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Abstract: - The general method for efficient computation of discrete sine transform (DST) of sequences of 
arbitrary number of points using cyclic convolutions is considered. Forming hashing arrays on the basis of 
simplified arguments of basis sine transform for synthesis of efficient algorithm is analyzed. The hashing arrays 
in algorithm define partitioning of the basis into shift cyclic submatrices. The examples for size 8 of four 
types of DST I-IV using proposed method are analyzed. The hashing arrays, used in the algorithms of synthesis 
technique, are more versatile and generally better in terms of indexing mapping in comparison with the existing 
algorithms. 
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 1 Introduction 
The discrete Fourier transform (DFT) is widely 

used in many applications. In parallel with the 
development of computing means, the applications 
for efficient computation of DFT classes spread. 
Many studies on FFT (Fast Fourier Transform) 
emphasized the prospects of further application of 
only real discrete transforms of harmonic basis. In 
1974 a discrete cosine transform (DCT) [1] and in 
1976 a discrete sine transform (DST) [2,3] were 
proposed, a real basis which reproduces 
functionality in space or time dependence, similar 
to the DFT. Cosine and sine discrete transform and 
DFT interrelate strict mathematical forms that 
allow finding an effective way to compute one 
transform through another [4]. 

DST usage is widespread for several reasons. 
Firstly, basic DST functions are well approximated 
to a big number of stationary stochastic processes, 
which allows describing the signal with a given 
accuracy of minimal number of components. 
Secondly, DST contains a number of specific 
properties and due to this gives good results when 
processing weakly correlated signal of transform, 
which leads to consideration of significant signal 
energy. DST is used in many applications, 
especially in the processing of digital audio and 
video signals [5]. Further intensive development of 
information technologies puts higher demands on 

performance, functionality and specific 
opportunities for algorithmic, software and 
hardware real discrete transforms.  

Efficient computing of one and two dimensional 
DST has been investigated for more than three 
decades. A significant number of publications is 
devoted to the efficient computation of DST [6]. 
Multivariate effective computing algorithms are 
divided into: algorithms for size of radix two, split 
radix, mixed radix, odd size, and prime factors 
composite transform size. 

For the synthesis of efficient algorithms of DST, 
the following approaches are used: 
1) direct matrix factorization of DST; 
2) indirect calculation by FFT or through discrete 
Hartley transform, DCT; 
3) algorithms based on the theory of complexity. 
Generalized method based on polynomial 
transformations are used for synthesis of efficient 
algorithms. It was shown that four types of DST 
have a group symmetry (properties of the theory of 
groups and their representations) and for each of 
them fast algorithm is derived purely algebraically 
[7]. There are efficient computations of DST, 
which are embodied in the form of specific 
algorithms [8]. Summarized and systematized 
works on the study of fast DST and final step in 
this direction is the theory of the synthesis of fast 
algorithms [9]. The theory in [7,9] does not 
consider “Rader type” [10] algorithms. 
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That approach of efficient algorithms is the 
possibility to compute DST through the cyclic 
convolutions. The convolution-based algorithms 
are found to be efficient for very large scale 
integration (VLSI) implementation. Cyclic 
convolutions can be realized through very simple 
hardware structures. Because the usage of cyclic 
convolution or circular correlation structures 
provides high computing speed, low computational 
complexity, and low I/O bandwidth, it reduces the 
hardware cost. A lot of the papers [11-13] appeared 
about efficient hardware architectures connected 
with the computation through cyclic convolution. 
The proposed design uses an efficient restructuring 
of the computation of the DST for prime-number 
transform length into two circular correlations, 
having similar structures and only one half of the 
length of the original transform. 

The main idea of the article is the representation 
of generalized algorithm of DST computation via 
cyclic convolution of arbitrary-number transform 
lengths. The proposed method, which uses hashing 
array, is more general in comparison to the referred 
Raiders approach that uses primitive roots and 
Chinese remainder theorem. 

The paper is structured as follows. Section 2 
describes types of discrete sine transform 
(subsection 2.1) and simplified arguments of basis 
DSTI-IV (subsection 2.2) for general algorithm for 
DST using cyclic convolutions (subsection 2.3). In 
Section 3, the performance of the proposed 
examples of DSTI-IV types for size N=8 are 
analyzed (subsection 3.1-3.4) and then conclusions 
are presented. The examples are provided for 
different DST types to show suitability and 
efficiency of the proposed method for DST I-IV. 
 
 
2 Efficient computation of the DSTI-IV 
using cyclic convolutions 

Computation types DST and IDST (direct and 
inverse) are one of the most long-term procedures 
in information technology, such as analyzing and 
processing sizable data. This procedure requires the 
greatest degree of improvements that will speed up 
works of software and hardware. Efficient 
computation of DST using cyclic convolutions is 
important and needs development. 

