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             Abstract— Traffic monitoring and parameters estimation from urban to battlefield environment 

traffic is fast-emerging field based on acoustic signals. This paper considers the problem of vehicular traffic 
density state estimation, based on the information present in cumulative acoustic signal acquired from a 
roadside-installed single microphone. The occurrence and mixture weightings of traffic noise signals (Tyre, 
Engine, Air Turbulence, Exhaust, and Honks etc) are determined by the prevalent traffic density conditions on 
the road segment. In this work, we extract the short-term spectral envelope features of the cumulative acoustic 
signals using MFCC (Mel-Frequency Cepstral Coefficients). The (Scaled Conjugate Gradient) SCG algorithm, 
which is a supervised learning algorithm for network-based methods, is used to computes the second-order 
information from the two first-order gradients of the parameters by using all the training datasets. Adaptive 
Neuro-Fuzzy classifier is used to model the traffic density state as Low (40 Km/h and above), Medium (20-40 
Km/h), and Heavy (0-20 Km/h). For the developing geographies where the traffic is non-lane driven and 
chaotic, other techniques (magnetic loop detectors) are inapplicable. Adaptive Neuro-Fuzzy classifier is used to 
classify the acoustic signal segments spanning duration of 20–40 s, which results in a classification accuracy of 
93.33% for 13-D MFCC coefficients and around 96% when entire features were considered, 77.78% for first 
order derivatives and ~75% for second order derivatives of cepstral coefficients. 
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1. Introduction 
As the number of vehicle in urban areas is ever 

increasing, it has been a major concern of city 
authorities to facilitate effective control of traffic 
flows in urban areas [1]. Especially in rush hours, 
even a poor control at traffic signals may result in a 
long time traffic jam causing a chain of delays in 
traffic flows and also CO2 emission [2]. Density of 
traffic on roads and highways has been increasing 
constantly in recent years due to motorization, 
urbanization, and population growth. Intelligent 
traffic management systems are needed to avoid 
traffic congestions or accidents and to ensure safety 
of road users.  

Traffic in developed countries is characterized by 
lane driven. Use of magnetic loop detectors, video 
cameras, and speed guns proved to be efficient 
approach for traffic monitoring and parameter 
extraction but the installation, operational and 
maintenance cost of these sensors significantly adds 
to the high operational expense of these devices 
during their life cycles. Therefore researchers have 

been developing several numbers of sensors, which 
have a number of significant advantages and 
disadvantages relative to each other. Nonintrusive 
traffic-monitoring technologies based on ultrasound, 
radar (Radio, Laser, and Photo), video and audio 
signals. All above present different characteristics in 
terms of robustness to changes in environmental 
conditions; manufacture, installation, and repair 
costs; safety regulation compliance, and so forth [3]. 

Traffic surveillance systems based on video 
cameras cover a broad range of different tasks, such 
as vehicle count, lane occupancy, speed 
measurements and classification, but they also 
detect critical events as fire and smoke, traffic jams 
or lost cargo. The problem of traffic monitoring and 
parameter estimation is most commonly solved by 
deploying inductive loops. These loops are very 
intrusive to the road pavement and, therefore cost 
associated with these is very high. Most video 
analytics systems on highways focus on counting 
and classification [4], [5], [6], [7], [8]. Key 
requirement for any video based traffic monitoring 
system is ability to handle varied lightning condition 
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and occlusions in heterogeneous network. 
References [30, 40-42] describe some latest 
technologies which are robust traffic monitoring 
using video, ranging from vehicle tracking to 
vehicle occlusion handling.  

For detecting vehicles in urban traffic scenes by 
means of rule-based reasoning on visual data, 
Cucchiara et al. [43] proposed an approach. In [44], 
Kamijo et al. proposed a hidden Markov model 
(HMM)-based computer-vision technique to detect 
accidents and other events such as reckless driving 
at road intersections. However, the problem of 
average-speed/speed-range estimation is not directly 
address. Coifman et al. proposed an extensive 
feature-based computer-vision technique for vehicle 
tracking. They use the “corner” features of the 
vehicles, which are being driven in the lanes, to 
track them and then estimate traffic parameters such 
as average speed and volume. They obtained 
impressive results on free-way traffic, where more 
that 80% vehicles were traveling within the speed 
range of 50–70 mi/h (80–110 km/h) [45]. These 
speeds leads to good tracking as the vehicles are not 
linked to each other. However, it is not clear if such 
a tracking technique could still work in the chaotic 
and nonlane-driven city traffic conditions with the 
extremely varied speed ranges of 0–20, 20–40 km/h, 
and more than 40 km/h.  

Such traffic conditions are very common in cities 
of developing geographies (India and South Asia) 
and are the focus of this paper. Using general 
purpose surveillance cameras for traffic analysis is 
demanding job. The quality of surveillance data is 
generally poor, and the range of operational 
conditions (e.g., night time, inclement, and 
changeable weather) requires robust techniques. The 
use of road side acoustic signal seems to be good 
approach for traffic monitoring and parameter 
estimation purpose having very low installation, 
operation and maintenance cost; low-power 
requirement; operate in day and night condition.  

