 
remains unchanged.  

 
(a) original image 
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(b) PC of original image 

 
(c) MPC of original image 

 
(d) distorted image 

 

   (e) PC of distorted image 

 
(f) MPC of distorted image 

Fig. 1. (a) and (d) original image and corresponding 
distorted image with additive white Gaussian noise; 
(b) and (e) Phase congruency maps corresponding to 
(a) and (d), resp; (c) and (f) Monogenic phase 
congruency corresponding to (a) and (d), resp. 

To improve performance in distortion wise 
perceptual analysis, we present a new measure of 
phase congruency based on the monogenic signal. 
The 2-D image using monogenic signal developed 
by Felsberg [10] is decomposed into three 
orthogonal components of local amplitude, local 
phase and local orientation. This measure 
approximates Based on the theory that phase 
congruency can be determined by the local 
maximum of amplitude, monogenic phase 
congruency is proposed, which can be expressed as: 

                    
' ( )
'( )

' ( )
( ) ( ) 1 cos( )

'( )
E x

s A x

E x T
MPC x W x factor a

A x ε
−   = − ×  +

                                    (9) 
Where  ( )W x  is a weighting function that is 

constructed by applying a sigmoid function to the 
filter response spread value. factor  is a factor from 
1 to about 2, which acts to sharpen up the edge 
response. T is kept the same as Eq.(7). The 
summation of local energetic information is defined 
by Eq.(10). Eq.(11) defines the summation of local 
amplitude. 

           
1 2

2 2 2' ( ) x xE x fs fr fr= + +      (10)                              

Where ( )s
s

fs f x=∑ , 

11
( * ( ))x x

s
R f xfr =∑ , 

22
( * ( ))x x

s
R f xfr =∑                                                      
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A x A x
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Comparation and analysis from Eq.(8) and Eq.(9), 
rather than use dot and cross products it is simpler 
and more efficient to simply use ' ( )

'( )cos( )E x
A xa  to 

obtain the weighted phase deviation directly in 
monogenic phase congruency. The value below the 
noise threshold is not subtracted from energy 
immediately as this would interfere with the phase 
deviation computation. Instead it is applied as a 
weighting as a fraction by which energy exceeds the 
noise threshold.  ( )W x  is applied in addition to the 
weighting for frequency spread. Monogenic phase 
congruency has excellent speed and much reduced 
memory requirements compared to the other phase 
congruency functions. 
 
3 Riesz transform based monogenic 
phase congruency feature similarity 
index 
In this section, we will describe the proposed Riesz 
transform based monogenic phase congruency 
feature similarity index called RMFSIM.  

Given a reference image f and a distorted image g, 
the general scheme of RMFSIM is shown in Fig.2. 
Let R1, R2 and R3 represent three orthogonal 
components of local amplitude, local phase and 
local orientation of monogenic signal of the image. 
Let R4, R5 represent the 1st order Riesz transform 
coefficients and R6, R7, R8 represent the 2nd-order 
coefficients of monogenic phase congruency of the 
image. The feature similarity of f and g is calculated 
as: 
                                         

2 2

2
( ) ( )

f g
sim n n n
n f g

n n n

R RR
R R

ε
ε

+
=

+ +
            (12)                                                    

Where n is a subscript, which is the nth feature 
coefficients map. 

The RMFSIM will be calculated as follows six 
steps: 

1. Change both images from RGB color space 
into gray scale for simplicity in this paper. This can 
apply equally to other color space, for instance HSV, 
CLE Lab.  Even the color information can also be 
used. 

2. Calculate the monogenic signal of both gray 
images to obtain the local amplitude, local phase 
and local orientation of monogenic signal of the 
image using Eqs.(5) (6) and (7). Because of three 
components be orthogonal, they can represent image 

features. Therefore, make use of Eqs.(12), image 
feature maps of 1 ,simR 2

simR and 3
simR   are obtained. 

3. Utilize Eqs.(9) to figure out monogenic phase 
congruency of both the reference image and the 
distorted image.  
    4. Instead of phase congruency, uses monogenic 
phase congruency to get the coefficients of the 1st-
order and the 2nd-order Riesz transforms. Make use 
of Eqs.(12) to form monogenic phase congruency 
feature maps of 1 ,simR 2

simR , 3 ,simR 4
simR and 5

simR . 
5. Combine eight feature maps into a signal 

feature map with the weighting factors, calculate the 
normalized feature map with Eqs.(14), scale the 
final feature map between 0 and 1.  