 
 

2.1 Types of discrete sine transform 
Discrete sine transform reflects the input data to 

linear combination of weighted basis functions. 
There are 8 types of discrete sine transform 

discussed in [14]. This transform is further 
improved by the DFT for real input data. DSTs 
operate on finite, discrete sequences. The axis of 
symmetry of continuous discrete sine transform can 
be on the sample (even number) or between two 
samples, which corresponds to a shift in the half 
interval sampling. This allows different options of 
transform under the boundary conditions for real 
input data. Continuation of the input data can be 
extended: whole sample symmetrically (WS), 
whole sample asymmetrically (WA), half interval 
sampling symmetrically (HS) and half interval 
sampling asymmetrically (HA). There are only two 
axes of symmetry for a limited sequence and, 
consequently, a possible set of alternatives ε-type 
extension that corresponds to 8 types of DST 
(Table 1). 
 

Table 1: Set options for ε-type expansion 
 

ε WAWA HAHA WAWS HAHS 
DST DSTI DST II DST III DST IV 

     
ε WAHA HAWA WAHS HAWS 

DST DST V DST VI DST VII DST VIII 
 

The relationship of direct and inverse 
computation of four types of DST can be presented 
in the following form: 
(DST I N)-1 = (DST I

N)T = (DST I
N);      

(DST II
N)-1 = (DST II

N)T = (DST III
N ); 

(DST III
N )-1 = (DST III

N )T = (DST II
N); 

(DST IV
N )-1 = (DST IV

N )T = (DSTIV
N ). 

DSTI, DSTIV specify symmetrical forward and 
backward transform, and transform of DSTII and 
DSTIII type specify transfer in one second. 

Consider the efficient computation of  DSTI-IV 
using cyclic convolutions that will speed up the 
work of software and hardware for many 
applications. 

 
 

2.2 Define simplified arguments of basis 
DSTI-IV 

Information technologies widely use DSTI-IV 
types, which can be represented respectively by the 
following formula: 
for DSTI             
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for DST III   
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for DST IV    
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where α(n)=1/√2 , if  n=N-1; otherwise α(n)=0.            
Analyze the structure of the matrix basis for the 
types of DST for arguments, where components сk,n 
are respectively: 
for DST I                             

   сk,n =(k+1)(n+1)π/N,  (k,n=0,1,…N-2);      (5) 
for DST II           
      сk,n =( k+1)(2n+1)π/2N, (k,n=0,1,…N-1);     (6) 
for DST III             

  сk,n = (2k+1)(n+1)π/2N, (k,n=0,1,…N-1);      (7) 
for DST IV                         
     сk,n = (2k +1)(2n +1)π/4N, (k,n=0,1,…N-1). (8) 

 
Basis periodic (2π), symmetric (π) and 

asymmetric (π/2) for each type of DST, are 
presented respectively in Table 2. 

 
Table 2: Properties basis for types of DST 

 
Type periodic asymmetric symmetric 
DST I                                   2N N N/2 
DST II                                   4N 2N N 
DST III                                   4N 2N N 
DST IV 8N 4N 2N 

Matrix arguments Ca each type DST for property of 
periodic is equal respectively 
 

CI
a (k,n) = [(k+1)(n+1) mod (2N)],            (9) 

CIІ
a (k,n) = [(k+1) (2n+1) mod (4N)],      (10)          

CIІІ
a (k,n) = [(2k+1)(n+1) mod (4N)],      (11) 

         CІV
a (k,n) = [(2k +1)(2n+1) mod (8N)].   (12) 

 
Based on substitutions of rows of data matrix (9-
12) the hashing arrays P(n) are formed that define 
block cyclic structures of basis matrix. Accordance 
properties of simplified matrix elements of the 
arguments is determined by consistent 
performances  
for DST I                   
сk,n = 2N-[( сk,n) mod 2N], 

 if [(сk,n) mod 2N]>N;   (13) 
 сk,n = N-{2N-[(сk,n) mod 2N]}, 

 if {2N-[( сk,n) mod 2N]}>N/2,    (14) 
otherwise          сk,n = сk,n . 
for DST II and for DST III 
сk,n = 4N-[(сk,n)mod 4N], 

 if [(сk,n)mod 4N]>2N;         (15) 
 сk,n = 2N-{4N-[(сk,n)mod 4N]}, 

 if {4N-[(сk,n)mod 4N]}>N,     (16) 
otherwise           сk,n = сk,n. 
for DST IV                    
 сk,n =  8N-[( сk,n)mod 8N], 

 if [(сk,n)mod 8N]>4N;         (17) 
сk,n = 4N-{8N-[( сk,n)mod 8N]}, 

 if {4N-[( сk,n)mod 8N]}>2N,     (18)  
otherwise            сk,n = сk,n.  
Simplified matrix arguments complement matrices 
Ss of sine signs, defined by the inequalities 
for DSTI                                                                      
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for DST II and for DST III      
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for DST IV     
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Therefore, expressions (13,15,17) define 
elements and form the hashing array P(n) and then 
with P(n) expressions (14,16,18) define elements of 
simplified hashing arrays P'(n) and matrix signs Ss 
(19,20,21) taking part in the efficient computation 
of DST I-IV. 