Conventional pattern classification involves 
clustering training samples and associating clusters 
to given categories with limitations of lacking of an 
effective way of defining the boundaries among 
clusters. On the contrary, fuzzy classification 
assumes the boundary between two neighboring 
classes as a continuous, overlapping area within 
which an object has partial membership in each 
class [9]. In brief, we use fuzzy IF-THEN rules to 
describe a classifier. 

Assume that K patterns,  , p= 
1, .. K are given from two classes, where  is an n-
dimensional crisp vector. Typical fuzzy 
classification rules for n = 2 are like 

If  is small and  is very large then 
= ( ) belongs to C1 

If  is large and  is very small then 
= ( ) belongs to C2 

Where  are the features of pattern (or 
object) p, small and very large are linguistic terms 
characterized by appropriate membership functions. 
The firing strength or the degree of appropriateness 
of this rule with respect to a given object is the 
degree of belonging of this object to the class C.   

Most of the classification problems consist of 
medium and large-scale datasets, example: genetic 
research, character or face recognition. For this 
different methods, such as neural networks (NNs), 
support vector machines, and Bayes classifier, have 
been implemented to solve these problems. The 
network-based methods can be trained with gradient 
based methods, and the calculations of new points 
of the network parameters generally depend on the 
size of the datasets. One of the network-based 
classifiers is the Neuro-Fuzzy Classifier (NFC), 
which combines the powerful description of fuzzy 
classification techniques with the learning 
capabilities of NNs.  

The Scaled Conjugate Gradient (SCG) algorithm 
is based on the second-order gradient supervised 
learning procedure [10]. The SCG executes a trust 
region step instead of the line search step to scale 
the step size. The line search approach requires 
more parameters to determine the step size, which 
results in increasing training time for any learning 
method. In a trust region method, the distance for 
which the model function will be trusted is updated 
at each step. The trust region methods are more 
robust than line-search methods. The disadvantage 
associated with line-search method is eliminated in 
the SCG by using the trust region method [10]. 

We start with a characterization of the road side 
cumulative acoustic signal which comprising 
several noise signals (tire noise, engine noise, air 
turbulence noise, and honks), the mixture 
weightings in the cumulative signal varies, 
depending on the traffic density conditions [11]. For 
low traffic conditions, vehicles tend to move with 
medium to high speeds, and hence, their cumulative 
acoustic signal is dominated by tire noise and air 
turbulence noise [11], [12]. On the other hand, for a 
heavily congested traffic, the acoustic signal is 
dominated by engine-idling noise and the honks. 
Therefore, in this work, we extract the spectral 
features of the roadside acoustic signal using Mel-
Frequency Cepstral Coefficients (MFCC), and then 
Adaptive Neuro-Fuzzy Classifier is used to 
determine the traffic density state (low, Medium and 
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Heavy). This results in 93.33% accuracy when 20–
30 s of audio signal evidence is presented. 

We begin with description of the various noise 
signals in the cumulative acoustic signal in Section 
2. Overview of past work based on acoustic signal 
for traffic monitoring is provided in Section 3, 
followed by feature extraction using Mel-Frequency 
Cepstral Coefficients in 4. Finally, the experimental 
setup and the classification results by ANFC are 
provided in Section 5, and the conclusion is 
summarized in Section 6. 

2. Vehicular Acoustic Signal 
A vehicular acoustic signal is mixture of various 

noise signals such as tyre noise, engine idling noise, 
noise due to exhaust, engine block noise, noise due 
to aerodynamic effects, noise due to mechanical 
effects (e.g., axle rotation, brake, and suspension), 
air-turbulence noise and the honks. The mixture 
weighting of spectral components at any location is 
depends upon the traffic density condition and 
vehicle speed. In former case if we consider traffic 
density as freely flowing then acoustic signal is 
mainly due to tyre noise and air turbulence noise. 
For medium flow traffic acoustic signal is mainly 
due to wide band drive by noise, some honks. For 
heavy traffic condition the acoustic signal is mainly 
due to engine idling noise and several honks. A 
typical vehicle produces various noise depends on 
its velocity, load and mechanical condition. In 
general, approximation can be done as vehicular 
acoustic signal is categorized as, 

 
2.1 Tyre noise 

Tyre noise refers to noise produced by rolling 
tyre as an interaction of rolling tyre with road 
surface. The tyre noise is also considered as main 
source of vehicle’s total noise at a speed higher than 
50 kph [12], [13].  Tyre noise has two components: 
air noise and vibrational noise [13], [14]. Air noise 
dominant in the frequency ranges between 1 KHz to 
3 KHz.  On the other hand vibrational noise is 
dominant in the frequency range 100 Hz to 1000 Hz. 
Effect is generated by road and tyre, which forms a 
geometrical structure that amplifies the noise 
(amplification results in tyre noise component in the 
frequency range 600 Hz to 2000 Hz), produced due 
to tyre-road interaction [14], [15], [16]. The 
directivity of horn depends upon tyre geometry, tyre 
thread geometry, weight and torque of tyre. The 
total tyre noise power along with horn effect lies in 
the frequency range 700–1300 Hz.  