                                                 
8

1
( , ) ( ) sim

i
i

FSIM f g i Rω
=

= ⋅∑         (13)                                              

 

( )
( , )( , )

max ( , )
FSIM f gNormalFSIM f g

FSIM f g
=                               

(14) 
Where ( )iω  are the weighting factors to get a 
higher score of Spearman's Rank-Order Correlation 
Coefficient and 8

1 ( ) 1i iω= =∑ . For simplicity, 
( ) 1/ 8iω =  for this paper. 

    6. Calculate the RMFSIM value, which is the 
final score of the distorted image 

                                          
( , )

( , )
( )

NormalFSIM f g
RMFSIM f g

size g
= ∑                                      

(15) 
Where ( )size g  is the size of the distorted image g . 

Through combining the coefficients maps of the 
1st-order and the 2nd-order Riesz transforms of 
monogenic phase congruency with image feature 
maps, the RMFSIM value on same scale is obtained. 
It is easy to integrate the proposed feature similarity 
index with the thinking of multi-scale into the novel 
multi-scale feature similarity index. 
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Fig.  2. General scheme of the proposed RMFSIM 
index. 

 
4 Experimental results and analysis 
 
In this section, in order to test the performance of 
our quality assessment algorithm, we choose 
publicly available databases. the first one is 
provided by the Laboratory for Image &Video 
Engineering (LIVE) of the University of Texas 
Austin, called LIVE database which contains 29 
high-resolution (typically 768*512) original images 
and a number of images distorted with different 
distortion types. The second one is TID2008 
database which contains 1700 test images (25 
reference images, 17 types of distortions for each 
reference image, 4 different levels of each type of 
distortion). Mean Opinion Scores (MOS) for LIVE 
and TID2008 database have been obtained. The 
experimental results of the proposed RMFSIM 
compare with other famous metrics including PSNR, 
SSIM[3], VIF [2], MS-SSIM [4], FSIM [6], FSIMc 
[6], IW-SSIM[11] on LIVE[12], TID2008 [13] 
image database.  
   The parameters for computing monogenic phase 
congruency are kept same as in the implementation 
by Kovesi. The value of nε  in Eq.(8) is set to 0.002, 
and the value of factor in Eq.(9) is fixed to1.5. 
 
4.1 Evaluation measures 
 

In our experiments, we have used five evaluation 
metrics for the quantitative analysis of the proposed 
method. These evaluation measures are shown in the 
following. 
(1) Spearman's Rank Correlation Coefficient 

(SRCC), which is a nonparametric rank-based 
correlation metric, independent of any 
monotonic nonlinear mapping between 
subjective and objective scores. 

(2) Kendall's Rank Correlation Coefficient (KRCC), 
which is another nonparametric rank correlation 
metric [11]. 

(3) Pearson's Linear Correlation Coefficient 
(PLCC), which provides a non-linear mapping 
between the subjective and objective scores. 

(4) Mean Absolute Error (MAE), which is 
calculated using the converted objective scores 
after the nonlinear mapping. 

(5) Root Mean Square Error (RMSE), which is a 
metric that is similar to MAE. 

A better objective IQA measure should have 
higher PLCC, SRCC, and KRCC while lower MAE 
and RMSE values. For PLCC, MAE and RMS, a 5-
parameter logistic function is used for mapping 
between the subjective and objective scores. The 
logistic function is given by 

                                        

1 4 5
2 3

1 1( )
2 1 exp( ( ))

PQ x x
x

λ λ λ
λ λ

 
= − + + + − 

                               

(14) 
where 1λ , 2λ , 3λ , 4λ and 5λ  are the five parameters 

to be fitted with a nonlinear regression process. The 
logistic transform is used to bring the objective 
scores in a common ground with the DMOS/MOS 
by providing a non-linear mapping between them.  
 
4.2 Overall performance comparison 
 

In this subsection, the experimental results of 
RMFSIM are compared with other IQA metrics, 
which contain PSNR, SSIM, VIF, MS-SSIM, FSIM, 
FSIMc, IW-SSIM. For PSNR, SSIM, VIF and MS-
SSIM, we use the code provided by website, which 
is available at [12], for FSIM and IW-SSIM, we use 
the implementation provided by the author.  