 
 

2.3 Synthesis of efficient algorithms  
of DSTI-IV on basis of cyclic convolutions 

One approach of efficient algorithms gives the 
possibility to compute DST through the cyclic 
convolutions. Most papers use a transition from 
discrete transform to compute cyclic convolutions 
mapping for simple size by Raiders [10] or split 
composite size on prime factors by Agarwal and 
Cooley [15] or the combination of these 
approaches. Using the methods of computation for 
each type of DST based on cyclic convolutions has 
different specifics and is analyzed in this paper. 

The proposed approach for efficient 
computation of discrete sine transforms is based on 
decomposition of basis matrix in block-cyclic 
structures [16,17]. As a result, block-cyclic 
structure of basis matrix can be set as a hashing 
array 
 
P(n)=P(n1) P(n2) … P(nk) =(n11, n12, n13, …, n1L1) 
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(n21, n22, n23,…, n2L2) …(nkL1, nkL2, …, nkLk),       (22) 
 
where k – the number of subarrays, nij - element of 
a subarray; Li - the number of elements in the 
subarray P(ni);  n - size of the total array for P(n), 
which is determined by: 
 

n = (L1+L2+...+Lk) .                  (23) 
 

The k number of subarrays in P(n) is determined by 
the value of N size (simple, easy power, composite) 
of transform and types of DST. Hashing array P(n) 
specifies the order of the input data for 
performance of the discrete transform. 

The properties of symmetry and periodicity of 
DST basis lead to lower values representation of 
elements of subarrays P'(ni) with supplement 
respective subarrays of sine signs Ss(ni). 
Submatrices Ss(ni) contain elements that can be 
equal  to +1, -1, 0. 

Hashing array P(n) of transform defines specific 
the structure of DST basis matrix reduced to cyclic 
submatrices. So are the specific parameters P(n) 
that characterize accordingly modified basis 
matrix: 
- the number of subarrays in hashing array k; 
- the size of subarrays (L1, L2, ..., Lk); 
- first element of each subarray ni1, i = 1 (1) k. 

The next step in the synthesis algorithm for 
computation of DST is to determine cyclic 
submatrices identity. That finding of identical and 
quasi identical submatrices (with the same index, 
but opposite signs) is based on the values of 
parameters of hashing array P(n) and hashing array 
P'(n), supplemented array Ss(n) of sine signs. The 
form of hashing arrays P'(n), Ss(n) are 
 

P'(n)=P'(n1)P'(n2)…P'(nk), 
Ss(n)= Ss(n1) Ss(n2)…Ss(nk)           (24) 

 
for a given N size and of DST type determined by a 
simplified matrix, respectively (14,16,18) with 
elements Ca, and signs Ss(n) are defined by 
(19,20,21). 

To find identity cyclic submatrices among value 
elements of basis matrix may in advance, but a 
large search of all elements requires significant 
amount of memory to store and associated time 
costs. More effectively identify only the first 
elements of submatrices in the analysis of the 
structure on the basis of coordinates for placement 
submatrices. That is calculated of the first elements 
of submatrices using the coordinates of the row and 
column values and is analyzed for value of the first 
elements. 

In compliance with coordinates (i,j) of the 
elements, hashing array P(ni) and P'(ni) are: 
 
  (i\ j)   1    2    3    4    5     6    7     8        9   … n 
P(ni)  (n11, n12, …,n1L1, n21, n22, …, n2L2, …,nkL1, …, nkLk) 
P'(ni)(n'11,n'12, …, n'1L1,n'21,n'22,…,n'2L2,…,n'kL1,…,n'kLk). 
 
where integers nij , 0 <nij < T; 0 ≤ n'ij ≤ nij , T – 
period of DST basis. 

Coordinates of the first elements of submatrices 
are determined by (i+Li), (j+Li), where Li - is the 
size of hashing subarrays, that are chosen for 
condition of membership value of the first elements 
of the submatrices in the matrix structure to the 
element of hashing subarrays. The first elements 
are calculated by relevant coordinates (i, j) and 
match the element P'(n) of hashing arrays defined 
by expressions (14,16,18) in accordance with the 
type of DST transform. Example of general matrix 
structure for coordinates is presented in Table 3. 
 
Table 3: Table of coordinates and first elements 

of submatrix       
 

 ( i+Li, j+Li ) –  si,j сi,j; (sign and value) 
(1,1) – si,j сi,j; … 

 
 
 
 

… 
 

… 

(1+ L1,1) – si,j сi,j; 

(1+ L1+ L2,1) – si,j сi,j; 
... 

(1+L1…+Lk,1) –  
si,j сi,j; 

(1+L1…+Lk, 
1+Lk) – si,j сi,j; 

Definition of identity and quasi identity of 
cyclic submatrices is performed by selecting the 
coordinates equal сi,j first elements of identical 
submatrices horizontally. Combining element-wise 
addition values of input data correspond to the 
coordinates of first elements of identical 
submatrices. These values will be used to compute 
cyclic convolutions. Computation of single cyclic 
convolutions is performed when analyzing identity 
submatrices vertically in the matrix structure. For 
the non-identity submatrices of cyclic convolution 
for specified coordinates is conducted in the case of 
analyzing process of the whole matrix structure.  