 
Fig. 1. Noise of the tyre Vs Noise of the vehicle. 

The tyre noise is caused by three different factors:  
• Tyre hitting ground (Fig 2 (a)). 
• Vibration of air through tread pattern (Fig 2 (b)). 
• vibrations passing through tyre (Fig 2 (c)). 

   
(a)   (b)         (c) 

Fig. 2. (a) Tyre hitting the ground, (b) Vibration of 
the air through the tread pattern, (c) Vibrations 

passing through the tyre 
 

2.2 Engine noise 
Engine noise is produced due to internal 

combustion of engine. Engine noise contains a 
deterministic harmonic train and stochastic 
component due to air intake [11]. The fuel 
combustion in engine cylinder leads to deterministic 
harmonic train where lowest harmonic tone refers to 
cylinder fire rate. On the other hand stochastic 
component is largely due to the turbulent air flow in 
the air intake, the engine cooling systems, and the 
alternator fans. The engine noise varies with speed 
and the acceleration of vehicle [11], [17]. A 
stationary vehicle produces distinct engine idling 
noise whereas moving vehicle produces different 
engine noise in correspondence with cylinder fire 
rate. In the recent years, manufacturers designs 
quieter engine to suppress the noise level. So engine 
noise might be strong on front side of car compared 
to other directions. 

 
2.3 Exhaust noise 

The exhaust noise is produced due to entire 
exhaust system. The system goes from the engine 
combustion compartment through exhaust tubes to 
the exhaust muffler present at the back of the 
vehicle generating exhaust noise. The exhaust noise 
is directly proportional to load of the vehicle [18]. 
The exhaust noise is characterised by having power 
spectrum around lower frequencies. Exhaust noise is 
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affected by turbo chargers and after cooler [18], 
[19]. 

 
2.4 Air Turbulence noise 

 Air turbulence noise is produced due to the air 
flow generated by the boundary layer of the vehicle. 
It is prominent immediately after the vehicle passes 
by the sensor (e.g. microphone). It produces 
distinctive drive-by-noise or whoosh sound. The Air 
turbulence noise depends on the aerodynamics of 
the vehicle, wind speed and its orientation [20], 
[21].  
3. Acoustic Signals for Traffic 
Monitoring 

Today’s urban environment is supported by 
applications of computer vision techniques and 
pattern recognition techniques  including detection 
of traffic violation, vehicular density estimation, 
vehicular speed approximation, and the 
identification of road users. Currently magnetic loop 
detector is most widely used sensor for traffic 
monitoring in developing countries [22]. However 
traffic monitoring by using these sensors still have 
very high installation and maintenance cost. This 
not only includes the direct cost of labor intensive 
earth work but also, perhaps more importantly, the 
indirect cost associated with the disruption of traffic 
flow. Also these techniques require traffic to be 
orderly flow, traffic to be lane driven and in most 
cases it should be homogeneous. 

Referring to the developing regions such India 
and Asia the traffic is non lane driven and highly 
chaotic. Highly heterogeneous traffic is present due 
to many two wheelers, three wheelers, four 
wheelers, auto-rickshaws, multi-wheeled buses and 
trucks, which does not follow lane. So it is the major 
concern of city authority to monitor such chaotic 
traffic. In such environment the loop detectors and 
computer-vision-based tracking techniques are 
ineffective. The use of road side acoustic signal 
seems to be good alternative for traffic monitoring 
purpose having very low installation, operation and 
maintenance cost.  

 
3.1 Vehicular Speed Estimation 

Doppler frequency shift is used to provide a 
theoretical description of single vehicle speed. 
Assumption made that distance to the closest point 
of approach is known the solution can accommodate 
any line of arrival of the vehicle with respect to the 
microphone. The description applies only to a single 
vehicle’s acoustic waveform and in case of several 
vehicles the interference of their mixed acoustic 
waveforms will render this solution inapplicable to 
their speed estimation [23], [24].  

Sensing techniques based on passive sound 
detection are reported in [25], [26]. These 
techniques utilizes microphone array to detect the 
sound waves generated by road side vehicles and are 
capable of capable of monitoring traffic conditions 
on lane-by-lane and vehicle-by-vehicle basis in a 
multilane carriageway. S. Chen et Al develops 
multilane traffic sensing concept based passive 
sound which is digitized and processed by an on-site 
computer using a correlation based algorithm. The 
system having low cost, safe passive detection, 
immunity to adverse weather conditions, and 
competitive manufacturing cost. The system 
performs well for free flow traffic however for 
congested traffic performance is difficult to achieve 
[27].  

Valcarce et al. exploit the differential time delays 
to estimate the speed. Pair of omnidirectional 
microphones was used and technique is based on 
maximum likelihood principle [3]. Lo and Ferguson 
develop a nonlinear least squares method for vehicle 
speed estimation using multiple microphones. 
Quasi-Newton method for computational efficiency 
was used. The estimated speed is obtained using 
generalized cross correlation method based on time-
delay-of-arrival estimates [28]. 