Table 1 lists the score of SRCC, KRCC, PLCC, 
MAE and RMSE of all IQA metrics on LIVE and 
TID2008 database, and the best two are highlighted 
in boldface. From Table 1 we can see that the 
performance of RMFSIM is quite nice, it get rival 
scores on LIVE and TID2008. Meanwhile, it is 
noteworthy that VIF perform fairly well on LIVE 
database, but the performance of it is quite poor on 
TID2008 database, and the performance of FSIM 
and FSIMc is better than other metrics except for 
RMFSIM on TID2008 database. However, the 
performance of RMFSIM is slightly better than the 
performance of FSIM and FSIMc. To improve 
performance on all IQA databases, our method is 
inspired by features of image for general measure. 
Scatter plots of objective scores vs. MOS for all 
metrics on TID2008 database, along with the best 
nonlinear fitting according to Eq.(14) are shown in 
Fig.3. We can see that the points of RMFSIM and 
FSIMc are closer to fitted curves, which means that 
the performance of feature similarity index is better 
than other metrics. 
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Table 1. Performance comparison of IQA metrics on LIVE and TID2008 database 
Database Metrics PSNR SSIM VIF MS-SSIM FSIM FSIMc IW-SSIM RMFSIM 

LIVE 

SRCC 0.8756 0.9482 0.9714 0.9513 0.9634 0.9645 0.9566 0.9702 
KRCC 0.6865 0.8159 0.8548 0.8026 0.8346 0.8345 0.8198 0.8427 
PLCC 0.8723 0.9448 0.9653 0.9489 0.9597 0.9613 0.9519 0.9602 
MAE 10.5674 7.5724 6.0412 6.6701 5.8301 5.9236 6.3805 5.8209 

RMSE 13.4583 6.1436 4.8797 8.6143 7.6705 7.5236 8.3757 5.8679 

TID2008 

SRCC 0.5245 0.6256 0.7496 0.8528 0.8805 0.8840 0.8559 0.8809 
KRCC 0.3696 0.4531 0.5863 0.6543 0.6946 0.6991 0.6636 0.6901 
PLCC 0.5545 0.6410 0.8025 0.8419 0.8733 0.8758 0.8572 0.8742 
MAE 0.8918 1.0299 0.8006 0.5616 0.4912 0.4868 0.5245 0.4906 

RMSE 1.1168 0.8215 0.6060 0.7247 0.6543 0.6482 0.6915 0.6231 
 
4.3 Performance on individual distortion 

types 
 
To further examine the effects of the proposed 
method, it is crucial enough to demonstrate the 
performance of RMFSIM on different distortions. 
Therefore, we present the performance of all 
metrics on five distortion types of LIVE database 
and make comparisons. 

The evaluation results of the above IQA metrics 
and our own RMFSIM are summarized in Table 2 
using SROCC. Higher values of SROCC indicate 
that the assessment method is better. In the table, 

the top two performances for each distortion 
type in LIVE database are highlighted in bold 
and underline. 

It's not hard to make out that RMFSIM has 
greater generalization ability exhibited by Table 2 
than the other measures. For three of five distortion 
types, VIF lies within the top two performers. Also, 
we notice that IW-SSIM performs well for blur 
images. Though RMFSIM is not among the top two 
measures for blur distortion type, it is indeed very 
close to the second best. Therefore, it is obvious that 
overall performance on individual distortion types 
of RMFSIM is superior to the other metrics. 

Table 2. Distortion-wise performance comparison using SROCC in LIVE database. 
Database Distortion type PSNR SSIM VIF MS-SSIM FSIM FSIMc IW-SSIM RMFSIM 

LIVE 

jp2k-comp 0.8954 0.9614 0.9696 0.9628 0.9716 0.9723 0.9649 0.9719 
jpeg-comp 0.8809 0.9764 0.9846 0.9814 0.9834 0.9840 0.9808 0.9842 

wn 0.9854 0.9694 0.9807 0.9733 0.9652 0.9716 0.9667 0.9822 
blur 0.7823 0.9517 0.9728 0.9543 0.9707 0.9709 0.9719 0.9690 

trans-error 0.8907 0.9556 0.9650 0.9471 0.9499 0.9520 0.9442 0.9529 
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Fig.3. Scatter plots of subjective MOS versus scores obtained by model prediction on the TID2008 database. 

 
5 Conclusion 

 
Full reference image quality assessment using phase 
congruency based image features is successful. 
However, the phase congruency algorithm is less 
sensitive to noise depending on the noise removal 
technique used. This paper proposed a novel feature 
similarity index for image quality assessment based 
on monogenic signal theory. Monogenic phase 
congruency, which has the 
better ability of resisting noise interference than the 
traditional phase congruency, is presented. We 
combine the coefficients maps of the 1st-order 
and the 2nd-order Riesz transforms of MPC 

with image feature maps of monogenic signal to 
evaluate perceptual quality of images. 

Compared to the existing state-of-the-art 
approaches, the proposed method exhibited 
improved performance in distortion wise perceptual 
analysis. The method also demonstrated better 
generalization performance than its nearest 
competitors. RMFSIM is highly consistent with 
human subjective evaluations and achieves good 
performance in terms of prediction monotonicity 
and accuracy. 
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