Combining the results of convolutions is 
performed horizontally at the base of according 
coordinates of the first elements of submatrices. 
The resulting output data of transform corresponds 
to rows with the order according to the elements of 
hashing array P(n). 
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3 Algorithms DSTI-IV using cyclic 
convolutions in examples 

Distribution of cyclic submatrices in basis 
matrix structures and characteristics of hashing 
array P(n) determine the complexity of the 
algorithm for efficient computation of DSTI-IV 
types.  This approach of efficient computation of 
DST uses availability of the fast convolution 
algorithms [18]. 

Many implementations and our examples have 
sequences with reiterative identical groups of 
elements of cyclic convolution. Consider some 
cases of identical sequences. In the following case, 
h(n) = (h1,h2,…,hm, h1,h2,…,hm) or if identical 
group of elements has inverse sign h(n) = 
(h1,h2,…,hm, -h1,-h2,…,-hm),  n=2m, the cyclic 
convolution is equal (25) 
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)()(
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)()(
)()(

y
y

xxmh
xxmh

x
x

mhmh
mhmh  , (25) 

 
where h(m)=(h1, h2,…, hm), x0=(x1, x2,…, xm), 
x1=(xm+1, xm+2,…, x2m), ⊗ -operation of cyclic 
convolution.  
       Therefore, n/m – number of reiterations of 
identical group of elements of the sequence of 
cyclic convolution for size n, which reduces 
computational complexities by n/m times. 
 
3.1 Specific algorithm for DSTI of size N=8 

Consider the example of a generalized scheme 
for synthesis of algorithm and computation of DSTI 
of size N=8. The hashing array P(ni) and P'(ni) are: 
 
P(15) = P(n1)P(n2)P(n3)P(n4)P(n5)P(n6) =  
= (1,3,9,11) (15,13,7,5)(2,6)(10,14)(4,12)(8)(16). 

 
P'(15) = (1,3,1,3)(1,3,1,3)(2,2)(2,2)(4,4)(0); 
Ss(15) = (+,+,-,-)(+,-,-,+)(+,+)(-,-)(+,-)(0)(0); 
 
Definition of identity cyclic submatrices is 
performed by selecting the coordinates of the first 
elements identical submatrices without signs in the 
basis matrix. In correspondence with coordinates 
(i,j) in Table 1, hashing array elements P(ni) and 
P'(ni) are: 
 
(i, j)  1 2  3  4   5   6   7  8   9 10   11 12  13 14 1516 
P(15)(1,3,9,11)(15,13,7,5)(2,6)(10,14)(4,12)(8)(16) 
P'(15)(1,3,1,3)  (1,3,1,3)   (2,2)  (2,2)   (4,4) (0)(0); 
Ss(15) (+,+,-,-)   (-,-,+,+)    (+,+) (-,-)    (+,-) (0)(0). 
 

Coordinates of the first elements of submatrices are 
determined by (i + Li), (j + Li), starting with i = 1, j 
= 1. The value of the first elements of submatrices 
are calculated by matching the coordinates (i, j) and 
the elements of P(n) hashing array using formula 
(ni x nj) mod N, in the case of a value greater than 
N using simplified expression (13,14). 
 Table 4: Table of coordinates and first elements 

of matrix DSTI, N=8 

( i+Li, j+Li ) - sijnij   
(1,1) – 
+1; 
 

(1,5) 
– -1; 
 

(1,9) 
–  +2; 

(1,11) 
– -2; 

(1,13) 
– +4; 
 
 

(1,15) 
– 0; 
 (3,9) 

–  +2; 
 

(3,11) 
– -2; 
 

(5,1) – 
-1; 
 

(5,5) 
– +1; 
 

(5,9) 
– -2; 
 

(5,11) 
– +2; 
 

(5,13) 
– -4; 
 

(7,9) 
–  -2; 
 

(7,11) 
– +2; 
 

(9,1) – 
+2; 

(9,5) 
– -2; 

(9,9) – +4;  (9,15) – 0; 

(11,1) 
– +4; 

(11,5) 
– -4; 

(11,9) – 0; 

 
Table 4 summarizes the basis matrix of arguments 
of dimension (11x15), where the number of 
horizontal and vertical elements is indicated. 
According to hashing array P(15) for DSTI, N=8, 
11 horizontal rows are selected, allowing seven to 
compute the output values via convolution with 
identical group. With hashing arrays P'(15) can be 
reproduced the basis matrix, whose arguments 
resulted in a form of cyclic submatrices without 
signs. Part of matrix simplifies arguments without 
signs of sine basis transform of type I for N=8 
presented in Table 5, which corresponds to the 
generalized Table 4.     
    