Cevher et al. uses single acoustic sensor to 
estimate vehicle’s speed, width and length by jointly 
estimating acoustic wave patterns. Wave patterns 
are approximated using three envelop shape 
components. Results obtained from experimental 
setup shows the vehicle speeds are estimated as 
(18.68, 4.14) m/s by the video camera and (18.60, 
4.49) m/s by the acoustic method [29]. They also 
had estimated a single vehicle’s speed, engine’s 
rounds per minute (RPM), the number of cylinders, 
and its length and width based on its acoustical 
wave patterns [17]. However, their technique is 
applicable only when there is single vehicle 
travelling on the road and its vehicle type has to be 
recognized (such as Ford F150, Honda Accord, VW 
Passat etc). Therefore, it cannot be applied for 
traffic density state estimation where there are 
multiple vehicles travelling and producing a 
cumulative acoustic signal rather than just a single 
vehicle’s acoustic signal. 

Combination of smartphone features such as 
accelerometers and basic honk signal detection, 
followed by a simple Doppler frequency shift 
computation, to arrive at a vehicle’s speed estimate 
[46]. In [47], Lee and Rakotonirainy presented an 
approach for detecting a crash-risk level using the 
computing power and the microphones of mobile 
devices that can be used to alert the user in advance 
of an approaching vehicle to avoid a crash.  
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3.2 Traffic Density Estimation 

Urban areas are concerned with effective traffic 
signal control and traffic management. Time 
estimation for reaching from source to destination 
using real time traffic density information is major 
concern of city authorities. Referring to the 
developing geographical areas like Asia, the traffic 
is characterised be non lane-driven. In such 
condition traffic density estimation using magnetic 
loop detectors, speed guns and  video monitoring 
seems to be best, but the installation, maintenance 
and operation cost associated with these approaches 
are very high. Use of road side acoustic signal 
seems to be an alternative for traffic density 
estimation. Jien Kato proposed method for traffic 
density estimation based on recognition of temporal 
variations that appear on the power signals in 
accordance with vehicle passes through reference 
point [30]. HMM is used for observation of local 
temporal variations over small periods of time, 
extracted by wavelet transformation. Experimental 
results show good accuracy for detection of passage 
of vehicles.  

Vivek Tyagi et al. classify traffic density state as 
free flowing, Medium flow and Jammed. They 
consider short term spectral envelops features of 
cumulative acoustic signal, and then class 
conditional probability distribution is modelled on 
one of the three broad traffic density state 
(mentioned above).  Experimental setup uses 
omnidirectional microphone placed at about 1.5 m 
height and cumulative acoustic signal is recorded at 
16000 Hz sampling frequency. Bayes classifier is 
applied to classify traffic density state which results 
in ~ 95% of accuracy, which is then improved by 
using discriminative classifier such as RBF-SVM 
[48]. Compare with the existing computer vision 
and traffic monitoring system in [49] and [50] this 
technique is independent of light condition and 
works well for developing regions. Techniques in 
[46], [51] requires accurate detection of honk signal 
to arrive at average speed. However [48] can’t 
provide very accurate speed estimation compared to. 

3.3 Vehicular Classification 

Problem of vehicular classification is example of 
pattern recognition theory. Acoustic signals 
collected by acoustic sensors are used to identify the 
type of moving ground vehicles. Typical 
classification process consists of sensing, class 
definition, feature extraction, classifier application 
and system evaluation. Based on collected acoustic 
data feature vectors are extracted.  

 

Fig. 3. Typical classification system (ref. [52]) 

Referring to the figure 3 Sensing unit collects 
raw data in order to provide sensor node the 
information about traffic condition. Segmentation 
refers to separation of single vehicle imposes major 
restriction on acoustic classification system because 
traffic recordings are consist of signals from 
multiple vehicles which are mutually overlap. 
Feature extraction refers to extracting representative 
set of features which are able to distinguish different 
classes of vehicle. Richard O. Duda writes in 
“Pattern Classification” [52]: “The conceptual 
boundary between feature extraction and 
classification proper is somewhat arbitrary: An ideal 
feature extractor would yield a representation that 
makes the job of the classifier trivial; conversely, an 
omnipotent classifier would not need the help of a 
sophisticated feature extractor. The distinction is 
forced upon us for practical rather than theoretical 
reasons.” Classification decides which class or 
category a given feature vector belongs. Many 
classifiers do this by supervised learning, where a 
representative training set of feature vectors for each 
class is used to train or learn the classifier. 
Classification learning schemes usually use one of 
the following approaches:  
• Statistical classifiers based on Bayes decision 

theory, assume an underlying probability 
distribution for unknown patterns, e.g. maximum 
likelihood estimation, maximum posterior 
probability estimation, Gaussian mixture models, 
hidden Markov models or k-nearest neighbor 
method.  

• Syntactic or structural classifiers based on linear 
or nonlinear interrelationships of features in the 
feature vector lead to linear/non-linear classifier. 

Acoustic feature generation are mainly based on 
three domains: time, frequency, and both time-
frequency domain. 
• Time domain feature generation offers very low 

computational demand, but features are often 
hampered by environmental noise or wind 
effects.  

• Frequency domain feature generation consider a 
stationary spectrum in a given time frame. As 
moving vehicles are non-stationary signals, the 
influence of Doppler effects and signal energy 
changes either have to be neglected or the 
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investigated time frame must be chosen short 
enough to afford quasi stationary signal 
behavior.  

• Time-frequency domain feature generation 
consider the non-stationary signal behavior of 
passing vehicles and it lead to accurate measures 
of signal energies in time and frequency domain 
simultaneously, these approaches are having a 
high computational complexity.  
 

Table 1. Vehicular acoustic feature extractors and 
classifiers 

Domain Ref. Feature 
Extractor 

Classifier 
used 

Accura
cy 

Time [31] TE, PCA Fuzzy 
Logic, 
MLNN 

73-79%  
95-
97.5% 

[32] Correlation 
based 

algorithm 

  

Freque-
ncy 

[33] HLA NN Vehicle: 
88% 
Cylinde
r: 95% 

[34] HLA, DWT, 
STFT, PCA 

k-NNS, 
MPP 

kNN: 
85%  
MPP: 
88% 

[35] AR mod. MLNN up to 
84% 

Time-
Freque-

ncy 

[36] DWT MPP 98.25% 
[34] HLA, DWT, 

STFT, PCA 
k-NNS, 

MPP 
kNN: 
85%  
MPP: 
88% 

 

Table 2. Acronyms from section 3 and 4 
TE Time Energy 
Distribution 

MLNN Multi Layer 
Neural Network. 

PCA Principal 
Components Analysis 

NN Artificial Neural 
Network 

HLA Harmonic Line 
Association 

k-NNS k – Nearest 
Neighbor Search 

DWT Discrete Wavelet 
Transform 

MPP Maximum Distance 
Approach 

STFT Short Time Fourier 
Analysis 

AR mod. Autoregressive 
Modeling 

CWT Continuous 
Wavelet Transform 

 

3.4 Proposed Approach  
Given limitations literature, we propose to use 

the entire cumulative roadside acoustic signal rather 
than just detecting the honk signal. Section 4, we 
will show, through the spectral analysis, that the 
cumulative acoustic signal has important 
discriminative information present in its spectro-

temporal plane that allows us to directly build 
simple statistical classifiers to classify between three 
broad traffic density states that correspond to an 
increasing range of speeds, i.e., (0, 20) km/h, (20, 
40) km/h, and above 40 km/h. We denote them as 
Heavy (Jammed), Medium-Flow, and Free-Flow 
traffic density states, respectively.  

One of the main characteristic of the city traffic 
in the developing geographies (particularly South 
Asia/India) is that it usually does not move in the 
lanes, even if they are explicitly marked on the 
roads. Frequent lane changing is very common, and 
hence, a lane-based volume measure (number of 
vehicles passing a point of a lane per hour) does not 
seem like an appropriate measure in such 
conditions. The entire road width, with all the lanes 
combined, becomes one continuous carriage-way. 
Therefore, we have decided to use the measure of 
traffic density (Heavy, Medium-Flow, and Free-
Flow corresponding to an increasing range of speeds 
(0, 20) km/h, (20, 40) km/h, and above 40 km/h, 
respectively), instead of the two distinct volume and 
speed measures, as has been used in some of the 
traffic monitoring work in the developed 
geographies. 

 
4. Feature Extraction using MFCC 

An omnidirectional microphone was placed on 
the pedestrian sidewalk at about 1 to 1.5 m height. 
We have collected about 3 hr of cumulative roadside 
acoustics data from the Chattrapati Square to T-
point Nagpur, India. Samples were collected for 
time durations of around 30s for different traffic 
density state conditions (low, medium and heavy). 
The data were collected from a roadside installed 
omnidirectional microphone at 16-kHz sampling 
frequency. These data covered three broad traffic 
density classes and were collected from about five 
different road segments. The labelling of the data 
was done by a human assessment of the prevailing 
traffic density state. We further partitioned the data 
into two independent sets, i.e., one for training the 
parameters of the three classes (traffic density 
states) and another for the classification experiments 
based on the learned distributions as in. The training 
set equally covered three traffic density states 
(classes) and consisted of 900 sec of audio data. 
Similarly, the test set was of duration 900 sec and 
almost equally covered the three classes. 

The various traffic density states induce different 
cumulative acoustic signals. To prove the above 
statement, we have examined the spectrogram of the 
different traffic state’s cumulative acoustic signals. 
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Fig. 4. Spectrogram of the low density traffic (above 

40 km/h). 
 

 
Fig. 5. Spectrogram of the Medium density traffic 

(20 to 40 km/h). 
 

 
Fig. 6. Spectrogram of the Heavy density traffic (0 

to 20 km/h). 
 

• For the low density traffic condition in Fig. 4, we 
only see the wideband drive-by noise and the air 
turbulence noise of the vehicles. No honks or 
very few honks are observed for low density 
traffic condition.  

• For the medium density traffic condition in Fig. 
5, we can see some wideband drive-by noise, 
some honk signals, and some concentration of 
the spectral energy in the low-frequency ranges 
(0, 0.1) of the normalized frequency or 
equivalently (0, 800) Hz. 