Table 5: Part table of values of simplified 
elements without signs of matrix DSTI, N=8 

k   
n
  

 
 1: 3: 9: 11: 15: 13: 7: 5: … 

1: 1 3 1 3 1 3 1 3 … 
3: 3 1 3 1 3 1 3 1 … 
9: 1 3 1 3 1 3 1 3 … 
11: 3 1 3 1 3 1 3 1 … 
15: 1 3 1 3 1 3 1 3 … 
13: 3 1 3 1 3 1 3 1 … 
7: 1 3 1 3 1 3 1 3 … 
5: 3 1 3 1 3 1 3 1 … 
2: 2 2 2 2 2 2 2 2 … 
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6: 2 2 2 2 2 2 2 2 … 
4: 4 4 4 4 4 4 4 4 … 
                                                                                                                           
Hashing array  
P(n)→(1,3,9,11,15,13,7,5,2,6,10,14,4,12,8,16) 
specifies the order of elements of input data of the 
discrete sine transform using cyclic convolutions. 
Initial order of input data is: 
  1       2      3       4      5      6        7      8          
x(1), x(2), x(3), x(4), x(5), x(6), x(7), x(8),  
 9       10    11      12       13     14      15      16 
-x(8), -x(7), -x(6), -x(5), -x(4), -x(3), -x(2), -x(1). 
 
In accordance with P(n), matrix-column has such 
an order of input data: 
 

x(1), x(3), -x(8), -x(6), -x(2), -x(4), x(7), x(5),  
x(2), x(6), -x(7), -x(3), x(4), -x(5), x(8), -x(1). 

 
Performance element-wise additions of input 

data will be used for identity and quasi identity 
cyclic submatrices placed horizontally. 
Computation of cyclic convolution is performed 
once for combined input data for identity and quasi 
identity submatrices selected for analysis vertically. 
The number of cyclic convolutions DSTI of size 
N=8 is a 4-point convolution with identical 
sequences and two of one points.  

Combining the results of convolutions is 
performed horizontally at the base coordinates 
according to the first elements of submatrices. 
Output data of transform in a result of computation 
are scaled by two in the following order: X(1), 
X(3), X(7), X(5), X(2), X(6), X(4). 

 
3.2 Specific algorithm for DSTII of size N=8 

Consider the example of a generalized scheme 
for synthesis of algorithm and computation of 
DSTII for size N=8 with hashing array which is 
extended: 

 
P(n)=(1,3,9,27,17,19,25,11)(31,29,23,5,15,13,7,21) 
(2,6,18,22)(30,26,14,10)(4,12)(28,20)(8,24)(16)(32
) . 

Basis matrix of arguments DSTII with elements 
for (10) contains the values (2k+1) of the elements 
in the first row quantity – 16, which cover the 
entire period equal to 4N, and (n+1) of the 
elements in the first column – 31, which cover the 
entire period equal to 4N. 

A difference of values in rows and columns 
requires transition from hashing array P(n) to the 
appropriate hashing array indices of the rows Pr(n) 
and columns Pc(n): 

 

P(n)=(1,3,9,27,17,19,25.11)(2,6,18,22)(4,12)(8,24);   
 
Pr(n)=(0,2,8,26,16,18,24,10)(1,5,17,21)(3,11)(7,23;      
Pr'(n) = (1,3,7,5,1,3,7,5)  (2,6,2,6)(4,4)(8,8),  
Ss(n) = (+,+, +, -, -, -, -, +)(+,+,-,-)(+,+)(+,-); 
 
Pc(n) = (0,1,4,13,8,9,12,5) (15,14,11,2,7,6,3,10); 
Pc'(n) = (1,3,7,5,1,3,7,5) (1,3,7,5,1,3,7,5),  
Ss(n)= (+,+, +, -, -, -, -, +)(+, +, +, -, -, -, -, +). 
 
According to hashing array Pr(n) for DSTII 
horizontal 14 rows are selected that allow 
computing 8 output data through cyclic 
convolutions. The convolution of two elements (the 
same) is replaced by convolution with a single 
point, respectively, for lines 3,7. Table 6 
summarizes the basis matrix of arguments (14x16), 
where the numbers of values of horizontal and 
vertical are indicated.       
                          
Table 6: Table of coordinates and first elements 

of submatrix DSTII, N=8 
 

( i+Li, j+Li ) - sijnij 

(1,1) – +1; (1,9) – -1; 

(9,1) – 
+2; 

(9,4) – 
+2; 

(9,9) – 
-2; 

(9,13) – 
-2; 

(13,1) – +4; (13,9) – +4; 
(14,1) – +8; 

 
With hashing arrays Pr(16), Pc(16)  arguments of 
the basis matrix can be reproduced, which result a 
form of cyclic submatrices without signs. Part of 
matrix of simplified arguments without signs of 
sine basis transform N=8 is presented in Table 7, 
which corresponds to the generalized Table 6.        
 

Table 7: Part table of values of simplified 
elements without signs of matrix DSTII, N=8 

      
k   

 n 0: 1: 4: 13: 8: 9: 12: 5: … 
0: 1 3 7 5 1 3 7 5 … 
2: 3 7 5 1 3 7 5 1 … 
8: 7 5 1 3 7 5 1 3 … 
26: 5 1 3 7 5 1 3 7 … 
16: 1 3 7 5 1 3 7 5 … 
18: 3 7 5 1 3 7 5 1 … 
24: 7 5 1 3 7 5 1 3 … 
10: 5 1 3 7 5 1 3 7 … 
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1: 2 6 2 6 2 6 2 6 … 
5: 6 2 6 2 6 2 6 2 … 
17: 2 6 6 2 2 6 6 6 … 
21: 6 2 6 2 6 2 6 2 … 
3: 4 4 4 4 4 4 4 4 … 
7: 8 8 8 8 8 8 8 8 … 

 
Hashing array of Pc(n) specify the order of (0, 1, 4, 
13, 8, 9.12, 5) (15, 14, 11, 2, 7, 6, 3, 10) input data 
when  we conduct the discrete sine transform using 
cyclic convolutions.  