• For the heavy density traffic condition in Fig. 6, 
we notice almost no wideband drive-by engine 
noise or air turbulence noise and are dominated 
by several honk signals. We note the several 
harmonics of the honk signals, and they are 
ranging from (2, 6) kHz.  
 

The goal of feature extraction is to give a good 
representation of the vocal tract from its response 
characteristics at any particular time. Mel-
Frequency cepstral coefficients (MFCC), which are 
the Discrete Cosine Transform (DCT) coefficients 
of a Mel-filter smoothed logarithmic power 
spectrum. First 13–20 cepstral coefficients of a 
signal’s short time spectrum succinctly capture the 
smooth spectral envelope information. We have 
decided to use first 13 cepstral coefficients to 
represent acoustic signal for corresponding traffic 
density state. These coefficients have been very 
successfully applied as the acoustic features in 
speech recognition, speaker recognition, and music 
recognition and to vast variety of problem domains. 
Features extraction using MFCC is as follows, 

 
A. Pre-emphasis 

Pre-emphasis phase emphasizes higher 
frequencies. The pre-emphasis is a process of 
passing the signal through a filter. It is designed to 
increase, within a band of frequencies, the 
magnitude of some frequencies (higher) with respect 
to the magnitude of the others frequencies (lower) in 
order to improve the overall SNR. 

 
y[n]= x[n]-αx[n-1], α € (0.9, 1)                        (1) 
 
Where x[n] denotes input signal, y[n] denotes 

output signal and the coefficient α is in between 0.9 
to 1.0, α= 0.97 usually. The goal of pre-emphasis 
phase is to compensate high-frequency part that was 
suppressed during the sound collection. 

 
B. Framing and Windowing 

 
Typically, speech is a non-stationary signal; 

therefore its statistical properties are not constant 
across time. The acquired signal is assumed to be 
stationary within a short time interval. The input 
acoustic signal is segmented in frames of 20~40 ms 
with overlap (optional) of 1/3~1/2 of the frame size. 
In order to keep the continuity of the first and the 
last points in the frame, typically each frame has to 
be multiplied with a hamming window. Its equation 
is as follows, 

W[n] =       (2) 

Where N is frame size 
 
Y[n]= X[n] * W[n]                (3) 
 
Where Y[n] = Output signal 
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    X[n] = Input signal 
    W[n] = Hamming Window 
 
Due to the physical constraints, the traffic 

density state could change from one to another (low 
to medium flow to heavy) over at least 5–30 min 
duration. Therefore, we decided to use relatively 
longer primary analysis windows of the typical size 
500 ms and shift size of 100 ms to obtain the 
spectral envelope. 

 
Fig. 7. Primary windows of size=500 ms and shifted 

by 100 ms to obtain a sequence of MFCC feature 
vectors. 

 
C. DFT 

 
Commonly, Fast Fourier Transform (FFT) is 

used to compute the DFT. It converts each frame of 
N samples from time domain into frequency 
domain. The computation of the FFT-based 
spectrum as follow, 

 

X[k] =    (4) 
 

Where N is the frame size in samples, x[n] is the 
input acoustic signal, and. X[k] is the corresponding 
FFT-based spectrum. 
 
D. Triangular bandpass filtering 

 
The frequencies range in FFT spectrum is wide 

and acoustic signal does not follow the linear scale. 
Each filter’s magnitude frequency response is 
triangular in shape and is equal to unity at the 
Centre frequency and decrease linearly to zero. We 
then multiply the absolute magnitude of the DFT 
samples by the triangular frequency responses of the 
24 Mel-filters that have logarithmically increasing 
bandwidth and cover a frequency range of 0–8 kHz 
in our experiments. Each filter output is sum of its 
filtered spectral components. To compute the Mel 
for given frequency f in HZ, equation is as follows: 

 
F (Mel) = 2595 * log 10 [1+f/700]   (5) 

 
The ith Mel-filter bank energy (  is 

obtained as 

 
(  = (  * , k € (0, N/2) (6) 

 
Where (  is the triangular frequency 

response of the ith Mel-filter. These 24 Mel-filter 
bank energies are then transformed into 13 MFCC 
using DCT.  

 
E. DCT 

 
This is the process to convert the log Mel 

spectrum into time domain using DCT. The result of 
the conversion is called Mel Frequency Cepstral 
Coefficient. The set of coefficient is called acoustic 
vectors. 

 =  cos (πj ), j € (0, 12)      (7) 
 

F. Data energy and Spectrum 
 
 The acoustic signal and the frames changes, 

such as the slope of a formant at its transitions. 
Therefore, there is need to add features related to the 
change in cepstral features over time. 13 feature (12 
cepstral features plus energy). 