Performance of element-wise additions of input 
data will be used for analysis of identity and quasi 
identity cyclic submatrices placed horizontally. 
Computation of cyclic convolution is performed 
once for combined input data for identity and quasi 
identity submatrices selected for analysis vertically. 
The number of cyclic symmetric convolutions of 
DSTII of size N=8 are the 8-point cyclic 
convolution with identical sequences, which 
resulted in four defined output data, and 4-point 
cyclic convolution with identical sequences, which 
resulted two output data. The remaining two output 
data are determined through one point products. 

Combining the results of cyclic convolutions is 
performed at the base accordance coordinates of 
the first elements of submatrices horizontally. 
Output data of transform in a result of computation 
is scaled by two and defined for: X(0), X(2), -X(4), 
-X(6), X(1), X(5), X(3), X(7). Output data X(4), -
X(6) must be taken with the opposite sign under 
P(n) of this algorithm. 

Since DSTIII is a transposed basis to DSTII, 
rearranging rows and columns of the basis, can be a 
synthesis for DSTII to efficiently compute and 
reverse transformation in general. However, this 
approach due to different indexing rows and 
columns is to some extent specific. 
  
3.3 Specific algorithm for DSTIII of size N=8 

Consider the example for synthesis of algorithm 
and computation of DSTIII N=8. In the contrary 
with DSTII, basis matrix of DSTIII arguments with 
elements for (11) contains values (k+1) of the 
elements in the first row of quantity - 31 and covers 
the entire period equal to 4N. The first column 
contains values (2n+1) of quantity - 16 and covers 
the entire period equal to 4N. Hashing array for 
rows:  
 
Pr(n) = (1,3,9,27,17,19,25,11) , 
 
rows define all 8 output data, where four output 
values for 27→5, 25→7,  19→13, 17→15 require 
the inversion of the sign of the result. The values of 

rows require transition from hashing array to the 
appropriate hashing array indexes (n-1)/2 of rows 
Pr(n): 
 
 (1,3,9,27,17,19,25,11) → (0,1,4,13,8,9,12,5). 
 
Hashing array for column is more extended: 
Pc(n)=(1,3,9,27,17,19,25,11)(31,29,23,5,15,13,7,2) 
(2,6,18,22)(30,26,14,10)(4,12)(28,20)(8,24)(16)(32
) . 
 
Permutation of number 32 columns is defined by 
the first horizontal row and the corresponding row 
in the matrix [(2k +1)(n +1)] mod 4N. 
Simplified hashing array for column permutation 
has the form: 
 
Pс'(n) = (1,3,7,5,1,3,7,5) (1,3,7,5,1,3,7,5) (2,6,2,6) 
(2,6,2,6) (4,4)(4,4) (8,8)(16)(32), 
Ss(n) = (+,+,+,-,-,-,-,+) (-,-,-,+,+,+,+,-) (+,+,-,-) 
(-,-,+,+) (+,+)(-,-)(+,-)(0)(0). 
 
Performance of element-wise subtractions of input 
data of simplified hashing array has the form: 
 
Pс'(n) =(1,3,7,5,1,3,7,5)(2,6,2,6)(4,4)(8,8)(16)(32), 
Ss(n) = (+,+,+,-,-,-,-,+) (+,+,-,-) (+,+) (+,-)(0)(0). 

 
Determining identity cyclic submatrices required 
for efficient computation of DSTIII for size N=8, is 
defined by analysis of Table 8 submatrices 
distribution in the structure of the basis matrix 
form. 
 
Table 8: Table of coordinates and first elements 

of matrix DSTIII, N=8 
 

( i+Li, j+Li ) - sijnij 
(1,1) – 
+1; 

(1,9) – 
+2; 

(1,13) – 
+4; 
 

(1,15) – 
+8; 
 

(1,16) – 
0; 

(5,13) – 
+4; 
 

(5,9) – 
+2; 

(9,13) – 
+4; 
 
(13,13) 
– +4; 

                                                                                                                                  
The following table 8 summarizes basis matrix of 
arguments dimension (8x16), where the number of 
values of horizontal and vertical are indicated.  
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Hashing array of Pc(n) specifies the order of the 
input data in the computation of the discrete sine 
transform through cyclic convolutions. Continued 
input data to 4N, according algorithm, after 
performance of element-wise subtractions of input 
data matrix-column contains: 
 
x(1)+x(2), x(3)+x(4), x(8)+x(7), -x(6)-x(5), -x(1)-
x(2), -x(3)-x(4), -x(8)-x(7), x(6)+x(5), x(2)+x(3), 
x(6)+x(7), -x(2)-x(3), -x(6)-x(7), x(4)+x(5), 
x(5)+x(4), x(8)+x(8), x(1) .  
 
Part of matrix of simplified arguments without 
signs of sine basis transform N=8 is presented in 
Table 9, which corresponds to the generalized 
Table 8.        
 

Table 9: Part table of values of simplified 
elements without signs of matrix DSTIII, N=8 

 
k   

n
   

  0: 2: 8: 26: 16: 18: 24: 10: … 
0: 1 3 7 5 1 3 7 5 … 
1: 3 7 5 1 3 7 5 1 … 
4: 7 5 1 3 7 5 1 3 … 
13: 5 1 3 7 5 1 3 7 … 
8: 1 3 7 5 1 3 7 5 … 
9: 3 7 5 1 3 7 5 1 … 
12: 7 5 1 3 7 5 1 3 … 
5: 5 1 3 7 5 1 3 7 … 
                       
Difference indices in rows and columns need to be 
changed from 8 values hashing array to the 
according hashing array of indices (2k+1)→k for 
rows Pr(n): 
 
(1,3,9,27,17,19,25,11) → (0,1,4,13,8,9,12,5). 
 
The corresponding hashing array indices (n+1)→n 
for columns Pc(n): 
 
(1,3,9,27,17,19,25,11)(2,6,18,22)(4,12)(8)(16) →  
(0,2,8,26,16,18,24,10)(1,5,17,21)(3,11)(7)(15). 
 

Performance of element-wise additions of input 
data will be used for identity and quasi identity 
cyclic submatrices placed horizontally. 
Computation of cyclic convolution is performed 
once for combined input data for identity and quasi 
identity submatrices selected for analysis vertically.  
The number of cyclic convolutions DSTIII of size 
N=8 are the 8-point cyclic convolution with 
identical sequences and two 4-point cyclic 
convolution with identical sequences. The 
remaining values are determined by one point 

products for vertically placed quasi identity 
submatrices. 

Combining the results of cyclic convolutions is 
performed horizontally at the base coordinates of 
the first elements of submatrices. Output data of 
transform as a result of computation are scaled by 
four and determined for: X(0), X(1), X(4), -X(2), -
X(7), -X(6), -X(3), X(5). Four output values -X(2),-
X(7),-X(6),-X(3) must be taken with the opposite 
sign according to Pr(n) = (1,3,9,27,17, 19,25,11), 
where 27→5, 25→7, 19→13, 17→15, which 
correspond to a set of (2k+1) for k = 0(1)7. 
Therefore, horizontal 8 rows of respective hashing 
array Pr(n) are selected, allowing to compute 
output values via cyclic convolutions. 
 Function of arguments for DSTII and DSTIII has 
different forms of rows and columns. Consequently 
a separate hashing array for row and column has to 
be applied, according to this approach. Hashing 
arrays for direct DSTII and hashing arrays for 
inverse IDSTII = DSTIII or vice versa differ in 
number of indices for Pr(n) and Pc(n) and 
corresponding structure of basis matrix with cyclic 
submatrices. 

 
3.4 Specific algorithm for DSTIV of size N=8 

Consider the example of synthesis of algorithm 
and computation of DSTIV with the values of the 
arguments [(2k+1)(2n+1)] for size N = 8. Basis 
matrix DSTIV for size N=8 describes the hashing 
array of arguments with elements smaller period 
equal 8N in the form: 

 
P(32)=(1,3,9,27,17,51,25,11,33,35,41,59,49,19,57,
43)(63,61,55,37,47,13,39,53,31,29,23,5,15,45,7,21)
.  
Due to redundancy in the selected period 8N of 
hashing array, it is enough to present: 
 
P(16)=(1,3,9,27,17,51,25,11,33,35,41,59,49,19,57,
43 ). 

 
Owing to odd values of hashing array maps to the 
corresponding Pk(16) hashing array indices, 
elements ki,j=(ni,j-1)/2, and k takes all the values of 
natural set: 
 
Pk(16)=(0,1,4,13,8,25,12,5,6,17,20,29,24,9,28,21). 

 
Simplified hashing array and sign array have the 
form: 
 
P'(n)=(1,3,9,5,15,13,7,11, 1,3,9,5,15,13,7,11); 
Ss(n)= (+, +, +, +, +, -, +, +,  -, -, -, -, -, +, -, -). 
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According 8 rows of hashing array Pk(n) for DSTIV 
horizontal are selected that allow computing the 8 
output data  through cyclic convolutions. Part of 
matrix of simplified arguments with signs of DSTIV 
basis transform N=8 is presented in Table 10.  
 