 
       Energy=∑ X2 [t]     (8) 
 

       Where X[t] = signal 
 

 
Fig. 8. Input Acoustic signal, corresponding log 

filterbank energies and Mel frequency cepstrum for 
low traffic density state 
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Fig. 9. Input Acoustic signal, corresponding log 

filterbank energies and Mel frequency cepstrum for 
Medium traffic density state 

 

 
Fig. 10. Input Acoustic signal, corresponding log 

filterbank energies and Mel frequency cepstrum for 
Heavy traffic density state 

 
5. Adaptive Neuro Fuzzy Classifier 

Fuzzy classification assumes the boundary 
between two neighboring classes as a continuous, 
overlapping area within which an object has partial 
membership in each class [10]. Most of the 
classification problems consist of medium and 
large-scale datasets, example: genetic research, 
character or face recognition. For this different 
methods, such as neural networks (NNs), support 
vector machines, and Bayes classifier, have been 
implemented to solve these problems. The network-
based methods can be trained with gradient based 
methods, and the calculations of new points of the 
network parameters generally depend on the size of 
the datasets. One of the network-based classifiers is 

the Neuro-Fuzzy Classifier (NFC) which combines 
the powerful description of fuzzy classification 
techniques with the learning capabilities of NNs.  

A neural-fuzzy system is a combination of neural 
networks and fuzzy systems. The combination is 
such that the neural networks or neural networks 
algorithms are used to determine parameters of 
fuzzy system. This means, the main intention of 
neural-fuzzy approach is to create or improve a 
fuzzy system automatically by means of neural 
network methods. An adaptive network is a multi-
layer feed-forward network where each node 
performs a particular function based on incoming 
signals and a set of parameters pertaining to node. 
Fuzzy classification systems, which are founded on 
the basis on fuzzy rules, have been successfully 
applied to various classification tasks [37]. The 
fuzzy systems can be constituted with neural 
networks, and resultant systems are called as Neuro-
fuzzy systems [37]. The Neuro-fuzzy classifiers 
define the class distributions and show the input-
output relations, whereas the fuzzy systems describe 
the systems using natural language. Neural networks 
are employed for training the system parameters in 
neuro-fuzzy applications. An ANFIS consist of 
input, membership function, fuzzification, 
defuzzification, normalization and output layers [37, 
38, 39]. 

 

 
Fig. 11. An Adaptive Neuro-Fuzzy Classifier 

 
Layer 1: Refer to Fig. 11, Every mode in this layer 
is an adaptive node with a node function where x (or 
y) is the input to node I and Ai (or Bi-2) is a 
linguistic label and O1,1 is the membership grade of 
fuzzy set A( = A1, A2, B1or B2) and it specifies the 
degree to which the given input x (or  y) satisfies the 
quantifier  A. Usually, Gaussian membership 
functions are chosen to represent the linguistic 
terms. 

Gaussian (x; c, σ) =    (9) 
 

                                   (10)   
                             (11)    
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A Gaussian MF is determined complete by c and σ; 
c represents the MFs centre and σ determines the 
MFs width. In fact, any continuous, such as 
trapezoidal and triangular-shaped membership 
functions are also candidates for node functions in 
this layer. 
Layer 2: Every node in this layer is a fixed node 
labeled π, whose output is the product of all the 
incoming signals. Each node output represents the 
firing strength of a rule. 
 

               (12)     
 

Layer 3: Every node in this layer is a fixed node 
labeled N. The ith node calculates the ratio of the ith 
rule’s firing strength to the sum of all rules’ firing 
strengths. Outputs of this layer are called 
normalized firing strengths. 
 

                 (13) 
 

Layer 4: Every node I in this layer is an adaptive 
node with a node function. Where   is a 
normalized firing strength from layer 3 and 
{ } is the parameter set of this node. 
Parameters in this layer are referred as consequent 
parameters. 
 

,                            (14)                  
 
Layer 5: The single node in this layer is a fixed 
node labelled ∑, which computes the overall output 
as the summation of all incoming signals. Overall 
output is: 
 

                   (15) 
                  
5.1 Scaled Conjugate Gradient (SCG) 
 

Several gradient descent algorithms for feed-
forward neural networks have poor convergence rate 
and depend on parameters which have to be 
specified by the user. In order to handle large-scale 
problems in an effective way, various optimization 
methods exists usually referred as Conjugate 
Gradient Methods. The Scaled Conjugate Gradient 
(SCG) algorithm is one of the Conjugate Gradient 
Method and is based on the second-order gradient 
supervised learning procedure [10]. In any iteration, 
the SCG computes two first-order gradients for the 
parameters to determine the second-order 
information. Two gradients are calculated per 
iteration of the SCG: the first gradient is calculated 
with a small step size, and the second gradient is 
calculated with a bigger step size. Experimental 
results by using SCG algorithm from [10] is as 
follows, 

 

5.2 Experimental Results with ANFC_SCG 
  

We have collected the road side cumulative 
acoustic signal samples from chhatrapati square to 
T-point of Nagpur city. Data were collected with 16 
KHz sampling frequency. These data covered three 
broad traffic density classes (low, medium and 
heavy). Feature extraction is done using MFCC 
where primary window size is 500 ms and shift size 
is of 100 ms. When single feature frame is 
considered for the classification purpose we are 
getting average classification accuracy of 93.33% 
and when entire feature frames were considered, 
average classification accuracy increased to Approx 
96% [Table 3]. 

 
Table 3. Classification accuracies of various 

traffic density classes based on single frame and 
Entire frames. 