Table 10: Part table of values of simplified 
elements and signs of matrix DSTIV, N=8 

 
 k n 

  
  0: 1: 4: 13: 8: 25: 12: 5: … 

0: 1 3 9 5 15 13 7 11 … 
1: 3 9 5 15 13 7 11 1 … 
4: 9 5 15 13 7 11 1 3 … 
13: 5 15 13 7 11 1 3 9 … 
8: 15 13 7 11 1 3 9 5 … 
25: 13 7 11 1 3 9 5 15 … 
12: 7 11 1 3 9 5 15 13 … 
5: 11 1 3 9 5 15 13 7 … 
         … 
0: + + + + + - + + … 
1: + + + + - + + - … 
4: + + + - + + - - … 
13: + + - + + - - - … 
8: + - + + - - - - … 
25: - + + - - - - - … 
12: + + - - - - - + … 
5: + - - - - - + - … 

 
Hashing array of P(32) specifies the order of input 
data when we conduct the discrete sine transform 
using cyclic convolutions. Performance of element-
wise subtractions of input data will be used for 
convolution with cyclic submatrices placed 
horizontally. The number of cyclic convolutions 
DSTIV of size N=8 is only the 16-point cyclic 
convolution with identical sequences.  

Output data of transform as a result of 
computation are scaled by two and determined for: 
X(0), X(1), X(4), X(2), X(7), -X(6), X(3), X(5). 
Four output values X(6) must be taken with the 
opposite sign according to Pk(n)=(0, 1, 4, 13, 8, 25, 
12, 5), where 13→2, 8→7, 25→-6, 12→3. 
Therefore, horizontal 8 rows of hashing array Pk(n) 
are selected,, allowing to compute output data 
values via cyclic convolutions. 

Specific algorithm DSTIV of size N=5 defines 
structure of basis matrix. The hashing array 
describes basic matrix DSTIV of arguments with 
elements of smaller period equal to 8N, and has the 
form: 

 
P(20)=(1,3,9,27)(21,23,29,7)(19,17,11,33)                
(39,37,31,13) (5,15) (25,35). 

 

Due to redundancy in the selected period 8N of 
hashing array, it is enough to present: 
 
P(10) = (1,3,9,27) (21,23,29,7) (5) (25). 

 
Owing to odd values of hashing array maps to the 
corresponding Pk(10) hashing array indices, 
elements ki,j=(ni,j-1)/2, and k takes all the values of 
natural set: 
 
Pk(10) = (0,1,4,13) (10,11,14,3) (2) (12). 
 
Simplified hashing array and sign array have the 
form: 
 
P'(10) = (1,3,9,7) (1,3,9,7) (5) (5); 
Ss(10) = (+, +, +, -) (-, -, -, +) (+) (-). 
 
According 5 rows of hashing array Pk(n) for DSTIV 
horizontal are selected that allow computing the 5 
output data through cyclic convolutions (Table 11).  
 
Table 11: Table of values of simplified elements 

and signs of matrix DSTIV, N=8 
 

k\n     0 1 4 13 10 11 14 3 2 12 
0: 1 3 9 7 1 3 9 7 5 5 
1: 3 9 7 1 3 9 7 1 5 5 
4: 9 7 1 3 9 7 1 7 5 5 
13: 7 1 3 9 7 1 3 9 5 5 
2: 5 5 5 5 5 5 5 5 5 5 
 
0: + + + - - - - + + - 
1: + + - + - - + - + - 
4: + - + + - + - - + - 
13: - + + + + - - - + - 
2: + + + + - - - - - + 

 
Specific sign array corresponds to the number of 
cyclic convolutions of DSTIV for size N=5 a 4-
point convolution or 8-point with identical 
sequences, which resulted in four defined output 
data values and one output value determined by 
single-point product.  

Combining the results of convolutions is 
performed horizontally through appropriate 
coordinates, starting with the first element of 
subarrays. Output data of DSTIV are scaled by two 
and 5 values are determined: X(0), X(1), X(4), -
X(3), X(2) for proposed algorithm. 
 
 
4 Conclusions 
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The general method for synthesis of algorithms 
and efficient computation of arbitrary number of 
transform length for each of the four types of DST 
can be performed on the basis of response of 
hashing arrays and then using fast cyclic 
convolution algorithms. The main characteristics of 
algorithm that specifies the types of DSTI-IV are: 
function of basis arguments; initial dimension of 
basis matrix; sequences of input data; sequence of 
output data; convolution with identical sequences; 
version of hashing arrays; axes of  symmetry for 
size of transform. As a result, let us assess the 
advantages of the algorithm of computation of DST 
based on cyclic convolutions: 
- general method of using hashing array P(n), 
which corresponds to the cyclic decomposition of 
substitution of rows/columns from basis matrix of 
arguments, to arrive at an efficient conversion of 
the basis of an arbitrary DST length into parallel 
circular structures has been proposed; 
- analysis of the level of simplified hashing array 
P'(n) with supplement of respective subarray of 
S(n) signs reduces the amount of computation of 
cyclic convolutions; 
- an efficient scheme for the definition of identity 
and quasi identity cyclic submatrices from the basis 
matrix structure has been proposed; 
- the synthesis of algorithms, including 
determination of P(n), P'(n), S(n) and analysis of 
the structure of basis matrix uses integer arithmetic 
and is not elaborate. 

The general method for the conversion of the 
DST into convolution structures are now available 
and have been found to be very efficient for 
hardware implementation using VLSI technology. 
Separate computations of cyclic convolutions, 
which are structured according to this approach to 
basis matrix, and the combinations of results make 
proposed technique topical for concurrent 
programming and for implementation in parallel 
systems. 
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