 
Traffic Density State Single Frame  Entire Frames 

Low 93.33 % 93.33 % 
Medium 93.33% 96.67% 

Heavy 93.33% 96.67% 
 
Case 1: First 13 cepstral coefficients were 
considered. 
Case 2: The entire feature vectors consisted of the 
first 13 MFCC coefficients are first obtained and 
then their first derivatives are computed. 
Case 3: Second order derivatives of obtained first 
order derivatives in case 2 are computed. 

 

 
Fig. 12. Performance evaluation of recognition rate 

for case 1. 
 
Table 4. Classification accuracies of various traffic 

density classes based on first and second order 
derivatives of first frame. 

 
Traffic Density 

Class 
First order 
derivative  

Second order 
derivative 

Low, Medium and 
Heavy 

77.78 % ~75 % 
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Fig. 13. Performance evaluation of recognition rate 

for case 2. 
 

 
Fig. 14. Performance evaluation of recognition rate 

for case 3. 
 

5.3 Adaptive Neuro Fuzzy Classifier with 
Speedup Scaled Conjugate Gradient (SSCG) 
 

The training time of networks is a main problem 
for large-scale parameters, and computation cost of 
the SCG algorithm per iteration is more expensive 
for large-scale problem. The training NFC with 
SCG for large-scale problems could consume more 
time, such as days or weeks, with any personal 
computer.  

The speeding up scaled conjugate gradient 
algorithm proposed by Bayram Cetisli and Atalay 
Barkana [39] shortens the training time per iteration 
of SCG without affecting the convergence rate of 
the training. Step wise execution and details of the 
SSCG algorithm in presented in [39].  Training time 
can be sufficiently reduced by using SSCG for large 
scale problems. Moreover our focus in on 
classification purpose only because gathered data set 
is small, however if feature dataset is very high for 
various traffic density states then in that case SSCG 
will certainly be best option.   

 
5.4 Experimental Results with ANFC-SSCG 

 

Table 4: Average Classification Accuracy of 
Various Traffic Density States using ANFC_SSCG 

(in %) for the features extracted using MFCC 
  

Traffic Density 
State 

13 
Coefficients  

Entire 
Coefficients 

Low 93.33 % 93.33 % 
Medium 93.33% 96.67% 
Heavy 93.33% 96.67% 

 

 
Fig. 15. Performance evaluation of 

ANFC_SSCG when applied on features extracted 
using MFCC 

 
The classification accuracy of all the three 

classes’ increases as the primary analysis window 
size is increased from 40 to 500 ms and shift size 
from 20 to 100 ms. (Accuracy obtained with lower 
primary window and shift is not included as part of 
this paper). This is due to the fact that the traffic 
density class (state) is a slow-changing physical 
process, owing to its inherent physical constraints. 
(Speeds of the vehicles are bounded between (0, 
100) km/h, and hence, the density of the traffic 
cannot change at an arbitrarily high rate.) On 
average, the traffic density class (state) on a 
particular road segment can be expected to change 
from, for example, jammed to medium-flow and 
medium-flow to free-flow on a time scale of 5–30 
min or even higher. This is unlike speech signals, 
where a phoneme (a basic classification/recognition 
unit) can change over a 20–80 ms time period. 
Furthermore, the spectral characteristics of the 
cumulative acoustic signal do not significantly 
change over the time spans of about 200 ms. 
Therefore, a primary analysis window of size 200 or 
500 ms and a window shift of 100 ms seem to be a 
reasonable choice 
 
6. Conclusion 

This paper describes a simple technique which 
uses MFCC features of road side cumulative 
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acoustic signal to classify traffic density state as 
Low, Medium and Heavy using Adaptive Neuro-
Fuzzy Classifier. As this technique uses simple 
microphone (cost: 500 Rs) so its installation, 
operational and maintenance cost is very low. This 
technique work well under non lane driven and 
chaotic traffic condition, and is independent of 
lighting condition. Classification accuracy achieved 
using Adaptive Neuro-Fuzzy classifier is of 93.33% 
for 13-D MFCC coefficients and approx 96% when 
entire features were considered, 77.78% for first 
order derivatives and ~75% for second order 
derivatives of cepstral coefficients. From the results 
it is observed that first and second order derivatives 
are not as much relevant but may be 13 D 
coefficients and their 1st and 2nd derivatives, together 
combine 39-D coefficients will improve the 
accuracy. 

 The research on vehicular acoustic signal which 
is mixture of engine noise, tyre noise, noise due to 
mechanical effects etc. expands from vehicular 
speed estimation to density estimation. The use of 
road side acoustic signal seems to be an alternative, 
research shows acceptable accuracy for acoustic 
signal. Vehicular classification with Acoustic 
signals proved to be excellent approach particularly 
for battlefield vehicles, and also for city vehicles.  

Clearer definitions of scenarios and applications 
are required to generate a more consistent body of 
work. New application areas are likely to emerge for 
traffic signal timings optimization using cumulative 
acoustic signals and also classification of 
motorcycles proved to be emerging area for 
research. Finally the classification systems can be 
extended in a way that extracted features are utilized 
as characteristic fingerprints, which affords tracking 
of vehicles over multiple sensor nodes. 
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